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Introduction

This is a compilation of various assignments which I (Emerson Kahle) have completed for my undergraduate
courses at the University of Southern California. The work includes assignments from

1. Fundamental Concepts of Analysis

2. Numerical Methods

3. Mathematical Statistics

4. Mathematics of Machine Learning

5. Probability Theory

6. Algorithms and Computing Theory

7. Theory of Numbers

All of the work (solutions) are entirely written by myself in Overleaf using LATEX. Assuming that each
assignment was thoroughly graded, the work is almost completely accurate.

Note: None of the assignments in this document were written by me. The authors of each assignment
(Professors at USC) will be listed before each section.
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MATH 425A: Fundamental Concepts of Analysis

All assignments in this section were written by Masoud Zargar, RTPC Assistant Professor of Mathematics,
USC. Solutions to assignments 1 through 3 are provided.

Assignment 1
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Problem 1

(5 points). Differentiate the following functions:

(i) f(x) = ln(sin2(x))

(ii) k(x) = ln | cos(lnx)|

Solution

(i) Applying the chain rule once yields

d

dx
f(x) =

d

dx
ln(sin2(x)) =

1

sin2(x)

d

dx
sin2(x) (1)

Applying the chain rule to sin2(x) yields

d

dx
sin2(x) = 2sin(x)

d

dx
sin(x) = 2sin(x)cos(x) (2)

Plugging the result from (2) into (1) yields

d

dx
f(x) =

1

sin2(x)
· 2 · sin(x) · cos(x) = 2

cos(x)

sin(x)
= 2cot(x) (3)

From (3), we get the conclusion that d
dxf(x) = 2cot(x).

(ii) Applying the chain rule once yields

d

dx
k(x) =

d

dx
ln|cos(ln(x))| = 1

cos(ln(x))

d

dx
cos(ln(x)) (4)

Applying the chain rule to cos(ln(x)) yields

d

dx
cos(ln(x)) = −sin(ln(x)) · d

dx
ln(x) = −sin(ln(x))

x
(5)

Plugging the result from (5) into (4) yields

d

dx
k(x) = − sin(ln(x))

xcos(ln(x))
= − tan(ln(x))

x
(6)

From (6), we arrive at the conclusion that d
dxk(x) = − tan(ln(x))

x .
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Problem 2

(5 points). Find f if f”(x) = x−2, x > 0, f(1) = f(2) = 0.

Solution
Applying the Fundamental Theorem of Calculus, integrating f”(x) once with respect to x yields

f ′(x) =

∫
f”(x)dx =

∫
x−2dx = − 1

x
+ C (7)

Integrating the result from (7) with respect to x yields

f(x) =

∫
f ′(x)dx =

∫
(− 1

x
+ C)dx = −ln|x|+ Cx+D (8)

The result from (8) allows us to establish the following system of two equations:

1. −ln|1|+ C +D = C +D = 0

2. −ln|2|+ 2C +D = 0

Solving directly, we find

C +D = 2C +D − ln(2) =⇒ C = ln(2) (9)

Plugging the result from (9) back into either equation from the system yields

ln(2) +D = 0 =⇒ D = −ln(2) (10)

Combining the results from (9) and (10) with the result from (8), we find

f(x) = −ln|x|+ ln(2)x− ln(2) (11)

which completes the problem.

Page 4



Problem 3

(5 points). Compute the limit

lim
x→1

2cos
2(πx)+2 − 23x

sin(πx)

Solution If we try to evaluate the limit directly, we find

2cos
2(πx)+2 − 23x

sin(πx)

∣∣∣∣∣
x=1

=
2cos

2(π)+1 − 23

sin(π)
=

23 − 23

0
=

0

0
(12)

The result from (12) is undefined, but its form tells us we can apply L’Hopital’s rule to find

lim
x→1

2cos
2(πx)+2 − 23x

sin(πx)
= lim
x→1

d
dx (2

cos2(πx)+2 − 23x)
d
dxsin(πx)

(13)

We can quickly compute that the derivative in the denominator evaluates to

d

dx
sin(πx) = cos(πx)

d

dx
(πx) = πcos(πx) (14)

For the derivative in the numerator, note that

d

dx
(2cos

2(πx)+2 − 23x) =
d

dx
(2cos

2(πx)+2)− d

dx
23x (15)

Let h1(x) := 2cos
2(πx)+2 and h2(x) := 23x so that d

dx (2
cos2(πx)+2 − 23x) = d

dxh1(x)−
d
dxh2(x). Then

ln(h1(x)) = (cos2(πx) + 2)ln(2) (16)

and
ln(h2(x)) = 3xln(2) (17)

Differentiating both sides of (16) and (17) with respect to x yields

d
dxh1(x)

h1(x)
=

d

dx
(cos2(πx) + 2)ln(2) = ln(2)

d

dx
cos2(πx) = −2πln(2)cos(πx)sin(πx) (18)

and
d
dxh2(x)

h2(x)
=

d

dx
3xln(2) = 3ln(2) (19)

Rearranging the results from (18) and (19), we find

d

dx
h1(x) = −2πln(2)cos(πx)sin(πx)2cos

2(πx)+2 (20)

and
d

dx
h2(x) = 3ln(2)23x (21)

Combining (20) and (21), we find

d

dx
(2cos

2(πx)+2 − 23x) = −2πln(2)cos(πx)sin(πx)2cos
2(πx)+2 − 3ln(2)23x (22)

Plugging (22) and (14) into (13) yields

lim
x→1

2cos
2(πx)+2 − 23x

sin(πx)
= lim
x→1

−2πln(2)cos(πx)sin(πx)2cos
2(πx)+2 − 3ln(2)23x

πcos(πx)
=

0− 24ln(2)

−π
=

24ln(2)

π
(23)

From (23), we conclude that

lim
x→1

2cos
2(πx)+2 − 23x

sin(πx)
=

24ln(2)

π
(24)

which completes the problem.
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Problem 4

(5 points). Compute the limit
lim
x→0+

(tan(ex))x

Solution
Since ex and ln(x) are inverses of each other, both of which are continuous over all of R+, we have

lim
x→0+

(tan(ex))x = lim
x→0+

eln((tan(ex))
x) = lim

x→0+
exln(tan(ex)) = exp( lim

x→0+
xln(tan(ex))) (25)

Directly evaluating the limit from the RHS of (25) yields

xln(tan(ex))|x=0 = 0 · −∞ = −∞
∞

(26)

The result from (26) is undefined, but its form allows us to apply L’Hopital’s rule to find

lim
x→0+

xln(tan(ex)) = lim
x→0+

ln(tan(ex))
1
x

= lim
x→0+

d
dx ln(tan(ex))

d
dx

1
x

(27)

Differentiating the numerator and denominator from the RHS of (27) with respect to x yields

d

dx
ln(tan(ex)) =

1

tan(ex)
· sec2(ex) · e = e

cos(ex)

sin(ex)
· 1

cos2(ex)
=

e

sin(ex)cos(ex)
(28)

and
d

dx

1

x
=

d

dx
x−1 = −x−2 (29)

Plugging the results from (28) and (29) into (27) yields

lim
x→0+

xln(tan(ex)) = lim
x→0+

e
sin(ex)cos(ex)

−x−2
= lim
x→0+

−ex2

sin(ex)cos(ex)
= −2e lim

x→0+

x2

sin(2ex)
(30)

with the last equality following since 2sin(x)cos(x) = sin(2x) =⇒ 1
2sin(2ex) = sin(ex)cos(ex). If we try

to evaluate the limit from (30) directly, we will get 0
0 since limx→0+ x

2 = 0 and limx→0+ sin(2ex) = 0. Thus,
we apply L’Hopital’s rule once more to find

lim
x→0+

xln(tan(ex)) = lim
x→0+

d
dxx

2

d
dxsin(2ex)

= lim
x→0+

2x

2ecos(2ex)
=

0

2ecos(0)
=

0

2e
= 0 (31)

Plugging the result from (31) into (25), we find

lim
x→0+

(tan(ex))x = exp
(

lim
x→0+

xln(tan(ex))
)
= e0 = 1 (32)

From (32), we conclude that
lim
x→0+

(tan(ex))x = 1 (33)

which completes the problem.
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Problem 5

(5 points). Compute
∫
x2arctan(x)dx.

Solution
We will integrate by parts. First, let u = x2 and dv = arctan(x)dx so that du = 2xdx and v =

∫
arctan(x)dx.

To compute v explicitly, we must do another integration by parts. Let u1 = arctan(x) and dv1 = dx so that
du1 = 1

1+x2 and v1 = x. Then∫
arctan(x)dx = xarctan(x)−

∫
x

1 + x2
dx (34)

Let u2 = 1 + x2 so du2 = 2xdx. Then∫
x

1 + x2
dx =

1

2

∫
1

u2
du2 =

1

2
ln|u2|+ C =

1

2
ln|1 + x2|+ C (35)

Choosing C = 0 and plugging the result from (35) into (34), we find

v :=

∫
arctan(x)dx = xarctan(x)− 1

2
ln|1 + x2| (36)

Now that we have u, v, du, and dv explicitly defined, we can integrate by parts to find∫
x2arctan(x)dx = x3arctan(x)− x2

2
ln|1 + x2| − 2

∫
x2arctan(x)dx+

∫
xln|1 + x2|dx (37)

Combining like terms from (37) and using the definition of u2 as before, we find

3

∫
x2arctan(x)dx = x3arctan(x)− x2

2
ln|1 + x2|+ 1

2

∫
ln|u2|du2 (38)

To evaluate the integral from the RHS of (38), we need to integrate by parts again. Let u3 = ln|u2| and
dv3 = du2 so du3 = du2

u2
and v3 = u2. Integrating by parts yields∫

ln|u2|du2 = u2ln|u2| −
∫
u2
u2
du2 = u2ln|u2| −

∫
du2 = u2ln|u2| − u2 (39)

Plugging the result from (38) into (39) and writing the result in terms of x yields

3

∫
x2arctan(x)dx = x3arctan(x)− x2

2
ln|1 + x2|+ 1

2
(u2ln|u2| − u2)

= x3arctan(x)− x2

2
ln|1 + x2|+ 1

2
((1 + x2)ln(1 + x2)− x2 − 1)

= x3arctan(x)− x2

2
ln|1 + x2|+ 1

2
ln(1 + x2) +

x2

2
ln(1 + x2)− x2

2
− 1

2

= x3arctan(x) +
1

2
ln|1 + x2| − x2

2
− 1

2
(40)

Dividing both sides of (40) by three yields∫
x2arctan(x)dx =

2x3arctan(x) + ln(1 + x2)− x2 − 1

6
+C =

2x3arctan(x) + ln(1 + x2)− x2

6
+C (41)

which completes the problem.
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Problem 6

(5 points). Compute the indefinite integral ∫
(lnx)3dx

x
√

1− (lnx)2

Solution
We will use trigonometric substitution. Let ln(x) = sin(u) so dx

x = cos(u)du and u = arcsin(ln(x)). Then∫
(lnx)3dx

x
√
1− (lnx)2

=

∫
sin3(u)cos(u)du√

1− sin2(u)
=

∫
sin3(u)cos(u)du√

cos2(u)
=

∫
sin3(u)du (42)

Utilizing the fact that sin2(x) + cos2(x) = 1 for all x ∈ R, we find∫
(lnx)3dx

x
√
1− (lnx)2

=

∫
(1−cos2(u))sin(u)du =

∫
sin(u)du−

∫
cos2(u)sin(u)du = −cos(u)−

∫
cos2(u)sin(u)du (43)

Now, let v = cos(u) so that dv = −sin(u)du, and we find∫
(lnx)3dx

x
√
1− (lnx)2

= −cos(u) +
∫
v2dv = −cos(u) + v3

3
=
cos3(u)

3
− cos(u) (44)

Expressing (44) in terms of x yields∫
(lnx)3dx

x
√
1− (lnx)2

=
cos3(arcsin(ln(x)))

3
− cos(arcsin(ln(x))) (45)

Note that
cos(arcsin(ln(x)) =

√
1− sin2(arcsin(ln(x)) =

√
1− ln2(x) (46)

Plugging the result from (46) into (45) yields∫
(lnx)3dx

x
√
1− (lnx)2

=
(1− ln2(x))

3
2

3
−
√
1− ln2(x) (47)

The result from (47) lets us conclude that∫
(lnx)3dx

x
√

1− (lnx)2
=

(1− ln2(x))
3
2

3
−
√

1− ln2(x) + C (48)

which completes the problem.
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Problem 7

(5 points). Compute

lim
x→∞

e−x
2

∫ x+
ln(x)

x

x

et
2

dt

Solution
First, rewrite

lim
x→∞

e−x
2

∫ x+
ln(x)

x

x

et
2

dt = lim
x→∞

∫ x+ ln(x)
x

x
et

2

dt

ex2 (49)

and note that
lim
x→∞

ex
2

= ∞ (50)

Next, note that, for all t ∈ [x, x+ ln(x)
x ], et

2 ≥ ex
2

, so we know

lim
x→∞

∫ x+
ln(x)

x

x

et
2

dt ≥ lim
x→∞

ex
2

∫ x+
ln(x)

x

x

dt = lim
x→∞

ex
2

(x+
ln(x)

x
− x) = lim

x→∞
ex

2 ln(x)

x
(51)

Claim: ex ≥ x for all x ∈ R such that x ≥ 0.
Proof. For x = 0, we have ex = e0 = 1 ≥ 0 = x. Thus, it suffices to show ex increases at least as fast as
x for all x ≥ 0. Note that d

dxe
x = ex and d

dxx = 1, so it suffices to show ex ≥ 1 for all x ≥ 0. For x = 0,

ex = e0 = 1 ≥ 1. Also, d2

dx2 e
x = ex > 0 for all x ∈ R by definition of the exponential function. Thus, the

rate of change of d
dxe

x = ex is strictly positive for all x ∈ R, so ex > e0 for all x > 0. This combines with
the fact that e0 ≥ 1 to prove that ex ≥ 1 for all x ≥ 0. Thus, ex ≥ x when x = 0, and ex grows at least as
fast as x for all x ≥ 0, so ex ≥ x for all x ≥ 0.
From this result, substituting x2 for x, we find

limx→∞

∫ x+
ln(x)

x

x

et
2

dt ≥ lim
x→∞

x2
ln(x)

x
= lim
x→∞

xln(x) = ∞ (52)

From (50) and (52), we see that directly evaluating

lim
x→∞

∫ x+ ln(x)
x

x
et

2

dt

ex2

leads to ∞
∞ , so we apply L’Hopital’s rule to find

lim
x→∞

∫ x+ ln(x)
x

x
et

2

dt

ex2 = lim
x→∞

d
dx

∫ x+ ln(x)
x

x
et

2

dt
d
dxe

x2
(53)

We can directly evaluate the derivative in the denominator to find

d

dx
ex

2

= 2xex
2

(54)

For the derivative in the numerator, we use the Fundamental Theorem of Calculus in conjunction with the
chain rule to find

d

dx

∫ x+
ln(x)

x

x

et
2

dt = e(x+
ln(x)

x )2 d

dx
(x+

ln(x)

x
)− ex

2

(55)

Applying the quotient rule to the derivative from (55), we find

d

dx
(x+

ln(x)

x
) = 1 +

1− ln(x)

x2
(56)
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Plugging the result from (56) into (55) and simplifying yields

d

dx

∫ x+
ln(x)

x

x

et
2

dt = e(x+
ln(x)

x )2(1 +
1− ln(x)

x2
)− ex

2

= ex
2

(e2ln(x)e(
ln(x)

x )2(1 +
1− ln(x)

x2
)− 1)

= ex
2

(x2e(
ln(x)

x )2(1 +
1− ln(x)

x2
)− 1) (57)

Plugging the results from (57) and (54) into (53), we find

lim
x→∞

∫ x+ ln(x)
x

x
et

2

dt

ex2 = lim
x→∞

ex
2

(x2e(
ln(x)

x )2(1 + 1−ln(x)
x2 )− 1)

2xex2 = lim
x→∞

(x2e(
ln(x)

x )2(1 + 1−ln(x)
x2 )− 1)

2x
(58)

Directly evaluating the limit from the RHS of (58) yields

lim
x→∞

(x2e(
ln(x)

x )2(1 + 1−ln(x)
x2 )− 1)

2x
= lim
x→∞

x2 − 1

2x
(59)

since limx→∞
ln(x)
x = 0 and limx→∞

1−ln(x)
x2 = 0. Evaluating (59) directly leads to ∞

∞ , so we apply L’Hopital’s
rule once more to find

lim
x→∞

∫ x+ ln(x)
x

x
et

2

dt

ex2 = lim
x→∞

d
dxx

2 − 1
d
dx2x

= lim
x→∞

2x

2
= lim
x→∞

x = ∞ (60)

From (60), we conclude that

lim
x→∞

e−x
2

∫ x+
ln(x)

x

x

et
2

dt = ∞

which completes the problem.

Assignment 2
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Problem 1

(5 points). Suppose f : X → Y is a function, and that {Ai : i ∈ I} ⊆ P(X) and {Bj : j ∈ J} ⊆ P(Y ).
Rigorously prove the following:

(i) f(
⋃
i∈I Ai) =

⋃
i∈I f(Ai),

(ii) f−1(
⋃
j∈J Bj) =

⋃
j∈J f

−1(Bj),

(iii) f−1(Y ∖B) = X ∖ f−1(B) for every subset B ⊆ Y .

Solution

(i) By the axiom of extensionality, it suffices to show

∀y((y ∈ f(
⋃
i∈I

Ai)) ⇐⇒ (y ∈
⋃
i∈I

f(Ai))

Consider an arbitrary y. By the definition of the image,

y ∈ f(
⋃
i∈I

Ai) =⇒ ∃x ∈
⋃
i∈I

Ai s.t. y = f(x)

By an inductive application of the definition of the union of two sets,

∃x ∈
⋃
i∈I

Ai s.t. y = f(x) =⇒ ∃x ∈ X s.t. (y = f(x)) ∧ (x ∈ Ai) for some i ∈ I

Since {Ai : i ∈ I} ⊆ P(X), Ai ⊆ X for all i ∈ I, so x ∈ Ai =⇒ x ∈ X for all i ∈ I. Thus, we can
write

∃x ∈ X s.t. (y = f(x)) ∧ (x ∈ Ai) for some i ∈ I =⇒ ∃x ∈ Ai s.t. y = f(x) for some i ∈ I

The definition of the image yields

∃x ∈ Ai, i ∈ I s.t. y = f(x) =⇒ ∃i ∈ I s.t. y ∈ f(Ai)

Finally, and inductive application of the definition of the union of two sets yields

∃i ∈ I s.t. y ∈ f(Ai) =⇒ y ∈
⋃
i∈I

f(Ai)

which allows us to conclude
y ∈ f(

⋃
i∈I

Ai) =⇒ y ∈
⋃
i∈I

f(Ai)

Going in the opposite direction, we find

y ∈
⋃
i∈I

f(Ai) =⇒ ∃i ∈ I s.t. y ∈ f(Ai)

=⇒ ∃x ∈ Ai s.t. y = f(x) for some i ∈ I

=⇒ ∃x ∈
⋃
i∈I

Ai s.t. y = f(x)

=⇒ y ∈ f(
⋃
i∈I

Ai)

where the first and third implications follow by an inductive application of the definition of the union
of two sets and the second and fourth implications follow by the definition of the image. Thus,

∀y((y ∈ f(
⋃
i∈I

Ai)) ⇐⇒ (y ∈
⋃
i∈I

f(Ai)))
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which completes the proof that

f(
⋃
i∈I

Ai) =
⋃
i∈I

f(Ai)

(ii) By the axiom of extensionality, it suffices to show

∀x((x ∈ f−1(
⋃
j∈J

Bj)) ⇐⇒ (x ∈
⋃
j∈J

f−1(Bj)))

Consider an arbitrary x. By the definition of the pre-image,

x ∈ f−1(
⋃
j∈J

Bj) =⇒ f(x) ∈
⋃
j∈J

Bj

Inductively applying the definition of the union of two sets, we find

f(x) ∈
⋃
j∈J

Bj =⇒ ∃j ∈ J s.t. f(x) ∈ Bj

By the definition of the pre-image, we have

∃j ∈ J s.t. f(x) ∈ Bj =⇒ ∃j ∈ J s.t. x ∈ f−1(Bj)

Via one more inductive application of the definition of the union of two sets, we find

∃j ∈ J s.t. x ∈ f−1(Bj) =⇒ x ∈
⋃
j∈J

f−1(Bj)

which allows us to conclude

x ∈ f−1(
⋃
j∈J

Bj) =⇒ x ∈
⋃
j∈J

f−1(Bj)

Going in the opposite direction, we find

x ∈
⋃
j∈J

f−1(Bj) =⇒ ∃j ∈ J s.t. x ∈ f−1(Bj)

=⇒ ∃j ∈ J s.t. f(x) ∈ Bj

=⇒ f(x) ∈
⋃
j∈J

Bj

=⇒ x ∈ f−1(
⋃
j∈J

Bj)

where the first and third implications follow by inductive applications of the definition of the union of
two sets, and the second and fourth follow by the definition of the pre-image. Thus,

∀x((x ∈ f−1(
⋃
j∈J

Bj)) ⇐⇒ (x ∈
⋃
j∈J

f−1(Bj)))

which completes the proof that

f−1(
⋃
j∈J

Bj) =
⋃
j∈J

f−1(Bj)

(iii) By the axiom of extensionality, it suffices to show

∀x((x ∈ f−1(Y ∖B)) ⇐⇒ (x ∈ X ∖ f−1(B)))
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for an arbitrary subset B ⊆ Y . Consider an arbitrary x and an arbitrary B ⊆ Y . By definition of the
pre-image, we have

x ∈ f−1(Y ∖B) =⇒ f(x) ∈ Y ∖B

By definition of the difference of two sets,

f(x) ∈ Y ∖B =⇒ (f(x) ∈ Y ) ∧ (f(x) /∈ B)

Applying the definition of the pre-image twice yields

(f(x) ∈ Y ) ∧ (f(x) /∈ B) =⇒ (x ∈ f−1(Y )) ∧ (f /∈ f−1(B))

Since f : X → Y , we know f−1(Y ) = X, so we can simplify the above implication to

(f(x) ∈ Y ) ∧ (f(x) /∈ B) =⇒ (x ∈ X) ∧ (x /∈ f−1(B))

Applying the definition of the difference of two sets once more yields

x ∈ X ∖ f−1(B)

which allows us to conclude

x ∈ f−1(Y ∖B) =⇒ x ∈ X ∖ f−1(B)

Going in the other direction, we find

x ∈ X ∖ f−1(B) =⇒ (x ∈ X) ∧ (x /∈ f−1(B))

≡ (x ∈ f−1(Y )) ∧ (x /∈ f−1(B))

=⇒ (f(x) ∈ Y ) ∧ (f(x) /∈ B)

=⇒ f(x) ∈ Y ∖B

=⇒ x ∈ f−1(Y ∖B)

where the equivalence follows from the previously noted identity X = f−1(Y ), the first and third impli-
cations follow from the definition of the difference of two sets, and the second and fourth implications
follow from the definition of the pre-image. Thus,

∀x((x ∈ f−1(Y ∖B)) ⇐⇒ (x ∈ X ∖ f−1(B)))

for all B ⊆ Y , which completes the proof that

f−1(Y ∖B) = X ∖ f−1(B) for every subset B ⊆ Y

and thus completes the problem.

Problem 2

(5 points). Recall that Y X := Fun(X,Y ) = {f : X → Y } is the set of functions from X to Y . Suppose
X,Y, Z are three sets. Prove that |(ZY )X | = |ZX×Y | (note: when the sets are finite, this reduces to a
well-known algebraic identity, well-known to infants) by constructing

Φ : Fun(X,Fun(Y,Z)) → Fun(X × Y,Z)

and
Ψ : Fun(X × Y,Z) → Fun(X,Fun(Y, Z))
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such that both Φ ◦Ψ and Ψ ◦ Φ are identity. functions. Why does this prove the equality of cardinalities?

Solution
For any f∗ ∈ (ZY )X , define

Φ(f∗) = f ∈ ZX×Y s.t. f(x, y) = (f∗(x))(y)

for all x ∈ X, y ∈ Y , (x, y) ∈ X × Y . Here (f∗(x))(y) denotes the function f∗(x) : Y → Z evaluated at
y ∈ Y . That is,

(Φ(f∗))(x, y) = (f∗(x))(y)

for all x ∈ X, y ∈ Y , (x, y) ∈ X × Y , and f∗ ∈ (ZY )X .
Similarly, for any f+ ∈ ZX×Y define

Ψ(f+) = f ∈ (ZY )X s.t. (f(x))(y) = f+(x, y)

for all x ∈ X, y ∈ Y , (x, y) ∈ X × Y . Here (f(x))(y) denotes the function f(x) : Y → Z evaluated at y ∈ Y .
That is,

((Ψ(f+))(x))(y) = f+(x, y)

for all x ∈ X, y ∈ Y , (x, y) ∈ X × Y , and f+ ∈ ZX×Y

For any f∗ ∈ (ZY )X , note that

Ψ ◦ Φ(f∗) = Ψ(f ′ ∈ ZX×Y s.t. f ′(x, y) = (f∗(x))(y) ∀x ∈ X, y ∈ Y, (x, y) ∈ X × Y )

= f ∈ (ZY )X s.t. (f(x))(y) = f ′(x, y) ∀x ∈ X, y ∈ Y, (x, y) ∈ X × Y

= f ∈ (ZY )X s.t. (f(x))(y) = (f∗(x))(y) ∀x ∈ X, y ∈ Y, (x, y) ∈ X × Y

= f∗

so Ψ ◦ Φ = id(ZY )X .

Similarly, for any f+ ∈ ZX×Y , note that

Φ ◦Ψ(f+) = Φ(f ′ ∈ (ZY )X s.t. (f ′(x))(y) = f+(x, y) ∀x ∈ X, y ∈ Y, (x, y) ∈ X × Y )

= f ∈ ZX×Y s.t. f(x, y) = (f ′(x))(y) ∀x ∈ X, y ∈ Y, (x, y) ∈ X × Y )

= f ∈ ZX×Y s.t. f(x, y) = f+(x, y)∀x ∈ X, y ∈ Y, (x, y) ∈ X × Y )

= f+

so Φ ◦Ψ = idZX×Y . Since
Ψ ◦ Φ = id(ZY )X and Φ ◦Ψ = idZX×Y

we know from lecture that Φ is a bijection from (ZY )X to ZX×Y . By the definition of equality of cardinalities,
this implies

|(ZY )X | = |ZX×Y |

which completes the proof.

Problem 3

(5 points). Suppose Φ : C0(R;R) → R≥0 is a non-negative function on the set C0(R;R) of continuous
functions R → R. Suppose further that there is a constant B > 0 such that for every k ∈ N and every k
distinct continuous functions f1, ..., fk ∈ C0(R;R), we have

k∑
i=1

Φ(fi) ≤ B.
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Prove that {f ∈ C0(R;R) : Φ(f) ̸= 0} is countable. Can you generalize this problem?

Hint: If a > 0 is a real number, note that there is an n ∈ N such that a ≥ 1
n . Look at the proof of

the countability of algebraic numbers for inspiration.

Solution
Since Φ(f) ≥ 0,∈ R for all f ∈ C0(R;R) by definition, we know Φ(f) ̸= 0 =⇒ Φ(f) > 0 for all f ∈ C0(R;R).
That is,

f ∈ {f ∈ C0(R;R) : Φ(f) ̸= 0} =⇒ Φ(f) ∈ R+

Following the hint, note that for any such Φ(f) ∈ R+, we can find an n ∈ N such that Φ(f) ≥ 1
n . Thus,

f ∈ {f ∈ C0(R;R) : Φ(f) ̸= 0} =⇒ f ∈ {f ∈ C0(R;R) : Φ(f) ≥ 1

n
for some n ∈ N}

=⇒ f ∈
⋃
n∈N

{f ∈ C0(R;R) : Φ(f) ≥ 1

n
}

for all f ∈ {f ∈ C0(R;R) : Φ(f) ̸= 0} and

f ∈
⋃
n∈N

{f ∈ C0(R;R) : Φ(f) ≥ 1

n
} =⇒ f ∈ {f ∈ C0(R;R) : Φ(f) > 0}

=⇒ f ∈ {f ∈ C0(R;R) : Φ(f) ̸= 0}

for all f ∈ {f ∈ C0(R;R) : Φ(f) ̸= 0}. Thus, we have

∀f((f ∈ {f ∈ C0(R;R) : Φ(f) ̸= 0}) ⇐⇒ (f ∈
⋃
n∈N

{f ∈ C0(R;R) : Φ(f) ≥ 1

n
}))

so

{f ∈ C0(R;R) : Φ(f) ̸= 0} =
⋃
n∈N

{f ∈ C0(R;R) : Φ(f) ≥ 1

n
}

We claim that {f ∈ C0(R;R) : Φ(f) ≥ 1
n} is finite for all n ∈ N.

Assume to the contrary that {f ∈ C0(R;R) : Φ(f) ≥ 1
n} is infinite for some n ∈ N. Then we can choose

n⌈B⌉+ 1 > nB of its elements

f1, ..., fn⌈B⌉+1 ∈ {f ∈ C0(R;R) : Φ(f) ≥ 1

n
}

and
n⌈B⌉+1∑
i=1

Φ(fi) ≥
n⌈B⌉+1∑
i=1

1

n
= (n⌈B⌉+ 1)

1

n
> n⌈B⌉ 1

n
= B

This directly contradicts the upper bound on
∑k
i=1 Φ(fi) for distinct f1, ..., fk ∈ C0(R;R) from the problem

statement. Thus,

{f ∈ C0(R;R) : Φ(f) ≥ 1

n
}

is finite (and thus countable) for all n ∈ N. Since N is countable by definition, {f ∈ C0(R;R) : Φ(f) ̸= 0}
is thus a countable union of countable sets, so it too is countable by Proposition 1.5 from the notes. This
completes the proof that {f ∈ C0(R;R) : Φ(f) ̸= 0} is countable.

To generalize this problem, consider an arbitrary Φ : X → Y such that Φ(x) ≥ 0 for all x ∈ X and
for all k ∈ N and distinct x1, .., xk ∈ X,

k∑
i=1

Φ(x) ≤ B
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for some constant B. Then

{x ∈ X : Φ(x) ̸= 0} =
⋃
n∈N

{x ∈ X : x ≥ 1

n
}

by the exact same logic as before. Moreover, {x ∈ X : Φ(x) ̸= 0} a countable union of countable sets, so it
is also countable by Proposition 1.5. This generalization completes the problem.

Problem 4

(5 points). In the multiverse/universe Infinitum 425a, at every point in R3, there is a (point) planet, and
there is a two-way/undirected road between x, y ∈ R3 if and only if |x−y| = 1, that is, they are 1 unit apart.
Using Zorn’s lemma, prove that there is a way to connect all the planets using some of the roads such that
there is exactly one path (finitely many roads) between any two planets.

Solution
Let Gp = (V,E) be the graph of Infinitum 425a, where

V = R3

is the set of all vertices (planets) and

E = {(x, y)|x, y ∈ R3, |x− y| = 1}

is the set of all edges (roads) between any two points (planets) in R3 that are exactly 1 unit apart. Note that
the two directed edges (x, y), (y, x) ∈ E provide the functionality of the two-way roads from the problem
description.
First, we claim that Gp is connected. To prove this, it suffices to show that, for any two distinct points
x, y ∈ V (i.e. |x − y| ̸= 0), we can find a sequence of edges e1, ..., ek ∈ E that connect x with y. Suppose
|x − y| = D ∈ R+, and consider the line segment xy of length D connecting x and y. If D > 1, we can
traverse xy in 1 unit steps (since there are roads between all a, b ∈ R3 such that |a − b| = 1) until the
remaining distance is d := D− ⌊D⌋ < 1 where d ∈ R≥0. That is, we can find e1, ..., e⌊D⌋ ∈ E that connect x
to a point x′ which satisfies |x′ − y| < 1.
If d = 0, x′ = y, and we have connected x to y using e1, ..., e⌊D⌋ ∈ E.

On the other hand, if d ∈ (0, 1), then consider the line segment x′y of length d connecting x′ with y and

define x” to be its midpoint. Then |x′ − x”| = |y − x”| = d
2 . Consider an arbitrary line of length

√
1− d2

4

orthogonal to x′y connecting x” to some other point x∗ ∈ R3. Note that, since x′x” is a sub-segment of x′y,
x′y ⊥ x”x∗ implies x′x∗ forms a right triangle with x′x” and x”x∗. Applying the Pythagorean Theorem, we
find that

|x′ − x∗| =

√
(

√
1− d2

4
)2 + (

d

2
)2 =

√
1− d2

4
+
d2

4
=

√
1 = 1

That is, x′ and x∗ are exactly 1 unit apart, so there is a road e⌊D⌋+1 ∈ E directly connecting them. Also,

by symmetry, since x”y is a sub-segment of x′y, x′y ⊥ x”x∗ implies x∗y forms a right triangle with x”y and
x”x∗. Applying the Pythagorean Theorem, we find that

|y − x∗| =

√
(

√
1− d2

4
)2 + (

d

2
)2 =

√
1− d2

4
+
d2

4
=

√
1 = 1

That is, x∗ and y are exactly 1 unit apart, so there is a road e⌊D⌋+2 ∈ E directly connecting them too. This
yields a sequence e1, ..., e⌊D⌋, e⌊D⌋+1, e⌊D⌋+2 ∈ E that connect x and y.
Thus, for any two distinct points x, y ∈ R3 = V , we can find a sequence of edges in E that connect x and
y. Since D := |x − y| < ∞ is finite, our sequence of ⌊D⌋ + 2 edges is too. This completes the proof that
GP := (V,E) is connected.
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Next, we claim that, for any connected graph G = (V,E) (V and E not necessarily the same as before),
there exists a spanning tree M . We will use Zorn’s lemma to prove this. Let

Σ = {H = (V,EH)|EH ⊆ E and H has no cycles}

be the set of all subgraphs of G with the same vertex set V and without cycles. For any two subgraphs
H,H ′ ∈ Σ, we define ≤ to be the relation satisfying H ≤ H ′ ⇐⇒ H is a subgraph of H ′ (i.e. ⇐⇒ EH ⊆
EH′ since VH = V for all H ∈ Σ). Note that, for all H ∈ Σ,

H ≤ H

since EH ⊆ EH . Also, for all H,H ′ ∈ Σ,

(H ≤ H ′ ∧H ′ ≤ H) =⇒ H = H ′

since
H ≤ H ′ =⇒ EH ⊆ EH′

and
H ′ ≤ H =⇒ EH′ ⊆ EH

so

(H ≤ H ′ ∧H ′ ≤ H) =⇒ (EH ⊆ EH′ ∧ EH′ ⊆ EH) =⇒ EH = EH′ =⇒ H = (V,EH) = (V,EH′) = H ′

Finally, for all H,H ′, H” ∈ Σ,
(H ≤ H ′ ∧H ′ ≤ H”) =⇒ (H ≤ H”)

since
H ≤ H ′ =⇒ EH ⊆ EH′

and
H ′ ≤ H” =⇒ EH′ ⊆ EH”

so
(H ≤ H ′ ∧H ′ ≤ H”) =⇒ (EH ⊆ EH′ ⊆ EH”) =⇒ (EH ⊆ EH”) =⇒ (H ≤ H”)

Thus, (Σ,≤) is a pair of a set Σ and a relation ≤ which satisfies reflexivity, anti-symmetry, and transitivity,
so (Σ,≤) is a poset (partially ordered set).

To apply Zorn’s Lemma, we must now prove that, for all chains C, there exists an upper bound sC ∈ Σ. We
will do so constructively. We claim that

sC =
⋃
H∈C

H

is an upper bound for any arbitrary chain C in (Σ,≤). It suffices to show that sC ∈ Σ and that H ≤ sC for
all H ∈ C.
To show sC ∈ Σ, we must show sC = (V,EsC ) where EsC ⊆ E and sC has no cycles. Note that, since
H = (V,EH) for all H ∈ Σ,

sC =
⋃
H∈C

H = (V,
⋃
H∈C

EH)

Also, for all H ∈ C, EH ⊆ E, so for all e ∈
⋃
H∈C EH , e ∈ E, so

⋃
H∈C EH ⊆ E. Thus

sC = (V,
⋃
H∈C

EH)

is a subgraph of G with vertex set V . To show sC has no cycles, assume to the contrary that sC has a cycle.
Then there are two paths in sC between v1, v2 ∈ V . If these two paths were both present in the same H ∈ C,

Page 17



then H has a cycle, which contradicts the definition of Σ (since C ⊆ Σ, so all H ∈ C must not have cycles).
On the other hand, if the two paths were the result of taking the union of some H1, H2 ∈ C, where H1 and
H2 each had at most 1 path between v1 and v2, then there must exist some e1 ∈ EH1

and some e2 ∈ EH2

such that e1 /∈ EH2
and e2 /∈ EH1

. But this implies EH1
̸⊆ EH2

and EH2
̸⊆ EH1

, which implies H1 ̸≤ H2 and
H2 ̸≤ H1. This directly contradicts the definition of a chain C, which states that H1 ≤ H2 or H2 ≤ H1 for
all H1, H2 ∈ C. Thus, by assuming

⋃
H∈C H has a cycle, we have reached a contradiction with the law of ex-

cluded middle. This completes the proof that sC is a subgraph ofG with vertex set V and no cycles, so sC ∈ Σ

Now that we have shown sC ∈ Σ for an arbitrary chain C, we just need to prove H is a subgraph of
sC for all H ∈ C. We already showed that sC and H have the same vertex set, so it suffices to show
EH ⊆ EsC for all H ∈ C. For all H ∈ C and all e ∈ EH , e ∈

⋃
H∈C EH = EsC , so EH ⊆ EsC . Thus, for

all H ∈ C, we have VH = V ⊆ V = VsC and EH ⊆ EsC . Thus, for all H ∈ C, H is a subgraph of sC , so
H ≤ sC . Thus, sC :=

⋃
H ∈ CH ∈ Σ satisfies

H ≤ sC

for all H ∈ C, which completes the proof that sC is an upper bound for any chain C.

By Zorn’s Lemma, since every chain C has an upper bound sC , there exists a maximal element M ∈ Σ.
That is, for all H ∈ Σ,

M ≤ H =⇒ M = H

Note that, since M ∈ Σ, M has V as its vertex set, and M has no cycles.

We claim that M is also connected. Assume to the contrary that M is not connected. Then there ex-
ists two points va, va ∈ V such that there is no path between v1 and v2 inM . However, since G is connected,
we know exists a finite path e1, .., ek ∈ E that connects va to vb. Follow this path from va to vb until
reaching an edge ei, connecting vertices vi and vi+1, such that vi+1 is the first vertex along the path which
can not be reached by va only using edges in EM . That is, vi is reachable from va with edges in EM , but
vi+1 is not. Then construct M ′ = (V,EM ′) = (V,EM ∪ ei). Note that ei /∈ EM , as ei ∈ EM implies vi+1 is
reachable from vi which is reachable from va using only edges in EM . Also, ei ∈ E and EM ⊆ E, so EM ′ ⊆ E.

We claim that M ′ has no cycles. Assume to the contrary that M ′ has a cycle. Since M ∈ Σ, M has
no cycles, so adding ei to EM to construct M ′ must have created a cycle. This implies that there is ex-
actly one path between vi and vi+1 in M and exactly two paths between vi and vi+1 in M ′. However, by
definition of ei, there is a path between va and vi in M , and there is no path betweenva and vi+1 in M .
If there is one path in M between vi and vi+1, then there is also a path between va and vi+1 (constructed
by appending the path between vi and vi+1 to the path between va and vi), which contradicts the defini-
tion of ei. Thus, adding ei to EM to constructM ′ must not create any cycles, soM ′ must not have any cycles.

Thus, M ′ is a subgraph of G with vertex set V that contains no cycles, so M ′ ∈ Σ. Also, since M ′

was constructed by adding a single edge to M , we know M is a subgraph of M ′. That is,

M ≤M ′

By definition of M as a maximal element of Σ, this implies

M =M ′

However, EM ̸= EM ∪ ei = EM ′ since ei /∈ EM , so

M ̸=M ′

Thus, by assuming M is not connected, we have derived a contradiction, which completes the proof that M
is connected.
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Since M is connected, has vertex set V , and has no cycles, M is a spanning tree for G = (V,E). This
completes the proof that, for all connected graphs G = (V,E), there exists a tree M that spans G. Since
GP is connected, this implies there exists a tree MP which spans GP . For any two vertices v1, v2 ∈ V , a
spanning tree connects v1 to v2 with exactly one path (of finitely many edges). Thus, the existence of the
spanning tree MP for the graph GP completes the proof that there is a way to connect all the planets using
some of the roads such that there is exactly one path (finitely many roads) between any two planets.

Problem 5

(Bonus, 5 points). In this exercise, a close box in Rk is a product of k closed intervals

[a1, b1]× · · · × [ak, bk]

Suppose f : Rn → Rm is a function such that for any closed box B ⊆ Rm, either f−1(B) or Rn ∖ f−1(B)
is countable (we could have two closed boxes B1, B2 ⊆ Rm such that f−1(B1) is countable while f−1(B2)
is uncountable). Prove that there is a point q ∈ Rm such that Rn ∖ f−1(q) is countable, meaning that f is
almost everywhere equal to q in this cardinality sense.

Solution
For all x = (x1, ..., xm) ∈ Rm, we have

x ∈
[
⌊x1⌋, ⌊x1⌋+ 1

]
× · · · ×

[
⌊xm⌋, ⌊xm⌋+ 1

]
and ⌊xi⌋, ⌊xi⌋+ 1 ∈ Z for all i ∈ {1, ...,m}. Thus, we can cover all of Rm with closed cubes of side length 1,
all of whom have vertices with exclusively integer coordinates. That is,

Rm =
⋃

z=(z1,...,zm)∈Zm

[z1 − 1, z1]× · · · × [zm − 1, zm]

Let h1 : N → Z and h2 : Z → N defined by

h1(n) =

{
n
2 if n ≡ 0 (mod 2)

−(n−1
2 ) if n ≡ 1 (mod 2)

h2(z) =

{
2z if z > 0

1− 2z if z ≤ 0

Note that

h1 ◦ h2(z) =

{
h1(2z) if z > 0

h1(1− 2z) if z ≤ 0
=

{
z if z > 0

−(1− 2z − 1)/2 = z if z ≤ 0
= z

for all z ∈ Z (since 2z ≡ 0 (mod 2) and 1− 2z ≡ 1 (mod 2) for all z ∈ Z). Similarly,

h2 ◦ h1(n) =

{
h2(

n
2 ) if n ≡ 0 (mod 2)

h2(−(n−1
2 )) if n ≡ 1 (mod 2)

=

{
n if n ≡ 0 (mod 2)

1 + 2n−1
2 = n if n ≡ 1 (mod 2)

= n

for all n ∈ N (since n
2 > 0 for all n ∈ N and −n−1

2 ≤ 0 for all n ∈ N (since n−1
2 ≥ 0 for all n ∈ N)). Thus,

we have
h1 ◦ h2 = idZ h2 ◦ h1 = idN

so we know from lecture that a h1 is a bijection from N to Z, and |Z| = N|. By definition, this implies Z is
countable. By Proposition 1.7 in the notes, since

Zm = Z× · · · × Z︸ ︷︷ ︸
m Z’s

is a finite product of countable sets, Zm is also countable. Thus, Rm is a countable union of closed cubes of
side length 1.
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From lecture, we know that R is uncountable. Note that g : R → Rn defined by g(x) = (x, · · · , x)︸ ︷︷ ︸
n x’s

is injective

because
(x, · · · , x) = (y, · · · , y) =⇒ x = y

This implies |R| ≤ |Rn|, so Rn is uncountable.
Since f : Rn → Rm, we know f(x) ∈ Rm for all x ∈ Rn. Thus,

f−1(Rm) = Rn

by definition of the pre-image. Note also that

Rn = f−1(Rm) = f−1(
⋃

z=(z1,...,zm)∈Zm

[z1 − 1, z1]× · · · × [zm − 1, zm])

=
⋃

z=(z1,...,zm)∈Zm

f−1([z1 − 1, z1]× · · · × [zm − 1, zm])

Note that the second equality follows by part (ii) of Problem 1. Thus, if

f−1([z1 − 1, z1]× · · · × [zm − 1, zm])

is countable for all z ∈ Zm, then Rn is a countable union of countable sets, so Rn must be countable
by Proposition 1.5 from the notes. However, we already proved Rn is uncountable, so this would yield a
contradiction. This means there exists some y = (y1, ..., ym) ∈ Zm such that

f−1([y1 − 1, y1]× · · · × [ym − 1, ym])

is uncountable.
Consider the metric space (Rm, d), where d is the Euclidean distance metric defined by

d(x, y) =

√√√√ m∑
i=1

(xi − yi)2

for any two points x = (x1, · · · , xm), y = (y1, · · · , ym) ∈ Rm. Note that

Y := [y1 − 1, y1]× · · · × [ym − 1, ym]

is a closed m-dimensional cube with diameter

DY := diam(Y ) := sup
x,y∈Y

d(x, y) =
√
12 + · · ·+ 12︸ ︷︷ ︸

m 12’s

=
√
m

such that f−1(Y ) is uncountable.
We claim that, from any closed m-dimensional cube B with diameter DB such that f−1(B) is uncountable,
we can find a nested, closed, m-dimensional cube B′ of diameterDB′ = DB

2 such that f−1(B′) is uncountable.
Note that any m-dimensional cube

B = [b11, b12]× · · · × [bm1, bm2]

of side length s can be split into 2m smaller cubes with side length s
2 such that the union of the cubes is B

and the interiors of the cubes are mutually disjoint. That is, if we define

A :=
{
[a11, a12]× · · · × [am1, am2]

∣∣∣(ai1, ai2) ∈ {(bi1, bi2 + bi1
2

)
,
(bi2 + bi1

2
, bi2

)}
for all i ∈ {1, ...,m}

}
and write

A = {A1, · · · , A2m}
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since we know |A| = 2m, then we can write

B =

2m⋃
i=1

Ai

If f−1Ai is countable for all i ∈ {1, ..., 2m}, then

f−1(B) = f−1(

2m⋃
i=1

Ai) =

2m⋃
i=1

f−1(Ai)

is a finite (and thus countable) union of finite sets, so f−1(B) must be countable by Proposition 1.5 from the
notes (note that the second equality again follows by part (ii) of Problem 1). However, we assumed that
f−1(B) is uncountable, so this yields a contradiction, and we conclude that f−1(Ai) must be uncountable
for some i∗ ∈ {1, ..., 2m}.
Since, the side length of B is

s = bi2 − bi1 for any i ∈ {1, ...,m}

we know B has diameter

DB := sup
x,y∈B

d(x, y) =
√
s2 + · · ·+ s2︸ ︷︷ ︸

m s2’s

=
√
ms2 = s

√
m = (bi2 − bi1)

√
m

We can easily compute that Ai∗ has side length

bi2 + bi1
2

− bi1 =
bi2 − bi1

2
=
s

2
= bi2 −

bi2 + bi1
2

which implies Ai∗ has diameter

DAi∗ := sup
x,y∈Ai∗

d(x, y) =

√√√√√√s2

4
+ · · ·+ s2

4︸ ︷︷ ︸
m s2

4 ’s

=

√
m
s2

4
=
s

2

√
m =

1

2
(bi2 − bi1)

√
m =

DB

2

Letting B′ = Ai∗ ⊆ B completes the proof that, from any closed m-dimensional cube B of diameter DB

such that f−1(B) is uncountable, we can construct a nested, closed, m-dimensional cube B′ of diameter
DB′ = DB

2 such that f−1(B′) is uncountable.

By induction, since Y is a closed m-dimensional cube of diameterDY =
√
M such that f−1(Y ) is uncountable,

we can create the following (countably) infinite sequence B1, B2, B3, ..., defined by

1. B1 = Y = [b111, b
1
12]× · · · × [b1m1, b

1
m2]

2. For all n ∈ N,

Bn+1 = [bn+1
11 , bn+1

12 ]× · · · × [bn+1
m1 , b

n+1
m2 ]

such that

(bn+1
i1 , bn+1

i2 ) ∈
{(
bni1,

bni2 + bni1
2

)
,
(bni2 + bni1

2
, bni2)

}
for all i ∈ {1, ...,m} and f−1(Bn+1) is uncountable.

so Bn is a closed m-dimensional cube such that f−1(Bn) is uncountable for all n ∈ N.
By induction, since DBn+1

:= diam(Bn+1) =
diam(Bn)

2 =:
DBn

2 and DB1
= DY =

√
m, we have

DBn
:= diam(Bn) =

√
m

2n−1
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The numerator is constant while the denominator tends to infinity as n→ ∞, so we can write

lim
n→∞

diam(Bn) = lim
n→∞

sup
x,y∈Bn

d(x, y) = lim
n→∞

√
m

2n−1
= 0

This directly implies
d(x, y) = 0 for all x, y ∈ lim

n→∞
Bn

By definition of a metric, d(x, y) = 0 ⇐⇒ x = y. Thus, we have

x = y for all x, y ∈ lim
n→∞

Bn

Only the empty set ∅ and singleton sets of the form {q} could satisfy this statement for an arbitrary set.
Since Bn is a closed m-dimensional cube by definition, it cannot be the emptyset, so we must have

lim
n→∞

Bn = {q} for some q ∈ Rm

Also, since f−1(limn→∞Bn) is uncountable by definition, we know Rn ∖ f−1(limn→∞Bn) is countable (by
the assumption on f from the problem statement). Since limn→∞Bn = {q} for some q ∈ Rm, this completes
the proof that there exists a point q ∈ Rm such that Rn ∖ f−1(q) is countable.

Assignment 3
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Problem 1

(5 points). Let S be the set of functions N → {0, 1} such that for every f ∈ S, both f−1(0) and f−1(1) are
countably infinite. Prove that S is uncountable.

Hint: When is f /∈ S?

Solution
First, note that S ⊆ {0, 1}N by definition.
Claim: {0, 1}N is uncountable.

Proof. For all A ∈ P(N) (i.e. for all A ⊆ N), define fA : N → {0, 1} such that

fA(n) =

{
1 if n ∈ A

0 if n /∈ A

for all n ∈ N.
Now, consider g : P(N) → {0, 1}N defined by

g(A) = fA

for all A ∈ P(N). Then, for all A1, A2 ∈ P(N),

g(A1) = g(A2) =⇒ fA1 = fA2 =⇒ fA1(n) = fA2(n)

for all n ∈ N. Thus, if g(A1) = g(A2), then for all n ∈ N, we have

n ∈ A1 =⇒ fA1
(n) = 1 =⇒ fA2

(n) = 1 =⇒ n ∈ A2

Similarly, for all n ∈ N, we have

n ∈ A2 =⇒ fA2
(n) = 1 =⇒ fA1

(n) = 1 =⇒ n ∈ A2

Thus,
(g(A1) = g(A2)) =⇒ ∀n ∈ N((n ∈ A1) ⇐⇒ (n ∈ A2))

By the axiom of extensionality,

∀n ∈ N((n ∈ A1) ⇐⇒ (n ∈ A2)) =⇒ (A1 = A2)

so we have
(g(A1) = g(A2)) =⇒ A1 = A2

That is, g is an injection from P(N) → {0, 1}N, so

|P(N)| ≤ |{0, 1}N|

By Cantor’s Theorem (Theorem 1.1 in the notes),

|N| < |P(N)|

Combining these two inequalities, we have

|N| < |P(N)| ≤ |{0, 1}N| =⇒ |N| < |{0, 1}N|

By the definition of countability, this completes the proof that {0, 1}N is uncountable.
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Note that
S = {f ∈ {0, 1}N|f−1(0) and f−1(1) are both countably infinite}

and define
S′ := {0, 1}N ∖ S

so that
{0, 1}N = S′ ∪ S

If a set is not countably infinite, it is either finite or uncountably infinite. Thus,

S′ = {f ∈ {0, 1}N|f−1(0) or f−1(1) is finite or uncountably infinite}

For all f ∈ {0, 1}N (and thus all f ∈ S), we know

f−1(0) ∪ f−1(1) = f−1({0, 1}) = N

By definition of countability, we know N is countably infinite. If f−1(0) is uncountable, then

f−1(0) ∪ f−1(1) = f−1({0, 1}) = N

is uncountable, a direct contradiction of the definition of countability. Similarly, if f−1(1) is uncountable,
then

f−1(1) ∪ f−1(0) = f−1({0, 1}) = N

is uncountable, another contradiction. Thus, we can rewrite the compliment of S as

S′ = {f ∈ {0, 1}N|f−1(0) or f−1(1) is finite}

If both f−1(1) and f−1(0) are finite, then

f−1(1) ∪ f−1(0) = f−1({0, 1}) = N

is finite (as the finite union of finite sets). Thus, for all f ∈ {0, 1}N,

(f−1(0) is finite ) =⇒ (f−1(1) is countably infinite )

and
(f−1(1) is finite ) =⇒ (f−1(0) is countably infinite )

This means we can rewrite S′ as

S′ = {f ∈ {0, 1}N| exactly one of f−1(0) and f−1(1) is finite}

For all f ∈ {0, 1}N, if f−1(0) is finite, then

f(n) =

{
0 if n ∈ A

1 if n /∈ A

for some A ⊆ N such that A = {a1, ..., ak} is finite. Similarly, if f−1(1) is finite, we have

f(n) =

{
1 if n ∈ A

0 if n /∈ A

for some A ⊆ N such that A = {a1, ..., ak} is finite. Thus, for all finite subsets A ⊆ N, we can define fA0 and
fA1 , both mapping from N to {0, 1}, such that

fA0 (n) =

{
0 if n ∈ A

1 if n /∈ A
∀n ∈ N
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and

fA1 (n) =

{
1 if n ∈ A

0 if n /∈ A
∀n ∈ N

Then we can rewrite S′ once more as

S′ = {fA0 , fA1 ∈ {0, 1}N|A ⊆ N is finite} = {fAi ∈ {0, 1}N|i ∈ {0, 1}, A ⊆ N is finite}

Claim: S′, as defined above, is countable.

Proof. First, note that for any n,m ∈ N,

n ̸= m =⇒ (n < m) ∨ (n > m)

Thus, for any arbitrary finite subset A ⊆ N of size k ∈ N, we can number the (necessarily unique by the
definition of a set) k elements a1, ..., ak of A such that

a1 < · · · < ak

That is, we can write
A = {a1, · · · , ak|a1 < · · · < ak, k ∈ N}

for all such finite subsets A ⊆ N. Consider h : S′ → Z such that, for all fAi ∈ S′,

h(fAi ) = h(f
{a1,··· ,ak|a1<···<ak,k∈N}
i ) = (−1)ipa11 · · · pakk

where pi is the i’th smallest prime (i.e. p1, p2, p3, . . . = 2, 3, 5, . . .). Note this implies

h(f∅0 ) = (−1)0 = 1, h(f∅1 ) = (−1)1 = −1, and |h(fAi )| ≥ 2

for all i ∈ {0, 1} and nonempty finite subsets A ⊆ N.
Thus,

h(fAi ) = −1 = h(fBj ) ⇐⇒ (i = j = 1) ∧ (A = B = ∅)

and
h(fAi ) = 1 = h(fBj ) ⇐⇒ (i = j = 0) ∧ (A = B = ∅)

Also, without loss of generality, if A = ∅ and B ̸= ∅, then

h(fAi ) ̸= h(fBj )

since |h(fAi )| = 1 < 2 ≤ |h(fBj )|. Thus, for all i, j ∈ {0, 1} and all finite subsets A,B ⊆ N such that
(A = ∅) ∨ (B = ∅),

h(fAi ) = h(fBj ) =⇒ (i = j) ∧ (A = B)

For any i, j ∈ {0, 1} and any nonempty finite subsets A,B ⊆ N,

(h(fAi ) = h(fBj )) =⇒ ((−1)ipa11 · · · pakk = (−1)jpb11 · · · pbll )

Note that pi > 0 for all i ∈ N, so pni > 0 for all i, n ∈ N, so pn1
1 · · · pnk

k > 0 for all k, n1, ..., nk ∈ N. Thus, if
i = 0 and j = 1,

0 < pa11 · · · pakk = (−1)ipa11 · · · pakk = (−1)jpb11 · · · pbll = −pb11 · · · pbll < 0

which contradicts the law of excluded middle since 0 < 0 =⇒ (0 ≤ 0) ∧ (0 ̸= 0). Similarly, if i = 1 and
j = 0, then

0 > −pa11 · · · pakk = (−1)ipa11 · · · pakk = (−1)jpb11 · · · pbll = pb11 · · · pbll > 0
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so we reach the same contradiction. Thus,

h(fAi ) = h(fBj ) =⇒ (−1)ipa11 · · · pakk = (−1)jpb11 · · · pbll =⇒ i = j =⇒ pa11 · · · pakk = pb11 · · · pbll

with the last implication following since (−1)i ̸= 0 for all i ∈ {0, 1}. Since a1, ..., ak, b1, ..., bl ∈ N, pa11 · · · pakk
has exactly ax factors of px for all x ∈ {1, ..., k} and pb11 · · · pbll has at exactly by factors of py for all
y ∈ {1, ..., l}. By the fundamental theorem of arithmetic, each natural number n ≥ 2 has a unique prime
factorization. Thus, for

pa11 · · · pakk = pb11 · · · pbll
to hold, we must have k = l and ax = bx for all x ∈ {1, ..., k} = {1, ..., l}. That is, for all fAi , f

B
j ∈ S′ such

that A,B ⊆ N are nonempty finite subsets,

(h(fAi ) = h(fBj )) =⇒ (i = j) ∧ (A := {a1, ..., ak} = {b1, ..., bl} =: B)

We already show that
(h(fAi ) = h(fBj )) =⇒ ((i = j) ∧ (A = B))

for all i, j ∈ {0, 1} and A,B ⊆ N such that (A = ∅) ∧ (B = ∅). Thus, we have

(h(fAi ) = h(fBj )) =⇒ ((i = j) ∧ (A = B)) =⇒ (fAi = fBj )

for all i, j ∈ {0, 1} and all finite subsets (empty or nonempty) A,B ⊆ N. That is, h is an injection from S′

to Z, so
|S′| ≤ |Z|

Now, consider H : Z → N defined by

H(z) =

{
1− 2z if z ≤ 0

2z if z > 0
∀z ∈ Z

Note that, for all z ∈ Z,
1− 2z ≡ 1− 2z + 2z ≡ 1 (mod 2)

while
2z ≡ 2z − 2z ≡ 0 (mod 2)

so
(H(z1) = H(z2)) =⇒ ((z1, z2 ≤ 0) ∨ (z1, z2 > 0))

This combines with the definition of H to imply

(H(z1) = H(z2)) =⇒

{
1− 2z1 = 1− 2z2 if z1, z2 ≤ 0

2z1 = 2z2 if z1, z2 > 0

=⇒

{
1− 2z1 − 1 = 1− 2z2 − 1 if z1, z2 ≤ 0

2−1 · 2z1 = 2−1 · 2z2 if z1, z2 > 0

=⇒

{
−2z1 = −2z2 if z1, z2 ≤ 0

z1 = z2 if z1, z2 > 0

=⇒

{
(−2)−1 · (−2z1) = (−2)−1 · (−2z2) if z1, z2 ≤ 0

z1 = z2 if z1, z2 > 0

=⇒

{
z1 = z2 if z1, z2 ≤ 0

z1 = z2 if z1, z2 > 0

=⇒ z1 = z2
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That is H is an injection from Z to N, so
|Z| ≤ |N|

Putting our inequalities together yields

|S′| ≤ |Z| ≤ |N| =⇒ |S′| ≤ |N|

By the definition of countability, this completes the proof that S′ := {0, 1}N ∖ S is countable.

Now, we finally claim that S is uncountable.

Proof. Assume to the contrary that S is countable. Recall that

{0, 1}N = S ∪ ({0, 1}N ∖ S) =: S ∪ S′

and we already showed {0, 1}N is uncountable. Since we just proved S′ is countable, our assumption that S
is also countable implies

S ∪ S′ = {0, 1}N

is a finite (and thus countable) union of countable sets. By Proposition 1.5 in the notes, this implies {0, 1}N
is countable. Since {0, 1}N is uncountable, this contradicts the law of excluded middle, so we know S cannot
be countable. The conclusion that S must be uncountable follows by contradiction and the definition of
uncountability.

Problem 2

(5 points). Recall that a Q-vector space V is a set (whose elements are called vectors) with an addition
operation + : V × V → V along with a scaling operation Q× V → V satisfying all properties listed below.
Given λ ∈ Q, v ∈ V , we denote scalar multiplication λ · v or λv such that

(+1) There is a zero vector 0 ∈ V : ∀v ∈ V , 0 + v = v + 0 = v,

(+2) + is associative: ∀u, v, w ∈ V , u+ (v + w) = (u+ v) + w,

(+3) additive inverses exist: ∀v ∈ V , ∃w ∈ V such that v + w = w + v = 0,

(+4) + is commutative: ∀u, v ∈ V , u+ v = v + u,

and

(·1) ∀λ ∈ Q, ∀u, v ∈ V , λ(u+ v) = λu+ λv,

(·2) ∀λ, µ ∈ Q, ∀v ∈ V , (λ+ µ)v = λv + µv,

(·3) ∀λ, µ ∈ Q, ∀v ∈ V , λ(µv) = (λµ)v,

(·4) ∀v ∈ V , 1 · v = v, that is, 1 acts trivially on v.

The first three + axioms say that (V,+) is a group. Adding the last axiom says that (V,+) is an abelian
group. Prove the following:

(a) in every Q-vector space V , zero vectors are unique, that is, if 01, 02 ∈ V , 01 = 02,

(b) additive inverses are unique, that is, for any v ∈ V , if w1, w2 ∈ V are additive inverses to v, then
w1 = w2,

(c) for every v ∈ V , let −v := (−1) · v. Prove that −v is the additive inverse to v,

(d) if λ ∈ Qx := Q∖ {0} such that λv = 0, then v = 0,

Page 27



(e) if v ∈ V , then 0 · v = 0, where 0 on the left is in Q, 0 on the right is the zero vector of V .

Solution

(a) Let V be an arbitrary Q-vector space and consider two arbitrary 0 vectors 01, 02 ∈ V . By (+1), since
v1 = v1 + 0 and 0 + v2 = v2 for all v1, v2 ∈ V , we have

01 =︸︷︷︸
v1=v1+0

01 + 02 =︸︷︷︸
0+v2=v2

02

Thus, in any Q-vector space V , if two 0 vectors 01, 02 ∈ V , we must have 01 = 02. This completes the
proof that zero vectors are unique in every Q-vector space.

(b) Let V be an arbitrary Q-vector space and v ∈ V an arbitrary vector therein. Suppose there exist two
additive inverses w1, w2 ∈ V to v. That is, w1 + v = 0 = v + w2. Then by (+1), (+2), and (+3),

w1 =︸︷︷︸
v=v+0

w1 + 0 =︸︷︷︸
v+w2=0

w1 + (v + w2) =︸︷︷︸
u+(v+w)=(u+v)+w

(w1 + v) + w2 =︸︷︷︸
w1+v=0

0 + w2 =︸︷︷︸
0+v=v

w2

So if two additive inverses w1, w2 exist to any vector v in any Q-vector space V , we must have w1 = w2.
This completes the proof that additive inverses are unique in every Q-vector space.

(c) Let V be an arbitrary Q-vector space and v ∈ V an arbitrary vector therein, as before. By (·2) and
(·4),

v +−v := v + (−1) · v =︸︷︷︸
v=1·v

1 · v + (−1) · v =︸︷︷︸
λv+µv=(λ+µ)v

(1 +−1) · v

In Lemma 2.9 of the lecture notes, we defined −1 to be the additive inverse of 1 in R, and we said this
holds true for Q too. That is, 1 +−1 = 0, so we have

v +−v = 0 · v

By part (e), we know 0 · v = 0 for all v ∈ V , which implies

v +−v = 0

Note: We have not yet proven part (e), but its proof will not depend on part (c), so we can use its
result to establish part (c).

Since we know additive inverses are unique by part (b), and −v satisfies the definition of the ad-
ditive inverse to v from (+3) since v + −v = 0, this completes the proof that −v := −1 · v is the
additive inverse to v for all v ∈ V .

(d) From the lecture notes, we know that, for any r ∈ Rx := R∖ {0}, there exists a multiplicative inverse
r−1 ∈ Rx such that r · r−1 = r−1 · r = 1, and we know that the same holds for Q. Thus, for any
λ ∈ Qx := Q∖ {0}, ∃λ−1 ∈ Qx such that λ · λ−1 = λ−1 · λ = 1. Applying (·3) and (·4), if λv = 0, we
find

v =︸︷︷︸
(·4)

1 · v =︸︷︷︸
λλ−1=1

(λ−1λ)v =︸︷︷︸
(·3)

λ−1(λv) =︸︷︷︸
λv=0

λ−1 · 0

Claim: For all q ∈ Qx and all Q-vector spaces V with zero vector 0, q · 0 = 0.

Proof. We have
q · 0 =︸︷︷︸

(+1)

q · (0 + 0) =︸︷︷︸
(·1)

q · 0 + q · 0

Since q · 0 ∈ V , (+3) implies the existence of some w ∈ V such that (q · 0) + w = 0 ∈ V . Adding this
to both sides of our equation yields

0 =︸︷︷︸
(q·0)+w=0

(q · 0) + w =︸︷︷︸
q·0=q·0+q·0

(q · 0 + q · 0) + w =︸︷︷︸
(+2)

q · 0 + (q · 0 + w) =︸︷︷︸
q·0+w=0

q · 0

This completes the proof that q · 0 = 0 for all q ∈ Qx and all Q-vector spaces V with zero vector 0.
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Since λ−1 ∈ Qx, we find that λv = 0, λ ∈ Qx implies

v = λ−1 · 0 = 0

This completes the proof that, if λ ∈ Qx such that λv = 0, then v = 0.

(e) Consider an arbitrary Q-vector space V and an arbitrary vector v ∈ V therein. From the lecture notes,
we know that 0 + 0 = 0 for 0 ∈ R and that the same holds for 0 ∈ Q. Thus,

0 · v =︸︷︷︸
0=0+0

(0 + 0) · v =︸︷︷︸
(·2)

0 · v + 0 · v

Since 0 · v ∈ V , we know there exists w ∈ V such that 0 · v + w = 0. Adding w to both sides of our
equation yields

0 =︸︷︷︸
0·v+w=0

0 · v + w =︸︷︷︸
0·v=0·v+0·v

(0 · v + 0 · v) + w =︸︷︷︸
(+2)

0 · v + (0 · v + w) =︸︷︷︸
0·v+w=0

0 · v

This completes the proof that, if v ∈ V , 0 · v = 0, where 0 ∈ Q on the left and 0 ∈ V on the right.

Problem 3

(5 points). Suppose V is a Q-vector space. A set of vectors {vi|i ∈ I} ⊆ V is said to be Q-linearly dependent
if there are {λi, i ∈ I} ⊆ Q, not all 0 and all but finitely many equal to zero, such that∑

i∈I
λivi = 0.

In words, you can non-trivially express the zero vector as a linear combination of finitely many of the vectors.
Otherwise, the set of vectors is said to be Q-linearly independent. A Q-linearly independent set of vectors
B = {bα|α ∈ A} ⊆ V is a basis if every v ∈ V is a Q-linear combination of finitely many of the elements of
B.

Note that this is a generalization of the usual definition of linear independence and basis for vector spaces
over R that you have seen before.

Prove that every Q-vector space has a basis using Zorn’s lemma.

Hint: See notes.

Solution
Let

Σ = {A ⊆ V | A is Q-linearly independent}
be the set of all Q-linearly independent subsets of V .
Claim: The pair (Σ,⊆) forms a poset (partially ordered set).

Proof. We will show this pair satisfies reflexivity, anti-symmetry, and transitivity.

(i) (Reflexivity). For all Q-linearly independent subsets A ⊆ V , we trivially have A ⊆ A. Thus, reflexivity
holds under ⊆ for all A ∈ Σ.

(ii) (Anti-Symmetry). For all A,B ∈ Σ,

(A ⊆ B)∧(B ⊆ A) =⇒ (∀a ∈ A, a ∈ B)∧(∀a ∈ B, a ∈ A) =⇒ ∀a((a ∈ A) ⇐⇒ (a ∈ B)) =⇒ A = B

with the last implication following by the axiom of extensionality. Thus, anti-symmetry holds under
⊆ for all A,B ∈ Σ.
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(iii) (Transitivity). For all A,B,C ∈ Σ,

(A ⊆ B) ∧ (B ⊆ C) =⇒ ((∀a ∈ A, a ∈ B) ∧ (∀a ∈ B, a ∈ C)) =⇒ (∀a ∈ A, a ∈ C) =⇒ A ⊆ C

so transitivity also holds under ⊆ for all A,B,C ∈ Σ.

This completes the proof that (Σ,⊆) is a poset.

To apply Zorn’s Lemma, we must first show that every chain C has an upper bound. Consider an
arbitrary chain C = {Ai|i ∈ I} ⊆ Σ and consider the set A :=

⋃
i∈I Ai. Note that, for all i ∈ I, by an

inductive application of the definition of set union, we know

a ∈ Ai =⇒ a ∈
⋃
i∈I

Ai =: A

Thus, for all Ai ∈ C, we have Ai ⊆ A. By Definition 1.27 from the notes, if A ∈ Σ, then A is an upper
bound to C.
Claim: A ∈ Σ.

Proof. Since C ⊆ Σ, for all Ai ∈ C, Ai ∈ Σ. By definition of Σ, this means Ai is a Q-linearly independent
subset of V for all Ai ∈ C. By definition of the union of sets,

a ∈
⋃
i∈I

Ai =⇒ a ∈ Ai for some i ∈ I

Since Ai ⊆ V for all i ∈ I, this means

a ∈
⋃
i∈I

Ai =⇒ a ∈ V

Thus, A :=
⋃
i∈I Ai is a subset of V . It remains to show A is also Q-linearly independent. Assume to the

contrary that A is Q-linearly dependent. That is, there exists a finite subset {a1, ..., ak} ⊆ A of k ∈ N vectors
for which there exists k scalars λ1, .., λk ∈ Q such that λj ̸= 0 for all j ∈ {1, ..., k} and

k∑
j=1

λjaj = 0

Since aj ∈ A :=
⋃
i∈I Ai for all j ∈ {1, ..., k}, we know that for each aj ∈ {a1, ..., ak}, aj ∈ Ai for some i ∈ I.

Thus, we can find k (not necessarily distinct) Ai1 , ..., Aik ∈ C such that aj ∈ Aij for all j ∈ {1, ..., k}.
Claim: For all k ∈ N and for any collection of k (not necessarily distinct) Ai1 , ..., Aik ∈ C, there exists an
Ain such that

Aij ⊆ Ain for all j ∈ {1, ..., k}

Proof. We induct on k.
Base Case: k = 1, A1 ⊆ A1 by the reflexivity of the ⊆ relation, so the claim holds for the base case.
Inductive Hypothesis: Assume that the claim holds for all 1 ≤ k ≤ n.
Inductive Step: Consider k = n+1. By the inductive hypothesis, we know there exists a p ∈ {1, ..., n} such
that

Aij ⊆ Aip for all j ∈ {1, ...n}

Since C is a chain, and Aij ∈ C for all j ∈ {1, ..., n+ 1}, we know

(Aip ⊆ Ain+1
) ∨ (Ain+1

⊆ Aip)

If Aip ⊆ Ain+1
, then

Aij ⊆ Ain+1 for all j ∈ {1, ..., n+ 1}

by the reflexivity and transitivity of the ⊆ relation. On the other hand, if Ain+1 ⊆ Aip , then

Aij ⊆ Aip for all j ∈ {1, ..., n+ 1}
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since we already know Aij ⊆ Aip for all j ∈ {1, ..., n} by the inductive hypothesis. Thus, in either case, we
can always find a l ∈ {1, ..., n + 1} such that Aij ⊆ Ail for all j ∈ {1, ..., n + 1}. The conclusion that there
exists such an Ail in any collection of k (not necessarily distinct) Ai1 , ..., Aik ∈ C follows for all k ∈ N by
induction.

Recall that we found k not necessarily distinct Ai1 , ..., Aik ∈ C such that aj ∈ Aij for all j ∈ {1, ..., k}.
From the result we just proved, we know there exists some A∗ ∈ {Ai1 , ..., Aik} such that

Aij ⊆ A∗ for all j ∈ {1, ..., k}

Define
A(k) = A∗

recursively define

A(x) s.t. Aij ⊆ A(x) for all Aij ∈ {Ai1 , ..., Aik}∖ {A(x+1), ..., A(k)}

The result we just proved implies we can do this for all x ∈ {1, ..., k − 1}. After doing so, we get

{A(1), ..., A(k)} = {Ai1 , ..., Aik}

and
A(1) ⊆ · · · ⊆ A(k)

Recall that, for all j ∈ {1, ..., k}, aj ∈ Aij . Since

{A(1), ..., A(k)} = {Ai1 , ..., Aik}

this implies that, for all j ∈ {1, ..., k}, there exists some x ∈ {1, ..., k} such that aj ∈ A(x). Since

A(1) ⊆ · · · ⊆ A(k)

aj ∈ A(x) =⇒ Aj ∈ A(k), so we know

aj ∈ A(k)

for all j ∈ {1, ..., k}. However, by assumption, this means there exists λ1, ..., λk ∈ Q such that λj ̸= 0 for all
j ∈ {1, ..., k} and

k∑
j=1

λjaj = 0

That is, the 0 vector can be produced as a non-trivial rational linear combination of vectors a1, ..., ak ∈ A(k).
By definition, this implies A(k) is Q-linearly dependent. However, recall that A(k) := Aij ∈ C for some

j ∈ {1, ..., k}, and C ⊆ Σ =⇒ A(k) ∈ Σ. By definition, Σ only contains Q-linearly independent subsets of
V , so A(k) must be Q-linearly independent. This contradicts the law of excluded middle, so our assumption
that A :=

⋃
i∈I Ai is Q-linearly dependent must be false. That is, we have shown that A is Q-linearly

independent. Since we already showed that A is a subset of V , this completes the proof that A ∈ Σ by the
definition of Σ.

Since A ∈ Σ, and Ai ⊆ A for all i ∈ I, we know A :=
⋃
i∈I Ai is an upper bound to any chain

C = {Ai|i ∈ I} ⊆ Σ.

Note that (Σ,⊆) is nonempty for any Q-vector space V since {v} is Q-linearly independent for all v ∈ V and
no Q-vector space can be empty since it must contain the zero vector. Since (Σ,⊆) is a nonempty poset in
which every chain has an upper bound, Zorn’s Lemma (Lemma 1.29 from the notes) guarantees the existence
of a maximal element M ∈ Σ. That is, ∃M ∈ Σ such that

M ⊆ A =⇒ A =M

for all A ∈ Σ.
Claim: M is a basis for V .
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Proof. Assume to the contrary that M is not a basis for V . That is, there exists some v ∈ V such that for
all k ∈ N, m1, ...,mk ∈M , λ1, · · · , λk ∈ Q∖ {0},

v ̸=
k∑
i=1

λimi

If there exists k ∈ N, m1, ...,mk ∈M , λ, λ1, ..., λk ∈ Q∖ {0} such that

k∑
i=1

λimi = −λv

then
k∑
i=1

(−λ)−1λimi = (−λ)−1
k∑
i=1

λimi = (−λ)−1(−λv) = ((−λ)−1 · −λ) · v = 1 · v = v

which contradicts the law of excluded middle by assumption. Thus, we know that for all k ∈ N, m1, ...,mk ∈
M , λ, λ1, ..., λk ∈ Q∖ {0},

k∑
i=1

λimi ̸= −λv

Adding −λv to both sides yields

λv +

k∑
i=1

λimi ̸= −λv + λv =︸︷︷︸
2.c

0

That is, there is no way to non-trivially express 0 as a rational linear combination of finitely many vectors
in M ∪ {v}. That is, M ∪ {v} is Q-linearly independent. Since v ∈ V and M ⊆ V by definition, we know

M ∪ {v} ⊆ V

So M ∪ {v} is a Q-linearly independent subset of V , so M ∪ {v} ∈ Σ. Clearly, for all m ∈M , m ∈M ∪ {v},
so

M ⊆M ∪ {v}

However, v /∈M since
k∑
i=1

λimi ̸= v

for all k ∈ N, m1, ...,mk ∈M , and λ1, ..., λk ∈ Q∖ {0} (v ∈M implies k = 1, m1 = v, λ1 = 1 works). Thus,

M ̸=M ∪ {v}

In summary, M ∪ {v} ∈ Σ and M ⊆M ∪ {v} but M ̸=M ∪ {v}, which directly contradicts the maximality
of M . By contradiction, this completes the proof that the maximal element M ∈ Σ is a basis for V .

Thus, for every Q-vector space V , there exists a maximal element M in the set of all Q-linearly indepen-
dent subsets of V such that M is a basis for V . This completes the proof that every Q-vector space has a
basis.

Problem 4

(5 points). Consider the set of functions V := Fun(N,R) with + : V × V → V given by defining f + g ∈ V
to be the function

∀n ∈ N, (f + g)(n) = f(n) + g(n)
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and scalar multiplication Q× V → V given by defining for each λ ∈ Q and f ∈ V , the function

∀n ∈ N, (λ · f)(n) = λ(f(n)).

Show that V is a Q-vector space. Show that there is no countable basis for this vector space.

Hint: Is R a Q-vector space? If so, does it have a countable basis? Note that every element in a Q-
vector space is a Q-linear combination of finitely many basis elements.

Solution
First, we will show V is a Q-vector space. It suffices to show V satisfies (+1), ..., (+4) and (·1), ..., (·4).

(+1) Consider the function f0 : N → R defined by

f(n) = 0 ∀n ∈ N

Note that f0 ∈ Fun(N,R) =: V . Then for all f ∈ V , f + f0, f0 + f ∈ V satisfy

(f + f0)(n) = f(n) + f0(n) = f(n) + 0 = f(n) = 0 + f(n) = f0(n) + f(n) = (f0 + f)(n) ∀n ∈ N

since 0 + x = x = x+ 0 for all x ∈ R by definition of 0 ∈ R. That is,

f + f0 = f = f0 + f

This completes the proof that there is a zero vector f0 ∈ V .

(+2) For all f, g, h ∈ V , f + (g + h) ∈ V and (f + g) + h ∈ V satisfy

(f+(g+h))(n) = f(n)+(g+h)(n) = f(n)+(g(n)+h(n)) = (f(n)+g(n))+h(n) = (f+g)(n)+h(n) = ((f+g)+h)(n)

for all n ∈ N. Note that every equality follows from the definition of addition from the problem
statement, except for the third equality, which follows from the associativity of addition in R. That is,
for all f, g, h ∈ V

f + (g + h) = (f + g) + h

which completes the proof that +, as defined in the problem statement, is associative.

(+3) Note that for all f ∈ V , since f : N → R, for all n ∈ N, f(n) ∈ R has an additive inverse. In lecture,
we showed this additive inverse is −f(n) (Lemma 2.9). That is, we know

f(n) +−f(n) = 0

for all n ∈ N and all f ∈ V . Thus, for all f ∈ V , define the function f− ∈ V such that

f−(n) = −f(n) ∀n ∈ N

Then f + f− ∈ V satisfies

(f + f−)(n) = f(n) + f−(n) = f(n) +−f(n) = 0 = f0(n)

for all n ∈ N. Note that the first equality follows by the definition of + from the problem statement,
while the second follows from the definition of f−, and the third follows from Lemma 2.9 in the notes.
Thus, for all f ∈ V , we can find a f− ∈ V such that

f + f− = f0

This completes the proof that additive inverses exist.
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(+4) In lecture, we took as an axiom that addition in R is commutative. That is,

x+ y = y + x ∀x, y ∈ R

Thus, for all f, g ∈ V , f + g and g + f satisfy

(f + g)(n) = f(n) + g(n) = g(n) + f(n) = (g + f)(n)

for all n ∈ N. Here, the first and third equalities follow by the definition of + from the problem,
statement, while the second equality follows from the commutativity of addition in R. Thus, for all
f, g ∈ V ,

f + g = g + f

which completes the proof that +, as defined in the problem statement, is commutative.

(·1) For all λ ∈ Q, f, g ∈ V , λ(f + g) satisfies

λ(f + g)(n) = λ(f(n) + g(n)) = λf(n) + λg(n) = (λf)(n) + (λg)(n)

for all n ∈ N. The first equality follows by the definition of + from the problem statement, while the
second follows from the distributivity of multiplication over addition in R (which we took as an axiom
in lecture), and the third equality follows from the definition of scalar multiplication from the problem
statement. Thus, for all λ ∈ Q, f, g ∈ V ,

λ(f + g) = λf + λg

which completes the proof (·1).

(·2) For all λ, µ ∈ Q, f ∈ V , (λ+ µ)f satisfies

(λ+ µ)f(n) = λf(n) + µf(n) = (λf)(n) + (µf)(n)

for all n ∈ N. The first equality follows by the distributivity of multiplication over addition in R, while
the second equality follows from the definition of scalar multiplication from the problem statement.
Thus, for all λ, µ ∈ Q, f ∈ V , we have

(λ+ µ)f = λf + µf

which completes the proof of (·2). Note that this combines with the previous proof to complete the
proof of the distributivity of multiplication over addition in V .

(·3) For all λ, µ ∈ Q, f ∈ V , we have

λ((µf)(n)) = λ(µf(n)) = (λµ)f(n)

for all n ∈ N. The first equality follows by the definition of scalar multiplication from the problem
statement, while the second follows from the commutativity of multiplication in R. Thus, for all
λ, µ ∈ Q, f ∈ V ,

λ(µf) = (λµ)f

which completes the proof of (·3).

(·4) For all v ∈ V , note that
(1 · f)(n) = 1 · f(n) = f(n)

for all n ∈ N. The first equality follows from the definition of scalar multiplication from the problem
statement, while the second follows from the axiom that 1, as the unit of the group (R, ·), satisfies
1 · x = x for all x ∈ R. Thus, for all f ∈ V , we have

1 · f = f

which completes the proof that 1 acts trivially on all f ∈ V .
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Since V satisfies (+1), (+2), (+3), (+4) and (·1), (·2), (·3), (·4), V is, by definition, a Q-vector space under +
and · as defined in the problem statement.

It remains to show that V cannot have a countable basis.
Claim: If V is a Q-vector space with countable basis B, then V itself must be countable.

Proof. Since B is countable, we can enumerate its elements. That is,

B = {b1, b2, b3, . . .}

where bi ∈ V for all i ∈ N. Consider the sequence B1, B2, B3, ... defined by

Bi = {b1, b2, . . . , bi}

for all i ∈ N. Note that, for any fixed i ∈ N, Bi is a finite set of i vectors from V . Now, for all i ∈ N, define
Vi to be the Q-vector space with basis Bi. That is,

Vi =
{
v
∣∣∣v =

i∑
j=1

λjbj , λj ∈ Q, bj ∈ Bi

}
Define gi : Vi → Qi such that, for all v ∈ Vi,

g(v) = (λ1, ..., λi) s.t. v =

i∑
i=1

λjbj

By definition of Vi, we know we can find such (λ1, ..., λi) ∈ Qi for all v ∈ Vi. Since Bi is fixed for fixed i ∈ N,
for any v1, v2 ∈ Vi,

gi(v1) = gi(v2) = (λ1, ..., λi) =⇒ v1 =

i∑
j=1

λjbj = v2

That is, for any fixed i ∈ N, gi is an injection from Vi to Qi, so

|Vi| ≤ |Qi|

From Lemma 1.18 in the notes, we know |Qi| = |N| (Qi is also countable as the finite product of the countable
set Q by Proposition 1.7), so

|Vi| ≤ |N|

for any fixed i ∈ N. By definition of countability, this means Vi is countable for any fixed i ∈ N.

Claim: V =
⋃
i∈N Vi.

Proof. By the axiom of extensionality, it suffices to show

∀v((v ∈ V ) ⇐⇒ (v ∈
⋃
i∈N

Vi))

First, suppose v ∈
⋃
i∈N Vi. Then there exists some i ∈ N for which v ∈ Vi. By definition of Vi, there exist

some λ1, ..., λi ∈ Q such that
i∑

j=1

λibi = v

That is, v can be expressed as a rational linear combination of the finitely many basis vectors b1, ..., bi ∈ Vi.
Since

Bi := {b1, b2, . . . , bi} ⊆ {b1, b2, . . .} =: B

Page 35



v can also be expressed as the exact same rational linear combination of the finitely many vectors b1, ..., bi ∈ B,
the basis of V . Thus, v ∈ span(B), so v ∈ V by definition of the basis. This completes the proof that

∀v((v ∈
⋃
i∈N

Vi) =⇒ (v ∈ V ))

Now, suppose v ∈ V . Then v must be a rational linear combination of finitely many basis vectors b1, ..., bi ∈
B. That is,

v =

i∑
j=1

λjbj

for some λ1, ..., λi ∈ Q. By definition, b1, ..., bi ∈ Bi := {b1, ..., bi}. Thus, v can also be expressed as the same
rational linear combination of finitely many basis vectors b1, ..., bi ∈ Bi, the basis of Vi. Thus, v ∈ span(Bi),
so v ∈ Vi. Since Vi ⊆

⋃
i∈N Vi by definition of the set union, this implies v ∈

⋃
i∈N Vi. This completes the

proof that

∀v((v ∈ V ) =⇒ (v ∈
⋃
i∈N

Vi))

and combines with the previous proof that

∀v((v ∈
⋃
i∈N

Vi) =⇒ (v ∈ V ))

to complete the proof that V =
⋃
i∈N Vi.

Recall that Vi is countable for any fixed i ∈ N. Therefore, Proposition 1.5 guarantees that⋃
i∈N

Vi

must also be countable, as N is countable, so
⋃
i∈N Vi is the countable union of countable sets. Since

V =
⋃
i∈N Vi, this completes the proof that, if V is a Q-vector space with countable basis B, then V itself

must be countable.

Now, we can finally prove V := Fun(N,R) has no countable basis. Assume to the contrary that V has a
countable basis B. Then V must be countable by the previous result. Consider h : R → Fun(N,R) defined
by

h(r) = fr ∈ Fun(N,R)

such that fr(n) = r for all n ∈ N. Then, for any r1, r2 ∈ R,

h(r1) = h(r2) =⇒ fr1 = fr2 =⇒ r1 =: fr1(n) = fr2(n) := r2

for all n ∈ N. Thus,
(h(r1) = h(r2)) =⇒ r1 = r2

for all r1, r2 ∈ R, so h is an injection from R to Fun(N,R). This implies

|R| ≤ |Fun(N,R)| =: |V |

But we know from Theorem 1.21 in the notes that R is uncountable, so

|R| > |N| =⇒ |V | > |N|

By the definition of uncountability, this means V must be uncountable, which contradicts the law of excluded
middle since we already showed V must be countable due to its countable basis. By contradiction, the
conclusion that V cannot have a countable basis follows.
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Problem 5

(Bonus, 5 points). Fix k ∈ N≥2 := {n ∈ N|n ≥ 2}. Prove that for every such k, the set

Σk := {ϕ : N → N|ϕ◦k = idN}

is uncountable.

Hint: Start by considering the uncountable set constructed in problem 1.

Solution
From problem 1, we know

S := {f ∈ {0, 1}N|f−1(0) and f−1(1) are both countably infinite}

is uncountable. Since both f−1(0) and f−1(1) are countably infinite for all f ∈ S, we can write

f−1(0) = Af = {a1, a2, a3, . . .}

and
f−1(1) = Bf = {b1, b2, b3, . . .}

so that
Af ∪Bf = f−1(0) ∪ f−1(1) = f−1({0, 1}) = N

Now, fix k ∈ N≥2, and define ϕk : S → Σk defined by

ϕk(f) = gf

for all f ∈ S, where

gf (n) =


ai+1 if n = ai for some i ∈ N s.t. i ̸≡ 0 (mod k)

ai+1−k if n = ai for some i ∈ N s.t. i ≡ 0 (mod k)

n if n = bi for some i ∈ N

for all n ∈ N. Note that, for all i ∈ N, i + 1 ∈ N. Also, for all i ∈ N, i ≡ 0 (mod k) implies i ≥ k, so
i+1− k ≥ k+1− k = 1 ∈ N. Thus, for all i ∈ N, gf maps ai to some distinct aj , where j ∈ N. Since ai ∈ N
for all i ∈ N by definition of f ∈ S (and n ∈ N trivially for all n ∈ N), this implies gf (n) ∈ N for all n ∈ N
and all f ∈ S. That, is gf : N → N is well defined for all f ∈ S. Thus, to show gf ∈ Σk for all f ∈ S, it
suffices to show g◦kf = idN for all f ∈ S. For all f ∈ S and all n ∈ Bf (i.e. n = bi for some i ∈ N),

g◦kf (n) = (gf ◦ · · · ◦ gf︸ ︷︷ ︸
k gf ’s

)(n) = gf (gf (· · · gf (gf (n)))) = gf (gf (· · · gf (n))) = · · · = gf (gf (n)) = gf (n) = n

For all n = ai, i ∈ N, note that gf (n) ∈ {ai+1, ai+1−k}. For all i ∈ N, i + 1 − k ≡ i + 1 ̸≡ i (mod k), so
gf (n) = aj for some j ∈ N such that j ̸= i and j ≡ i+ 1 (mod k). By induction, when g◦kf (ai) is evaluated,
the index l of the natural number al ∈ Af being plugged into gf satisfies l ≡ j (mod k) exactly once for all
j ∈ {0, 1, ..., k− 1}. By definition of gf , this means the initial index i is incremented by one k− 1 times and
incremented by 1− k once. If we let g◦k(ai) = aif , this implies

if = i+ (1 · (k − 1)) + ((1− k) · 1) = i+ k − 1 + 1− k = i

That is,

g◦k(n) = gf (gf (· · · gf (gf (ai)))) = gf (gf (· · · gf (aj∈{i+1,i+1−k})))

= · · · = gf (gf (aj∈{i+k−2,i−2})) = gf (aj∈{i+k−1,i−1}) = ai = n
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for all f ∈ S and all n = ai ∈ Af := f−1(0). Thus, for all f ∈ S,

g◦kf (n) = n

for all n ∈ N. By definition of the identity function, this implies

g◦kf = idN

for all f ∈ S. Since our modulo arithmetic holds for all k ∈ N≥2, this implies ϕk : S → Σk is well-defined for
all such k.

We now focus on showing that ϕk is an injection from S to Σk for all k ∈ N≥2. If gf1 = gf2 for some
f1, f2 ∈ S, then for all ai ∈ Af1 := {a1, a2, . . .} := f−1

1 (0), we have

gf1(ai) = aj s.t. j ̸= i

so gf1(ai) ̸= ai. If ai ∈ Bf2 := f−1
2 (1), then

gf2(ai) = ai

by definition of g. But, gf1 = gf2 , so

ai ̸= aj = gf1(ai) = gf2(ai) = ai

which contradicts the law of excluded middle since ai = ai is trivially true. Thus, for all ai ∈ Af1 , ai ∈
N∖Bf2 = Af2 . Similarly, for all b ∈ Bf1 , we have

gf1(b) = b

If b = ai ∈ Af2 , then
gf2(b) = aj for some j ∈ N s.t. aj ̸= ai

But gf1 = gf2 , so
b = ai ̸= aj = gf2(b) = gf1(b) = b

which once again contradicts the law of excluded middle. Thus, for all b ∈ Bf1 , b ∈ N∖Af2 = Bf2 .
The inclusions hold in the opposite direction too. For all ai ∈ Af2 ,

gf2(ai) = aj for some j ∈ N s.t. ai ̸= aj

If ai ∈ Bf1 , then
gf1(ai) = ai

but gf1 = gf2 , so
ai ̸= aj = gf2(ai) = gf1(ai) = ai

which contradicts the law of excluded middle. Thus, for all ai ∈ Af2 , ai ∈ Af1 . Similarly, for all b ∈ Bf2 , we
have

gf2(b) = b

If b = ai ∈ Af1 , then
gf1(b) = gf1(ai) = aj for some j ∈ N s.t. aj ̸= ai

but gf1 = gf2 , which implies
b = ai ̸= aj = gf1(b) = gf2(b) = b

which once again yields a contradiction with the law of excluded middle. Thus, for all b ∈ Bf2 , b ∈ N∖Af1 =
Bf1 . Combining these results yields

∀a((a ∈ Af1) ⇐⇒ (a ∈ Af2)) and ∀b((b ∈ Bf1) ⇐⇒ (b ∈ Bf2))
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By the axiom of extensionality, this implies Af1 = Af2 and Bf1 = Bf2 . Thus, for all n ∈ N,

f1(n) = 0 ⇐⇒ f2(n) = 0 and f1(n) = 1 ⇐⇒ f2(n) = 1

That is,
ϕ(f1) := gf1 = gf2 =: ϕ(f2) =⇒ f1 = f2

so ϕk is an injection from S to Σk, and
|S| ≤ |Σk|

From Problem 1, we know that S is uncountable, so

|N| < |S|

Combining our inequalities yields

|N| < |S| ≤ |Σk| =⇒ |N| < |Σk|

for all k ∈ N≥2. By the definition of countability, this completes the proof that Σk is uncountable for all
k ∈ N≥2.

MATH 458: Numerical Methods

All assignmetns in this section were written by Aykut Arslan, Lecturer, USC. Solutions to assignments 1
and 2 are provided.

Assignment 1
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Problem 1

The two links below have descriptions of four different situations in which errors arose in numerical computing
with serious consequences. Choose one of these situations (or another situation of your choice and provide
a reference) and write a short paragraph (a few sentences will suffice) about what the error was and what
happened.

• https://en.wikipedia.org/wiki/Pentium_FDIV_bug

• https://www.iro.umontreal.ca/~mignotte/IFT2425/Disasters.html

Solution
The Patriot Missile failure highlights the danger of allowing small rounding errors to accumulate. The
Patriot Missile battery maintains an internal clock that stores time since boot to the nearest second. In
order to make accurate physical calculations, the battery frequently multiplies this clock value by 1

10 to
obtain the time since boot in tenths of a second. Unfortunately, the decimal number 1

10 = 0.1 cannot be
expressed exactly as a finite binary number, as 0.110 = 0.000112, which is a non-terminating sequence of bits.
The Patriot Missile system utilizes only 24 bits for the register storing local time, which introduces about
9.5 · 10−8 rounding error per tenth of a second that the battery has been running. While insignificant when
the battery has low up-time, this error accumulates dangerously when the system runs for a long period of
time. In 1991, after running for around 100 hours straight, a Patriot Missile battery in Saudi Arabia missed
an Iraqi Scud missile which killed 28 soldiers in an American Army barracks. The 100 hour up-time led
to an accumulated rounding error of around 1

3 of a second, enough time for the incoming missile to change
position by more than half a kilometer, rendering the missile defense system ineffective in this situation.
The consequences of this failure demonstrate the importance of understanding how small errors accumulate
with extreme input values.

Problem 2

Consider a polynomial
f(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0

(a) Given a value of x, how many multiplications and how many additions are needed to calculate f(x)
using the naive formula above? Hint: For example, x4 is calculated as x · x · x · x, so it requires 3
multiplications.

(b) Are the total number of operations (additions and multiplications combined) in (a), O(n), O(n2), or
O(n3)?

(c) What if we first calculate the powers of x are store them:

x2 = x · x
x3 = x · x2
x4 = x · x3

...

and then evaluate the function as

f(x) = anxn + · · ·+ a2x2 + a1x+ a0?

Now, how many multiplications and additions are performed? Is the total number of operations O(n),
O(n2), or O(n3)?
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(d) We can also write the polynomial in nested form as

f(x) = (· · · (((anx+ an−1)x+ an−2)x+ an−3)x+ · · ·+ a1)x+ a0

How many multiplications and how many additions are used when this form is used? Is it O(n), O(n2),
or O(n3)?

Solution

(a) Let N := the number of addition operations needed to compute the naive formula of f(x), and let
M := the number of multiplication operations needed to compute the naive formula of f(x).
Note that the naive formula is a sum of n+ 1 terms (one for each power of x in {0, 1, ..., n}).
Claim: A sum of k terms takes k − 1 addition operations to compute, for all k ∈ {1, ..., n+ 1}.
Proof. We induct on k.
Base Case: When k = 1, we have a sum of a single term, which takes 0 = k − 1 addition operations
to compute.
Inductive Hypothesis: Assume a sum of k terms takes k − 1 addition operations to compute for all
1 ≤ k ≤ i < n+ 1.
Inductive Step: Consider k = i+1. A sum of i+1 terms is just a sum of i terms plus one more term.
From the inductive hypothesis, we know a sum of i terms takes i− 1 addition operations to compute.
We need one more addition operation to compute our sum of i+1 terms, so we need i−1+1 = i = k−1
addition operations total.
The conclusion that a sum of k terms takes k− 1 addition operations to compute follows by induction
for all k ∈ {1, ..., n}.
This result directly implies that the sum of n + 1 terms in the naive formula for the polynomial will
take exactly n addition operations to compute.

Thus, we can just calculate the number of multiplication operations for each of the n+ 1 terms, then
add them up. Claim: xi takes i− 1 multiplication operations to compute, for all i ∈ {1, ..., n}.
Proof. We induct on i.
Base Case: When i = 1, xi = x, which takes 0 = i− 1 multiplication operations to compute, so the
claim holds for the base case.
Inductive Hypothesis: Assume xi takes i−1 multiplication operations to compute, for all 1 ≤ i ≤ k < n.
Inductive Step: Consider i = k+1. Then xi = xk+1 = xk · x. From the inductive hypothesis, we know
xk takes k − 1 multiplication operations to compute. We need one more multiplication operation to
compute xk+1 = xk · x, so we have a total of k − 1 + 1 = k multiplication operations.
The conclusion that xi takes i − 1 multiplication operations to compute follows by induction for all
i ∈ {1, ..., n}.
We use the previous result to calculate the number of multiplication operations needed to compute
each of the n+ 1 terms in the naive formula for f(x).
Claim: The term with coefficient ai takes a total of i multiplication operations to compute.
Proof. Note that, when i = 0, the term with ai is just a0, which takes 0 = i multiplication operations
to compute. For all i ∈ {1, ..., n}, the term with ai is of the form aix

i. From the previous proof, we
know xi takes i− 1 multiplication operations to compute. We need one more multiplication operation
to get ai ·xi, so it takes i−1+1 = i multiplication operations to compute. Thus, for all i ∈ {0, 1, ..., n},
the term with ai takes i multiplication operations to compute.
Summing the number of multiplication operations to compute the term with coefficient ai for all
i ∈ {0, 1, ..., n}, we find

M =

n∑
i=0

i =

n∑
i=1

i (1)

Claim:
n∑
i=1

i =
n(n+ 1)

2
(2)
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for all n ∈ N.
Proof. We induct on n.
Base Case: When n = 1, we have

1∑
i=1

i = 1 =
1(1 + 1)

2
=

2

2
(3)

so (2) holds in the base case.
Inductive Hypothesis: Assume (2) holds for all 1 ≤ n ≤ k, n ∈ N.
Inductive Step: Consider n = k + 1. Note that

n∑
i=1

i =

k+1∑
i=1

i = (k + 1) +

k∑
i=1

i (4)

From the inductive hypothesis, we know that
∑k
i=1 i =

k(k+1)
2 . Plugging this into (4) yields

n∑
i=1

i = (k + 1) +
k(k + 1)

2
=

2(k + 1) + k(k + 1)

2
=

(k + 2)(k + 1)

2
=
n(n+ 1)

2
(5)

The conclusion that (2) holds for all n ∈ N follows from (5) by induction.
Plugging this result into (1) yields

M =

n∑
i=1

i =
n(n+ 1)

2
=
n2 + n

2
(6)

In summary, there are a total of N = n addition operations and M = n2+n
2 multiplication operations

needed to compute the naive formula for f(x).

(b) Claim: The total number of operations (additions and multiplications combined) in (a) is O(n2).
Proof. Note that the total number of operations Ta(n) needed to compute the naive formula for f(x)
is

Ta(n) = N +M = n+
n(n+ 1)

2
=

2n+ (n+ 1)n

2
=

(n+ 3)n

2
(7)

Thus, it suffices to find two constants n0 > 0,∈ N and C > 0,∈ R such that

Ta(n) =
(n+ 3)n

2
≤ Cn2 (8)

for all n ≥ n0. We claim that n0 = 1, C = 10 are sufficient. When n = n0, we have

Ta(n) = Ta(1) =
1(1 + 3)

2
=

4

2
= 2 ≤ 10(1)2 = 10 (9)

so we just need to show that 10n2 grows faster than Ta(n) for all n ≥ 1. Note that

d

dn
Ta(n) = x+

3

2
(10)

while
d

dn
10n2 = 20n (11)

Comparing (10) and (11), we see that d
dnTa(n) =

5
2 ≤ 20 = d

dn10n
2 when n = n0, and

d
dnTa(n) grows

20 times slower than d
dn10n

2 for all n ≥ n0. Thus, we can conclude

d

dn
Ta(n) ≤

d

dn
10n2 (12)
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for all n ≥ n0. This combines with (9) to complete the proof that

Ta(n) ≤ 10n2 (13)

for all n ≥ 1 = n0, which completes the proof that the total number of operations (additions and
multiplications combined) in (a) is

Ta(n) = O(n2) (14)

(c) Note that the optimized formula

f(x) = anxn + · · ·+ a2x2 + a1x+ a0

is still a sum of n + 1 terms, so it still requires N = n addition operations to compute, by part
(a). However, the number of multiplication operations required has changed. It still requires 0 and 1
multiplication operations to compute the terms with coefficient a0 and a1, respectively. However, for
all i ∈ {2, ..., n}, xi := xi = x · xi−1, so each xi only takes one multiplication operation to compute
(assuming xi−1 has already been computed). Thus, for all i ∈ {2, ..., n}, the number of multiplication
operations needed to compute the term aixi = aix

i is 2 (one for xi and one for ai · xi). Adding up the
needed multiplication operations for all n+ 1 terms, we find

M ′ = 0 + 1 + 2(n− 1) = 2n− 2 + 1 = 2n− 1 (15)

where M ′ := the number of multiplication operations needed to compute f(x) with the optimized
formula from part (c). This follows because there are n−1 terms with coefficients ai where i ∈ {2, ..., n}.
Combining this with the unchanged N = n number of addition operations needed, we find

Tb(n) =M ′ +N = 2n− 1 + n = 3n− 1 (16)

where Tb(n) := the number of total operations (addition and multiplication combined) needed to
compute the optimized formula for f(x).
Claim: The total number of operations performed to compute the optimized formula for f(x) is O(n).
Proof: From (16) and the definition of Big-O notation, it suffices to find two constants n0 > 0,∈ N
and C > 0,∈ R, such that

Tb(n) = 3n− 1 ≤ Cn (17)

for all n ≥ n0. We will show that n0 = 1, C = 4 are sufficient. Note that, when n = n0,

Tb(n) = Tb(1) = 3(1)− 1 = 2 ≤ 4(1) = 4 (18)

so it suffices to show Tb(n) grows no faster than 4n for all n ≥ 1 = n0. Differentiating, we can easily
see that

d

dn
Tb(n) = 3 ≤ 4 =

d

dn
4n (19)

Thus, Tb(n) ≤ 4n when n = n0 and Tb(n) grows no faster than 4n for all n ≥ n0, allowing us to
conclude that

Tb(n) ≤ 4n (20)

for all n ≥ 1 = n0. The result from (20) completes the proof that the total number of operations
(additions and multiplications combined) needed to compute the optimized polynomial formula is

Tb(n) = O(n) (21)

(d) Claim: For any polynomial of degree n ∈ N∪{0}, it takes N” = n addition andM” = n multiplication
operations to compute the nested formula for f(x).
Proof. We induct on n. Base Case: When n = 0, the nested formula becomes

f(x) = (· · · (((anx+ an−1)x+ an−2)x+ an−3)x+ · · ·+ a1)x+ a0 = a0 (22)
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which requires N” = n = 0 addition operations andM” = n = 0 multiplication operations to compute.
Inductive Hypothesis: Assume that a polynomial of degree n takes N” = n addition and M” = n
multiplication operations for all 0 ≤ n ≤ k, n, k ∈ N ∪ {0}.
Inductive Step: Consider n = k + 1. We have the nested formula

f(x) = (· · · (((ak+1x+ ak)x+ ak−1)x+ ak−2)x+ · · ·+ a1)x+ a0 (23)

For n = k, we have the nested formula

f(x) = (· · · (((akx+ ak−1)x+ ak−2)x+ ak−3)x+ · · ·+ a1)x+ a0 (24)

Comparing (23) and (24), the only difference between the two formulae is that (23) has (ak+1x+ ak)
where (24) just has ak. Thus, the number of addition operations needed to compute (23) is just the
number of addition operations needed to compute (24) plus the number of addition operations needed
to compute (ak+1x+ ak). Similarly, the number of multiplication operations needed to compute (23)
is just the number needed to compute (24) plus the number needed to compute (ak+1x+ ak). By the
inductive hypothesis, it takes k addition operations and k multiplication operations to compute (24)
and it only takes one addition operation and one multiplication operation to compute (ak+1x+ ak), so
it takes

N” = k + 1 = n (25)

total addition operations and
M” = k + 1 = n (26)

total multiplication operations to compute (23).
The conclusion that it takes exactly N” = n addition operations andM” = n multiplication operations
to compute the nested formula for f(x) follows by induction from (25) and (26) for all n ∈ N ∪ {0}.
Thus, the total number of operations (addition and multiplication combined) needed to compute the
nested formula for f(x) is

Tc(n) =M” +N” = n+ n = 2n (27)

Claim: The total number of operations needed to compute the nested formula for f(x) is Tc(n) = O(n).
Proof. It suffices to find two constants n0 > 0,∈ N and C > 0,∈ R, such that

Tc(n) = 2n ≤ Cn (28)

for all n ≥ n0. Choosing n0 = 1, C = 2, the statement from (28) becomes

Tc(n) = 2n ≤ 2n for all n ≥ 1 (29)

which is a vacuously true statement (since 2n = 2n =⇒ 2n ≤ 2n and 2n ≥ 2n for all n ∈ R).
This completes the proof that the total number of operations (additions and multiplications combined)
needed to compute the nested formula for f(x) is

Tc(n) = O(n) (30)

Problem 3

Consider the polynomial f that is given by

f(x) = x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1

(a) Plot the graph of this function for values of x from x = 0.988 to x = 1.012 using steps of size
0.0001. Show the computer code you used to do this and the plot you obtained when you submit your
homework. Does this look like a polynomial?
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(b) In fact f(x) = (x− 1)7 (check this!). Use this formula for f to plot the graph of f for the same values
of x. This looks much better!

(c) Using the values calculated in (b) as the exact values (they aren’t quite exact but they are pretty
close), find the error and relative error when you calculate f(x) using (a) and plot these errors as a
function of x. Use a log scale on the y-axis for the graph of the relative error. (In Matlab you can use
the command semilogy). Show your plots when you turn in your homework.

Solution

(a) We use the following MATLAB code:

x = 0.988:.0001:1.012;

y = x.^7 - 7.*x.^6 + 21.*x.^5 - 35.*x.^4 + 35.*x.^3 - 21.*x.^2 + 7.*x - 1;

plot(x, y)

xlabel("x");

ylabel("f(x)");

to produce the following plot

The plot is quite jagged, with many more than the 6 local extrema expected for a polynomial of degree
7. It thus does not look much like the degree 7 polynomial it is supposed to represent.

(b) We will use the Binomial Theorem to verify that f(x) = (x− 1)7. It states that

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i (31)
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Applying (31) to (x− 1)7 yields

(x− 1)7 =

7∑
i=1

(
7

i

)
xi(−1)7−i

= −
(
7

0

)
x0 +

(
7

1

)
x1 −

(
7

2

)
x2 +

(
7

3

)
x3 −

(
7

4

)
x4 +

(
7

5

)
x5 −

(
7

6

)
x6 +

(
7

7

)
x7

= − 1 + 7x− 7!

5!2!
x2 +

7!

4!3!
x3 − 7!

4!3!
x4 +

7!

5!2!
x5 − 7x6 + x7

= x7 − 7x6 + 21x5 − 35x4 + 35x3 − 21x2 + 7x− 1

= f(x) (32)

so f(x) = (x− 1)7 is indeed true. Having verified this equality, we use the following MATLAB code:

x2 = 0.988:.0001:1.012;

y2 = (x2- 1).^7;

plot(x2, y2)

xlabel("x");

ylabel("f(x)");

to produce the following plot for f(x) using the new formula:

This plot is much smoother and looks much more like the expected plot for a polynomial in x.

(c) With x2, y, and y2 defined as in the MATLAB code from parts (a) and (b), we use the following
MATLAB code:

ea = abs(y2 - y);

plot(x2, ea);

xlabel("x");

ylabel("Absolute Error");
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to produce the following plot for the absolute error of calculating f(x) using the formula from (a):

For the relative error, we use the following MATLAB code:

er = abs((y2 - y)./y2);

semilogy(x2, er);

xlabel("x");

ylabel("Relative Error");

to produce the following plot:
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Note that, unlike the plot for absolute error, this plot has a logarithmic scale on the y-axis.

Problem 4

Consider the problem of evaluating the integrals

yn =

∫ 1

0

xn

x+ 10
dx

for n = 1, 2, .... Analytically, we notice that

yn + 10yn−1 =

∫ 1

0

xn + 10xn−1

x+ 10
dx =

∫ 1

0

xn−1dx =
1

n
.

Also,

y0 =

∫ 1

0

1

x+ 10
= ln(11)− ln(10)

This gives us the following algorithm for computing y0, y1, ...:

1. Compute y0 = ln(11)− ln(10).

2. For n = 1, 2, ..., evaluate yn = 1
n − 10yn−1.

(a) Show that yn < 1 for all n and yn decreases monotonically to 0 as n → ∞. (A picture would suffice
for this!)

(b) Program the algorithm in a computer and find yn for n = 1, 2, ..., 30. What happens? Why does this
happen?

(c) Derive an algorithm for computing the values of these integrals based on evaluating the value of yn−1

from the value of yn.
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(d) Suppose you want to calculate the values of y0, y1, ..., yN for some number N with an absolute error less
than ε for some ε > 0. Since the naive algorithm above produces large errors (even though it is exact
in theory), you will use the algorithm in (c). But you need a starting value. Show that there exists
M ∈ N such that if you take yM = 0 and use the algorithm in (c), then, if calculations are performed
with infinite precision, the absolute errors in the calculations of y0, y1, ..., yN will be less than ε.

(e) Explain why rounding errors in the computer do not produce excessive errors using this algorithm.

(f) Use your algorithm (and the computer) to find the value of y30 to an accuracy of 10−5. Explain how
you chose M in this case.

Solution

(a) To show that yn < 1 for all n, we just need to show that the integrand xn

x+10 < 1 for all x ∈ (0, 1) (we
can exclude the boundaries because a single point cannot contribute to the integral’s final value) and
all n ∈ N (we can exclude n = 0 since y0 = ln(11) − ln(10) ≈ 0.095 < 1). Note that xn < 1 for all
x ∈ (0, 1) and all n ∈ N. Also, x+ 10 > 1 for all x ∈ (0, 1) and all n ∈ N. Thus, for all n ∈ N and all
x ∈ (0, 1), we have

xn

x+ 10
<

1

x+ 10
<

1

1
= 1 (33)

The result from (33) directly implies that∫ 1

0

xn

x+ 10
dx <

∫ 1

0

1dx = 1 (34)

for all n ∈ N. Since y0 = ln(11)− ln(10) < 1, we have

yn < 1 for all n ∈ N (35)

To show that yn decreases monotonically, we must show yn < yn−1 for all n ∈ N. To do so, it suffices

to show that the integrand xn

x+10 <
xn−1

x+10 for all x ∈ (0, 1) and n ∈ N. This follows directly from the
fact that

xn = xn−1 · x < xn−1 · 1 = xn−1 (36)

for all n ∈ N and all x ∈ (0, 1). Thus, we have

yn :=

∫ 1

0

xn

x+ 10
dx <

∫ 1

0

xn−1

x+ 10
dx = yn−1 (37)

for all n ∈ N.
To show that yn converges to 0 as n → ∞, it suffices to show that the integrand xn

x+10 converges to 0
as n→ ∞ for all x ∈ (0, 1). Note that

lim
n→∞

xn

x+ 10
=

1

x+ 10
lim
n→∞

xn =
1

x+ 10
lim
n→∞

eln(x
n) =

1

x+ 10
lim
n→∞

enln(x) (38)

For all x ∈ (0, 1), ln(x) < 0, so
lim
n→∞

nln(x) = −∞ (39)

Thus, we can rewrite (38) as

lim
n→∞

xn

x+ 10
=

1

x+ 10
lim

t→−∞
et =

1

x+ 10
lim
t→∞

1

et
=

1

x+ 10
· 0 = 0 (40)

for all x ∈ (0, 1), with the last equality following since 1
x+10 > 0 for all x ∈ (0, 1). From (40), we see

that, as n→ ∞, we have

lim
n→∞

yn := lim
n→∞

∫ 1

0

xn

x+ 10
dx =

∫ 1

0

lim
n→∞

xn

x+ 10
dx =

∫ 1

0

0dx = 0 (41)

with the second to last inequality following from the Monotone Convergence Theorem. This completes
the proof that yn < 1 for all n→ ∞ and yn decreases monotonically to 0 as n→ ∞.
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(b) We use the following MATLAB code:

y = zeros(30);

y0 = log(11) - log(10);

y(1) = 1 - 10*y0;

for i = 2:30

y(i) = (1/i) - 10*y(i-1);

end

to produce the following values for y1, ..., y30:

(y1, ..., y30) = (0.046898, 0.03101798, 0.02315, 0.01846, 0.01535, 0.0131, 0.01148, 0.01019, 0.009167,

0.008327, 0.0076, 0.0069, 0.00745,−0.003074, 0.09741,−0.9116, 9.17,−91.69, 916.99,

− 9169.877, 91698.821,−916988.2, 9169881.699,−91698816.9, 916988169.5,−9169881695.32,

91698816953.3,−916988169532.8, 9169881695328.4,−91698816953283.7) (42)

Comparing these results to the theoretical results from (a), we see that the computed values of yn
break the monotone decreasing nature of the sequence around y13. Furthermore, the computed values
do not satisfy the restriction that |yn| < 1 for all n ∈ N, and some of the yn are computed to be
negative, which is theoretically impossible. Thus, the computed values are clearly producing very high
error using the naive algorithm provided above.
The computed values differ so much from the theoretical behavior of the sequence due to the accumu-
lation of rounding error. Computing yn for all n ∈ {1, ..., 30} with the naive algorithm involves the
computation of values like 1

3 ,
1
10 , ln(11), and ln(10), none of which can be represented exactly by a

terminating sequence of bits. Thus, rounding error is introduced for each of these terms when they
are first computed. The final error is so significant because of how these rounding errors accumulate
as yn is computed for higher values of n. At iteration i, the (potential) rounding error of 1

i is added
to the total rounding error for yi−1 multiplied by 10. That is, the rounding error introduced by a
computation in iteration i (like ln(11) for i = 0 or 1

i for i > 0) is multiplied by 10n−i by the time the
value of yn is computed, for all 0 ≤ i ≤ n, where i, n ∈ N∪{0}. For example, assuming that MATLAB
uses 64-bit doubles with 52 fraction bits (as specified by IEEE 754), the rounding error for the fraction
1
3 is approximately

err ≈ 1.01010101 · 2−54 ≈ 5.61 · 10−17 (43)

However, once this relatively small error is multiplied by ten 27 times to produce y30, it grows sub-
stantially to

err · 1027 ≈ 5.61 · 1010 (44)

This is just the approximate accumulated rounding error for the error introduced when computing 1
3 to

compute y3, but many other terms contribute similar error, which helps explain the enormous discrep-
ancy between the theoretical and computed behavior of the sequence y0, y1, y2, ..., y30. In summary,
the naive algorithm is unstable, as it leads to exponential accumulation of rounding error, making it
ineffective for computing yn accurately.

(c) Rearranging the formula from the naive algorithm to express yn−1 in terms of yn, we find

yn−1 =
yn − 1

n

−10
=

1
n − yn

10
(45)

Thus, we propose the following algorithm to compute the sequence y0, y1, ..., yN for some N ∈ N:

(a) Pick some (large) M ≥ n and set yM = 0.

(b) Recursively compute yn−1 = 1
10 (

1
n − yn) for all n ∈ {1, ..., n}.
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(d) Define ai to be the absolute computational error involved in computing yi with the algorithm proposed
in (c). For a given ε and a fixed N , we want to find an M such that

an < ε for all n ∈ {0, 1, ..., N} (46)

Note that aM = yM since the computed (assumed) value of yM is 0.
Claim: for all 0 ≤ n ≤M , n ∈ N

an = aM (
1

10
)M−n (47)

Proof. We induct on n.
Base Case: n =M , we have

an = aM = aM (
1

10
)M−n = aM (

1

10
)0 (48)

so (47) holds for the base case.
Inductive Hypothesis: Assume (47) holds for all 0 < k ≤ n ≤M .
Inductive Step: Consider n = k − 1. Using the algorithm from (c), we compute

yn = yk−1 =
1

10
(
1

k
− yk) =

1

10 · k
− yk

10
(49)

Assuming calculations are performed with infinite precision, there is no additional error introduced by
the 1

10·k computation, so all the error in an = ak−1 must come from the computation of −yk
10 . By the

inductive hypothesis, we know the computational error for computing yk is ak = aM ( 1
10 )

M−k. Thus,
we have

an = ak−1 = |−ak
10

| = |−
aM ( 1

10 )
M−k

10
| = |−aM (

1

10
)M−k+1| = aM (

1

10
)M−(k−1) = aM (

1

10
)M−n (50)

The conclusion that (47) holds follows by induction for all 0 ≤ n ≤M , n ∈ N.
This result allows us to rewrite (46) as

For all ε > 0, n ∈ N ∪ {0}, ∃M ∈ N such that aM (
1

10
)M−n < ε for all n ∈ {0, 1, ..., N} (51)

From (a), we know that yn monotonically decreases to 0 as n → ∞, so the error aM = yM also
decreases monotonically to 0 as M → ∞. This means that

y0 = sup{aM |M ∈ N ∪ {0}} (52)

which implies
aM ≤ y0 for all M ∈ N ∪ {0} (53)

Also, we can directly evaluate that

y0 =

∫ 1

0

1

x+ 10
dx ≤

∫ 1

0

1

10
dx =

1

10
(54)

since 1
x+10 is monotonically decreasing in x for all x ∈ (−10,∞) (and thus for all x ∈ (0, 1) ⊆ (−10,∞)),

and the value of 1
x+10 at x = 0 is 1

10 . Thus, it suffices to find a M ∈ N such that

an = aM (
1

10
)M−n ≤ 1

10
(
1

10
)M−n = (

1

10
)M−n+1 < ε (55)
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Rearranging the inequality from the right hand side of (55) to isolate M , we find

(
1

10
)M−n+1 < ε ⇐⇒ (M − n+ 1)ln(

1

10
) < ln(ε)

⇐⇒ (M − n+ 1) >
ln(ε)

ln( 1
10 )

⇐⇒ M > (n− 1)− ln(ε)

ln(10)
(56)

Note that (n− 1)− ln(ε)
ln(10) is linearly increasing in n, so picking

M ∈ N such that M > (N − 1)− ln(ε)

ln(10)
(57)

guarantees that
an < ε for all n ∈ {0, 1, ..., N} (58)

That is, assuming infinite precision calculations, picking an M ∈ N as described in (57) guarantees
that the absolute error in the calculations of y0, y1, .., yN will each be less than ε.

(e) Rounding errors in the computer do not produce excessive errors using this algorithm because the
rounding error exponentially decreases, as opposed to the exponential growth of the rounding error
with the naive algorithm. With the algorithm from (c), we have

yn−1 =
1

10
(
1

n
− yn) (58)

so both the rounding error from 1
n and the total error from computing yn are divided by 10 when

computing yn−1. Let bi := the rounding error introduced by computing 1
i , for all i ∈ N. Then, by

the time y3 is computed with the algorithm from (c), the rounding error from computing 1
30 only

contributes

b30 · (
1

10
)27 = b30 · 10−27 < 10−27 (59)

with the last inequality following because the rounding error for 1
30 is trivially less than 1. Comparing

(59) with (44), we see that the exponential decay of rounding error with the algorithm from (c) means
the computer does not produce excessive errors using this algorithm, whereas the exponential growth of
rounding error with the naive algorithm led to enormous absolute and relative errors in computations.

(f) First, we must pick a value for M ∈ N which will guarantee that our algorithm finds the value of y30
to the specified accuracy. Plugging ε = 10−5 and N = 30 into (57), we find that we will need an

M > (30− 1)− ln(10−5)

ln(10)
= 29− −5ln(10)

ln(10)
= 29 + 5 = 34 (58)

The result from (58) suggests that M = 35 should be sufficient to compute y30 within 10−5 of its exact
value. However, the inequality from (57) assumes infinitely precise calculations, which are impossible
in practice. Thus, we choose to add 5 to this theoretical result and pick M = 40 to increase confidence
that the error in computing y30 does not exceed 10−5. We use the following MATLAB code:

y40 = 0;

y = zeros(39);

y(39) = (1/10)*(1/40)

i = 38;

while i > 0

y(i) = (1/10)*(1/(i+1)-y(i+1));

i=i-1;

end
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to compute that
y30 ≈ 0.002940928704639 (59)

with accuracy of 10−5. That is, the algorithm from (c) allows us to compute that

y30 ∈ [0.0029309, 0.0029509] (60)

which completes the problem.

Problem 5

Supposed f ∈ C3 (this means it has three derivatives and the third order derivative is continuous). We
showed in class that the discretization error when using the difference quotient

f(a+ h)− f(a)

h
(1)

as an approximation for f ′(a) is O(h). Another difference quotient that can be used to approximate f ′(a) is

f(a+ h)− f(a− h)

2h
(2)

You may have noticed from graphs that (2) tends to be more accurate than (1). Show that the discretization
error when using (2) is O(h2). If h ∈ [−1, 1], what is the constant C so that∣∣∣f(a+ h)− f(a− h)

2h
− f ′(a)

∣∣∣ ≤ Ch2

Solution
To show the discretization error when using (2) is O(h2), we use the Taylor Remainder Theorem. Since f
can has three derivatives, and f

′′′
(x) is continuous, we have

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f

′′
(a) +

h3

3!
f

′′′
(b1) (61)

for some b1 ∈ [a, a+ h] and

f(a+ h) = f(a)− hf ′(a) +
h2

2!
f

′′
(a)− h3

3!
f

′′′
(b2) (62)

for some b2 ∈ [a− h, a]. Subtracting (62) from (61) yields

f(a+ h)− f(a− h) = 2hf ′(a) +
h3

6
(f

′′′
(b1) + f

′′′
(b2)) (63)

Dividing both sides of (63) by 2h, subtracting f ′(a), and taking the absolute value yields∣∣∣f(a+ h)− f(a− h)

2h
− f ′(a)

∣∣∣ = h2

12
|(f

′′′
(b1) + f

′′′
(b2))| (64)

Since f
′′′

is continuous, it is bounded, so

∃M1 > 0,∈ R such that |f
′′′
(x)| ≤M1 for all x ∈ [a, a+ h] (65)

and
∃M2 > 0,∈ R such that |f

′′′
(x)| ≤M2 for all x ∈ [a− h, a] (66)
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If we define M :=M1 +M2, then (65) and (66) combine to imply∣∣∣f(a+ h)− f(a− h)

2h
− f ′(a)

∣∣∣ ≤ h2
M

12
(67)

for all h ∈ [−1, 1], which implies that∣∣∣f(a+ h)− f(a− h)

2h
− f ′(a)

∣∣∣ = O(h2) (68)

From (67), we also find that the constant C which guarantees that∣∣∣f(a+ h)− f(a− h)

2h
− f ′(a)

∣∣∣ ≤ Ch2

holds is C = M
12 , where M is the sum of the supremum of f

′′′
(x) over [a, a+ h] and the supremum of f

′′′
(x)

over [a− h, a].

Assignment 2
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Problem 1

(a) Suppose the binary (base two) representation of a number x is 1.1011× two110. What is the base ten
representation of the number?

(b) How is fifty-seven fourths represented in base four?

Solution

(a) First, we convert the exponent to decimal to find

x = 1.1011 · two0+2+4 = 1.1011 · two6

where subscripts denote base. Noting that 26 = 64 in decimal, we find

x = 64 + 32 + 0(16) + 8 + 4 = 108

where subscripts denote base.

(b) In decimal, we can write 57
4 as the following sum:

57

4
=

56

4
+

1

4
= 14 +

1

4
= 3(4) + 2(1) +

1

4
= 3 · 41 + 2 · 40 + 1 · 4−1

Thus, we can write 57
4 in base four as

57

4
= 3.21 · four1 = 3.21 · four

Problem 2

Consider a computer where (β, t, L, U) = (4, 5− 2, 2).

(a) Which of the following numbers are floating point numbers in this computer? Select all that apply and
explain briefly.

(i) one sixty-fourth

(ii) three sixteenths

(iii) one third

(iv) seven

(v) two hundred and fifty-six

(b) (i) What is the largest floating point number in this computer?

(ii) What is the smallest positive floating point number?

(iii) How many floating point numbers are there total? (Remember 0 but ignore “non-normal” num-
bers.)

(iv) What is the value of the rounding unit η.

(c) What is the distance between the smallest positive floating point number and the next smallest floating
point number?

(d) What is the distance between the largest floating point number and the second largest floating point
number?
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Solution

(a) Only three sixteenths and seven are floating point numbers in this computer.

(i) Note that
1

64
=

1

43
= 4−3

That is, to satisfy the floating point requirement for a normalized number with first digit d0 > 0,
the decimal value 1

64 would be expressed in our base β = 4 as

1.0 · four−3

But the lower bound on our exponent is L = −2 > −3, so this computer cannot produce any
numbers with −3 as the exponent. Thus, one sixty-fourth is not a floating point number in this
computer, as its exponent is outside {L,L+ 1, ..., U − 1, U} = {−2,−1, 0, 1, 2}.

(ii) Note that
3

16
=

3

42
= 3(4−2)

That is, to satisfy the floating point requirement for a normalized number with the first digit
d0 > 0, the decimal value 3

16 would be expressed in our base β = 4 as

3.0 · four−2

Since our exponent e = −2 ∈ {L,L + 1, · · · , U − 1, U} = {−2,−1, 0, 1, 2} and we used less than
t = 5 digits to represent the number, we know three sixteenths is a floating point number in our
computer.

(iii) Note that

1

3
= 0.33 >

1

4
+

1

16
+

1

64
+

1

256
+

1

1024
= 4−1 + 4−2 + 4−3 + 4−4 + 4−5 ≈ 0.3330

In base β = 4, we can write this approximation as

1.1111 · four−1

Note that this value uses all t = 5 digits available to this computer, but it still fails to produce
the exact value of one third. Note also that

1

4
+

1

16
+

1

64
+

1

256
+

2

1024
≈ 0.33398 >

1

3

Thus, one third cannot be written exactly as a sequence of 5 digits in base four, so one this is not
a floating point number in this computer.

(iv) Note that
7 = 4 + 3 · 1 = 41 + 3 · 40

Thus, we can write the number 7 in base β = 4 as

1.3 · four1

Since the exponent e ∈ {L,L + 1, ..., U − 1, U} = {−2,−1, 0, 1, 2} and we used less than t = 5
digits to represent the number, we know seven is a floating point number in this computer.

(v) Note that
256 = 44

so it can be written in base β = 4 as
1.0 ∗ four4

However, e = 4 /∈ {L,L + 1, ..., U − 1, U}. Thus, we know two hundred and fifty-six is not a
floating point number in this computer
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(b) (i) The largest floating point number in this computer is

3.3333 · four2

In decimal (base 10), this can be written as

3(42)+3(41)+3(40)+3(4−1)+3(4−2) = 3(16)+3(4)+3(1)+3(
1

4
)+3(

1

16
) = 48+12+3+

12

16
+

3

16
=

1023

16
= 63.9375

Note that this value is 1
16 less than 43 = 4U+1 = 64

(ii) The smallest positive floating point number in this computer is

1.0000 · fourL = 1.0000 · four−2

In base 10, this can be written as

1(4−2) =
1

42
=

1

16
= 0.0625

(iii) Every nonzero floating point number in this computer is of the form

x = ±d0.d1d2d3d4 · foure

where d0 ∈ {1, 2, 3}, d1, d2, d3, d4 ∈ {0, 1, 2, 3, 4}, and e ∈ {L, ..., U} = {−2,−1, 0, 1, 2}. Thus, we
have 2 choices for the sign, 3 choices for d0, 4 choices for each of d1, d2, d3, d4, and 5 choices for e.
This yields

2 · 3 · 4 · 5 = 5! = 120

different possible numbers. However, we also have to consider 0. Thus, our computer can produce

120 + 1 = 121

floating point numbers, including 0 but ignoring “non-normal” numbers.

(iv) By definition, the rounding unit is

η =
1

2
β−(t−1) =

1

2
β−(5−1) =

1

2
β−4 =

1

2β4
=

1

2(4)4
=

1

2(256)
=

1

512
= 0.001953125

(c) We found in part b.ii that the smallest positive floating point number in this computer is

1

16
= 0.0625

which has the form
1.0000 · four−2

in base β = 4. Thus, the next smallest positive floating point number is

1.0001 · four−2

In base 10, we can write this as

(1 + 0(
1

4
) + 0(

1

16
) + 0(

1

64
) + 1(

1

256
))

1

16
= (

257

256
)
1

16
=

257

4096
≈ 0.062744

Subtracting the smallest positive floating point number from the next smallest, we find the distance
between the two is

(
257

256
)
1

16
− 1

16
=

1

16
(
257

256
− 1) =

1

16
(
257

256
− 256

256
) =

1

16
(

1

256
) =

1

4096
≈ 2.4414 · 10−4
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(d) In part b.i, we found that the largest possible floating point number in this computer is

63.9375 =
1023

16

which can be written as a normalized number in base β = 4 as

3.3333 · four2

Thus, the second largest floating point number has the form

3.3332 · four2

In base 10, we can write this as

3(42) + 3(41) + 3(40) + 3(4−1) + 2(4−2) = 3(16) + 3(4) + 3 +
3

4
+

2

16
=

1022

16
= 63.875

Subtracting the second largest positive floating point number from the largest positive floating point
number, we find the distance between the two is

1023

16
− 1022

16
=

1023− 1022

16
=

1

16

Note that this distance is 44 = 256 times larger than the distance between the two smallest positive
floating point numbers. This makes sense, as we have a fixed number t = 5 of digits, so the precision
decrease by 44 as the exponent of the first digit d0 increases by 4.

Problem 3

(a) Provide an example using (β, t, L, U) = (10, 4,−2, 3) to illustrate that if x and y are floating point
numbers then xy need not be a floating point number. Do this without having x, y, or xy be larger
than the largest floating point number of smaller than the smallest floating point number. Explain
briefly.

(b) Suppose x and y ̸= 0 are real numbers. Find a bound on the relative error when the product xy is
calculated in the computer as fl(x)×algorithm fl(y)).

Solution

(a) Let
x = 5.001 · 103 = 5001

and

y = 5.000 · 10−1 =
5

10
=

1

2

Then

x · y =
5001

2
= 2500.5 = 2.5005 · 103

Thus, the exact value of xy takes 5 > t = 4 digits to write in base β = 10, so

xy ̸= d0.d1d2d3 · 10e

for all d0 ∈ {1, ..., 9}, d1, d2, d3 ∈ {0, ..., 9}, and e ∈ {L, ..., U} = {−2, ..., 3}. Thus xy is not a floating
point number for a computer with (β, t, L, U) = (10, 4,−2, 3). Also, note that

1.000 · 10−2 < 5.001 · 103 < 9.999 · 103,
1.000 · 10−2 < 5.000 · 10−1 < 9.999 · 103, and

1.000 · 10−2 < 2500.5 < 9.999 · 103
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so x, y, and xy are all between the smallest positive floating point number and the largest positive
floating point number. Thus, x = 5001, y = 1

2 , xy = 2500.5 combine to illustrate that xy might not
be a floating point number, even if x and y both are.

(b) We want to compute the relative error∣∣∣x · y − fl(fl(x) ·algorithm fl(y))

x · y

∣∣∣
From lecture, we know that, for any real number x, we can write

fl(x) = x(1 + ε)

for some ε such that |ε| ≤ η, where η := 1
2β

−(t−1) is the rounding unit. Thus, we can write

fl(x) = x(1 + ε1)

for some |ε1| ≤ η and
fl(y) = y(1 + ε2)

for some |ε2| ≤ η. This allows us to rewrite the relative error of our multiplication computation as∣∣∣x · y − fl(fl(x) ·algorithm fl(y))

x · y

∣∣∣ = ∣∣∣xy − fl(x(1 + ε1) ·algorithm y(1 + ε2))

xy

∣∣∣
We can apply the same identity once more to find

fl(x(1 + ε1) ·algorithm y(1 + ε2)) = x(1 + ε1)y(1 + ε2)(1 + ε3) = xy(1 + ε1)(1 + ε2)(1 + ε3)

for some |ε3| ≤ η. Plugging this into the relative error equation yields∣∣∣x · y − fl(fl(x) ·algorithm fl(y))

x · y

∣∣∣ = ∣∣∣xy − xy(1 + ε1)(1 + ε2)(1 + ε3)

xy

∣∣∣
=

∣∣∣xy
xy

(1− (1 + ε1)(1 + ε2)(1 + ε3))
∣∣∣

=
∣∣∣(1− (1 + ε1)(1 + ε2)(1 + ε3))

∣∣∣
where the last equality follows because x, y ̸= 0 =⇒ xy ̸= 0. Expanding, we find∣∣∣x · y − fl(fl(x) ·algorithm fl(y))

x · y

∣∣∣ = |1− (1 + ε1 + ε2 + ε1ε2)(1 + ε3)
∣∣∣

= |1− (1 + ε1 + ε2 + ε3 + ε1ε2 + ε1ε3 + ε2ε3 + ε1ε2ε3)
∣∣∣

=
∣∣∣− (ε1 + ε2 + ε3 + ε1ε2 + ε1ε3 + ε2ε3 + ε1ε2ε3)

∣∣∣
=

∣∣∣ε1 + ε2 + ε3 + ε1ε2 + ε1ε3 + ε2ε3 + ε1ε2ε3

∣∣∣
Note that |ε1|, |ε2|, |ε3| ≤ η combines with

η =
1

2
β−(t−1) <=

1

2
1−(t−1) =

1

2
< 1

to imply that
ε1ε2 < ε1, ε2 ε1ε3 < ε1, ε3, and ε2ε3 < ε2, ε3

Similarly,
ε1ε2ε3 < ε1ε2, ε2ε3 =⇒ ε1ε2ε3 < ε1, ε2, ε3
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Thus, we can group ε1ε2 + ε1ε3 + ε2ε3 + ε1ε2ε3 = O(ε2) together as higher-order terms (h.o.t.) to find∣∣∣x · y − fl(fl(x) ·algorithm fl(y))

x · y

∣∣∣ = ∣∣∣ε1 + ε2 + ε3 + h.o.t.
∣∣∣

Claim: |x1 + · · ·+ xn| ≤ |x1|+ · · ·+ |xn| for all n ∈ N, x1, ..., xn ∈ R.
Proof. We induct on n.
Base Case: n = 1. Then |x1 + · · ·+ xn| = |x1|, so the claim is trivially true.
Inductive Hypothesis: Assume |x1 + · · · + xn| ≤ |x1| + · · · + |xn| for all 1 ≤ n ≤ k, n ∈ N, and all
x1, ..., xn ∈ R.
Inductive Step: Consider n = k + 1. Note that, if x1 + · · ·+ xk and xk+1 have the same sign, then∣∣∣x1 + · · ·+ xk + xk+1

∣∣∣ = ∣∣∣x1 + · · ·+ xk

∣∣∣+ |xk+1|

On the other hand, if x1 + · · ·+ xk and xk+1 have different signs, then

|x1 + · · ·+ xk + xk+1| < |x1 + · · ·+ xk|+ |xk+1|

Thus, for all x1, ..., xk+1, we have

|x1 + · · ·+ xk + xk+1| ≤ |x1 + · · ·+ xk|+ |xk+1|

By the inductive hypothesis, we know

|x1 + · · ·+ xk| ≤ |x1|+ · · ·+ |xk|

Using this result, we find

|x1 + · · ·+ xk + xk+1| ≤ |x1|+ · · ·+ |xk|+ |xk+1|

which is exactly what we want to show.
The conclusion that |x1 + · · · + xn| ≤ |x1| + · · · + |xn| follows by induction for all n ∈ N and all
x1, ..., xn ∈ R.
Applying this inequality to our equation for relative error yields∣∣∣x · y − fl(fl(x) ·algorithm fl(y))

x · y

∣∣∣ ≤ |ε1|+ |ε2|+ |ε3|+ |h.o.t.|

By definition, |ε1|, |ε2|, |ε3| ≤ η. This allows us to conclude∣∣∣x · y − fl(fl(x) ·algorithm fl(y))

x · y

∣∣∣ ≤ 3η + |h.o.t.| = 3

2
β−(t−1) + |h.o.t|

where h.o.t. denotes the higher order terms. This is our upper bound for the relative error from
computing the product of two real numbers x, y ̸= 0. Note that this upper bound is the same as the
one we found in lecture for the relative error of division.

Problem 4

Suppose a machine with a floating point system (β, t, L, U) = (10, 8,−50, 50) is used to find the roots of the
quadratic equation

ax2 + bx+ c = 0

using the standard formula

x =
−b±

√
b2 − 4ac

2a

Describe the numerical difficulties that arise in each of the following cases and, in each case, suggest a
different way of calculating the roots that would be more accurate or explain why no such method exists.
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(a) a = 1; b = −105; c = 1

(b) a = 5 · 1030; b = 5 · 1030; c = −4 · 1030

(c) a = 10−30; b = −1030; c = 1030

Solution

(a) When a = 1, b = −105, and c = 1, the equation simplifies to

x =
−b±

√
b2 − 4

2

so our roots are

x1 =
1

2
(−b+

√
b2 − 4) =

1

2
(−(−105) +

√
(−105)2 − 4) =

1

2
(104 +

√
1010 − 4)

and

x2 =
1

2
(−b−

√
b2 − 4) =

1

2
(105 −

√
1010 − 4)

Note that
1010 − 4 = 10000000000− 4 = 9999999996 = 9.999999996︸ ︷︷ ︸

10 digits

·109

Since there are 10 > t = 8 digits in the exact result, the computer will calculate 1010 − 4 by rounding
based on whether the ninth digit satisfies d8 ≥ β

2 = 10
2 = 5. Here, d8 = 9 ≥ 5, so the computer will

round 9.999999996 · 109 up to
1.0000000 · 1010 = b2

That is, the computer will return
b2 − 4 = b2

For x2, this yields to a computed value of

x̂2 =
1

2
(105 −

√
1010) =

1

2
(105 − 105) = 0

which yields to a relative error of ∣∣∣x2 − x̂2
x2

∣∣∣ = ∣∣∣x2
x2

∣∣∣ = 1

or 100%. Thus, although x̂1 could be computed with better accuracy, there is no way to compute x̂2
with low relative error using the standard quadratic formula.

However, we can note that

x1 · x2 =
1

4
(−b+

√
b2 − 4)(−b−

√
b2 − 4) =

1

4
(b2 − (b2 − 4)) =

1

4
(4) = 1

where the second equality follows from the identity (a− b)(a+ b) = a2 − b2. Dividing both sides by x1
since x1 = 1

2 (10
4 +

√
1010 − 4) > 0, we find

x2 =
1

x1

Thus, we can compute x̂1 first. Note that computing x̂1 only involves addition of values with the same
sign (and dividing by 2), and

x1 =
1

2
(105 +

√
1010 − 4) ≈ 1

2
(105 + 105) = 105 << 9.9999999 · 1050
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Thus, we should not have any trouble computing x̂1 due to overflow nor subtracting close numbers, so
we should compute x̂1 relatively accurately. From there, we can compute x̂2 using the identity x2 = 1

x1
.

Note that

x1 ≈ 105 =⇒ x2 ≈ 1

105
= 10−5 >> 1.0000000 · 10−50

so we should be able to compute x̂2 from x̂1 relatively accurately without running into overflow prob-
lems. Thus computing x̂2 using x2 = 1

x1
would be more accurate than using the standard quadratic

formula in this case.

(b) When a = 5 · 1030, b = 5 · 1030, c = −4 · 1030, the equation simplifies to

x =
−b±

√
b2 − 4(5 · 1030)(−4 · 1030)

2(5 · 1030)
=

−b±
√
b2 + 80 · 1060
1031

Note that
80 · 1060 = 8.0 · 1061 > 9.9999999 · 1050

where the value on the right hand side is the largest positive floating point number in this computer.
Thus, the computer will struggle to compute either of the roots accurately because it will overflow
when computing −4ac for both roots.

However, we can note that a, b, and c each have a factor of 1030 in them, which leads b2 − 4ac
to have a factor of (1030)2. That is,

x =
−b±

√
(5 · 1030)2 + 80(1030)2

1031
=

−b±
√
(1030)2(25 + 80)

1031
=

−b± 1030
√
105

1031
=

−5 · 1030 ± 1030
√
105

1031

so our two roots are

x1 =
−5 · 1030 + 1030

√
105

1031
=

1

10

1030(
√
105− 5)

1030
=

1

10
(
√
105− 5)

and

x2 =
−5 · 1030 − 1030

√
105

1031
=

1

10

1030(−
√
105− 5)

1030
= − 1

10
(
√
105 + 5)

Note that we will have some error computing the irrational number
√
105 with anything less than

infinite precision, but we should get a much more accurate answer than the standard formula yields
since there will be no overflow error. Moreover, to be cautious, we could limit potential cancellation
error from

√
105−5 by using the alternative method from part (a) (using x1x2 = c

a instead of x1x2 = 1).

Thus, using x1 = 1
10 (

√
105 − 5) and x2 = − 1

10 (
√
105 + 5) would lead to more accurate computations

than using the standard quadratic formula in this case.

(c) When a = 10−30, b = −1030, c = 1030, the equation simplifies to

x =
−b±

√
b2 − 4(10−30)(1030)

2 · 10−30
=

−b±
√
b2 − 4

2 · 10−30

so our roots are

x1 =
1030 +

√
(1030)2 − 4

2 · 10−30
=

1

2
1030(1030 +

√
(1030)2 − 4) =

1

2
(1060 + 1030

√
(1030)2 − 4)

and

x2 =
1030 −

√
(1030)2 − 4

2 · 10−30
=

1

2
1030(1030 −

√
(1030)2 − 4) =

1

2
(1060 − 1030

√
(1030)2 − 4)
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Note that attempting to compute x2 directly leads to overflow with the initial two calculations of 1060,
potential rounding error with the calculation of 1060 − 4, potential overflow from the computation of
1030 ·

√
(1030)2 − 4, and potential cancellation error like that seen in part (a) from subtracting

1030
√
(1030)2 − 4 ≈ 1030 · 1030 = 1060

from 1060. Thus, the directly computed value x̂2 is likely to be very inaccurate. Unfortunately,

x1 =
1

2
(1060+1030

√
(1030)2 − 4 ≈ 1

2
(1060+1030

√
1060) =

1

2
(1060+1030·1030) = 1

2
(1060+1060) = 1060 > 9.9999999·1050

so this computer cannot even store a remotely accurate value of x1. Attempting to directly compute
x1 would lead to all the same overflow error as computing x2. However, there would be no cancellation
error since the≈ 1060 terms are added instead of subtracted. Although we cannot compute theoretically
exact values of x1 and x2 using the formulae written above, we can approximate x2. First, pull a factor
of 1030 =

√
1060 out from the square root for both x1 and x2 to find

x1 =
1

2
(1060 + 1060

√
1− 4 · 10−60) =

1060

2
(1 +

√
1− 4 · 10−60)

and

x2 =
1

2
(1060 − 1060

√
1− 4 · 10−60) =

1060

2
(1−

√
1− 4 · 10−60)

We still cannot directly compute the value inside the square root since 10−60 is smaller than the smallest
positive floating point number in this system, and thus computing it will cause overflow. However,
recall from discussion that the first order Taylor expansion of

√
1− x at a = 0 is

√
1− x ≈ f(a) + f ′(a)(x− a) =

√
1− a− 1

2
(x− a) =

√
1− 1

2
x = 1− x

2

Thus, we can replace
√
1− 4 · 10−60 with its first order Taylor approximation 1− 2 · 10−60 to find

x1 ≈ 1060

2
(1 + (1− 2 · 10−60)) =

1060

2
(2− 2 · 10−60) = 1060(1− 10−60) = 1060 − 1

and

x2 ≈ 1060

2
(1− (1− 2 · 10−60)) =

1060

2
(2 · 10−60) = 1

This method allows us to approximate x2 ≈ 1, a number we can easily store with this computer.
However, we still cannot compute x1 accurately, even with this approximation, as the approximate
value of x1 ≈ 1060 − 1 is much larger than the largest floating point number this computer can store.
Moreover, we cannot use the technique from (a) to solve for x1 = c

a
1
x2
, as we cannot even store

c
a = 1030

10−30 = 1060 accurately due to overflow. Thus, although we can utilize a first order Taylor
polynomial to approximate x2 accurately, we have no method of computing and storing x1 without
causing overflow. This suggests there is no way to accurately compute both roots in our computer for
this case.

Problem 5

Suppose we estimate the derivative of a function f at a point x = a in the computer using a difference
quotient

f ′(a) ≈ f(a+ h)− f(a)

h

There are three kinds of errors that are introduced as a result.
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• A discretization error because f ′(x) is not exactly equal to f(a+h)−f(a)
h .

• Rounding errors in the calculation of f(a+ h) and f(a).

• Rounding errors when computing f(a+ h)− f(a) and when computing f(a+h)−f(a)
f(h) .

The computed value of the difference quotient is then

(fc(a+ h)−algorithm fc(a))÷algorithm h

where fc is the computed value of f (and is, therefore, necessarily a floating point number). Let’s assume
that h is a floating point number. Notice, the absolute error between the true value of f ′(a) and its computed
value can be bounded by

|f ′(a)− (fc(a+ h)−algorithm fc(a))÷algorithm h|

≤
∣∣∣f ′(a)− f(a+ h)− f(a)

h

∣∣∣
+

∣∣∣f(a+ h)− f(a)

h
− fc(a+ h)− fc(a)

h

∣∣∣
+

∣∣∣fc(a+ h)− fc(a)

h
− (fc(a+ h)−algorithm fc(a))÷algorithm h

∣∣∣
We have already seen that the discretization error∣∣∣f ′(a)− f(a+ h)− f(a)

h

∣∣∣ ≤ Mh

2

where M is a bound on |f”|. Notice, furthermore, that, although we have written an inequality, the actual
error is actually approximately equal to the right-hand side when h is small and M is replaced by |f”(a)|.

(a) Suppose the relative error when calculating the value of f is bounded by ε; in other words, for all real
numbers x,

|f(x)− fc(x)|
|f(x)|

≤ ε

Show that ∣∣∣f(a+ h)− f(a)

h
− fc(a+ h)− fc(a)

h

∣∣∣ ≤ 2Kε

h

where K is a bound on |f |. Notice, in this case, the actual error is just bounded by the right-hand-side
and we don’t expect it to be equal to what we have on the right; indeed, we would expect it to look
somewhat random.

(b) Show that for small enough h∣∣∣fc(a+ h)− fc(a)

h
− (fc(a+ h)−algorithm fc(a))÷algorithm h

∣∣∣
≤ 2

(2Kε
h

+
Mh

2
+ L

)
η

where L is a bound on f ′ and η is the rounding unit.

(d) Suppose f(x) = sin(x) and a = 1.2. In this case, f ′(x) = cos(x) and it is reasonable to assume that
ε ≈ η. What are the values of M , K, and L? What is the value of h that minimizes the error bound?

(e) Use the computer to sketch the graph of the error between the actual value of f ′(x) and its computed
value as a function of h. Use log scales on both axes with h ranging from about 10−20 to 100 = 1. On

the same axes, plot the discretization error cos(1.2)h
2 (Your picture should be similar to Figure 1.3 in

Chen and Greif and the one we created in class). Provide your graph when you submit your homework.
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(f) Explain your graph in (e) in light of parts (a)- (d). In particular, for what values of h is the error
dominated by the discretization error and for what values is it dominated by the rounding error? Does
this agree with your calculation in part (d)? Why does the graph level off when h is very small? At
what value does that happen and why?

Solution

(a) Note that∣∣∣f(a+ h)− f(a)

h
− fc(a+ h)− fc(a)

h

∣∣∣ = ∣∣∣f(a+ h)− f(a)− fc(a+ h) + fc(a)

h

∣∣∣
=

∣∣∣f(a+ h)− fc(a+ h)

h
− f(a)− fc(a)

h

∣∣∣
By our proof in part (b) of Problem 3, we find∣∣∣f(a+ h)− f(a)

h
− fc(a+ h)− fc(a)

h

∣∣∣ ≤ ∣∣∣f(a+ h)− fc(a+ h)

h

∣∣∣+ ∣∣∣− f(a)− fc(a)

h

∣∣∣
=

∣∣∣f(a+ h)− fc(a+ h)

h

∣∣∣+ ∣∣∣f(a)− fc(a)

h

∣∣∣
=

|f(a+ h)− fc(a+ h)|
|h|

+
|f(a)− fc(a)|

|h|

Plugging in our assumption that

|f(x)− fc(x)|
|f(x)|

≤ ε =⇒ |f(x)− fc(x)| ≤ ε|f(x)|

for all x ∈ R, we find∣∣∣f(a+ h)− f(a)

h
− fc(a+ h)− fc(a)

h

∣∣∣ ≤ ε|f(a+ h)|
|h|

+
ε|f(a)|
|h|

Applying the given assumption that ∃K ∈ R such that |f(x)| ≤ K for all x ∈ R (or at least on
[a, a+ h]), we find∣∣∣f(a+ h)− f(a)

h
− fc(a+ h)− fc(a)

h

∣∣∣ ≤ 1

|h|
(εK + εK) =

2Kε

|h|
=

2Kε

h

where the last equality assumes the step size h > 0. This completes the proof that∣∣∣f(a+ h)− f(a)

h
− fc(a+ h)− fc(a)

h

∣∣∣ ≤ 2Kε

h

where ε is the bound on |f(x)−fc(x)|
|f(x)| for all x ∈ R and K is a bound on |f |.

(b) Note that

(fc(a+ h)−algorithm fc(a))÷algorithm h = fl(
fl(fc(a+ h)− fc(a))

h
) = fl(

(fc(a+ h)− fc(a))(1 + ε1)

h
)

=
fc(a+ h)− fc(a)

h
(1 + ε1)(1 + ε2)
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for some |ε1|, |ε2| ≤ η, which directly implies∣∣∣fc(a+ h)− fc(a)

h
− (fc(a+ h)−algorithm fc(a))÷algorithm h

∣∣∣
=

∣∣∣fc(a+ h)− fc(a)

h
− fc(a+ h)− fc(a)

h
(1 + ε1)(1 + ε2)

∣∣∣
=

∣∣∣fc(a+ h)− fc(a)

h
(1− (1 + ε1)(1 + ε2)

∣∣∣
=

∣∣∣fc(a+ h)− fc(a)

h
(ε1 + ε2 + h.o.t)

∣∣∣
≤

∣∣∣fc(a+ h)− fc(a)

h

∣∣∣(η + η + |h.o.t.|)

=
∣∣∣fc(a+ h)− fc(a)

h

∣∣∣(2η + |h.o.t.|)

where the inequality follows by the triangle inequality and the upper bound on |ε1| and |ε2|.

Claim: We claim that |x| − |y| ≤ |x− y| for all x, y ∈ R.
Proof. We consider four cases based on the signs of x and y.

1. If x > 0 and y > 0, then

|x| = x, |y| = y =⇒ |x| − |y| = x− y ≤ |x− y|

where the inequality follows since a ≤ |a| for all a ∈ R by definition of the absolute value function.

2. If x > 0 and y ≤ 0, then

|x| = x, y = −|y| =⇒ |x| − |y| = x+ y ≤ x ≤ x− y ≤ |x− y|

where the first two inequalities follow from y ≤ 0 and the final inequality follows from the definition
of absolute value.

3. If x ≤ 0 and y ≤ 0, then

x = −|x|, y = −|y| =⇒ |x| − |y| = y − x ≤ |y − x| = | − (y − x)| = |x− y|

where the inequality and the final two equalities follow by the definition of absolute value.

4. Finally, if x ≤ 0 and y > 0, then

x = −|x|, y = |y| =⇒ |x| − |y| = −x− y ≤ −x ≤ y − x ≤ |y − x| ≤ |x− y|

where the first two inequalities follow from y > 0 and the last two follow by the definition of
absolute value.

This completes the proof that |x| − |y| ≤ |x− y| for all x, y ∈ R. Applying this result, we find∣∣∣fc(a+ h)− fc(a)

h

∣∣∣− |f ′(a)| ≤
∣∣∣fc(a+ h)− fc(a)

h
− f ′(a)

∣∣∣ = ∣∣∣f ′(a)− fc(a+ h)− fc(a)

h

∣∣∣
Applying the triangle inequality (|x−z| ≤ |x−y|+ |y−z|) and plugging in known upper bounds yields∣∣∣fc(a+ h)− fc(a)

h

∣∣∣− |f ′(a)| ≤
∣∣∣f ′(a)− f(a+ h)− f(a)

h

∣∣∣+ ∣∣∣f(a+ h)− f(a)

h
− fc(a+ h)− fc(a)

h

∣∣∣
≤ Mh

2
+

2Kε

h
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Adding |f ′(a)| to both sides and applying the given bound |f ′(x)| ≤ L, we find∣∣∣fc(a+ h)− fc(a)

h

∣∣∣ ≤ Mh

2
+

2Kε

h
+ |f ′(a)| ≤ Mh

2
+

2Kε

h
+ L

Plugging this result into our inequality for
∣∣∣ fc(a+h)−fc(a)h −(fc(a+h)−algorithmfc(a))÷algorithmh

∣∣∣ yields∣∣∣fc(a+ h)− fc(a)

h
− (fc(a+ h)−algorithm fc(a))÷algorithm h

∣∣∣
≤ (

Mh

2
+

2Kε

h
+ L)(2η + |h.o.t.|

= 2(
2Kε

h
+
Mh

2
+ L)η + |h.o.t|(Mh

2
+

2Kε

h
+ L)

For sufficiently small h, f(h) = O(h2) << g(h) = O(h), so the higher order term is negligible. This
completes the proof that, for small enough h,∣∣∣fc(a+ h)− fc(a)

h
− (fc(a+ h)−algorithm fc(a))÷algorithm h

∣∣∣
≤ 2(

2Kε

h
+
Mh

2
+ L)η

where L is a bound on f ′ and η is the rounding unit.

(d) By definition, M is a bound on |f”|, K is a bound on |f |, and L is a bound on |f ′|. If f(x) = sin(x),
then we know

−1 ≤ f(x) = sin(x) ≤ 1 =⇒ |f(x)| = |sin(x)| ≤ 1

for all x ∈ R, so we can take K = 1 to satisfy |f(x)| ≤ K for all x ∈ R. We also have

−1 ≤ f ′(x) =
d

dx
sin(x) = cos(x) ≤ 1 =⇒ |f ′(x)| = |cos(x)| ≤ 1

for all x ∈ R, so we can take L = 1 to guarantee |f ′(x)| ≤ L for all x ∈ R. Finally, we have

−1 ≤ f”(x) =
d

dx
cos(x) = −sin(x) ≤ 1 =⇒ |f”(x)| = | − sin(x)| = |sin(x)| ≤ 1

for all x ∈ R, so we can take M = 1 to ensure |f”(x)| ≤ M for all x ∈ R. Thus, the values of M , K,
and L in this case are M = K = L = 1.
Plugging in M = K = L = 1 into the bound from part (b), we find∣∣∣fc(a+ h)− fc(a)

h
− (fc(a+ h)−algorithm fc(a))÷algorithm h

∣∣∣
≤ 2(

2ε

h
+
h

2
+ 1)η

≈ 2η(
2η

h
+
h

2
+ 1)

Note that
d

dh
(
2η

h
+
h

2
+ 1) =

−2η

h2
+

1

2
= 0 ⇐⇒ h2 = 4η ⇐⇒ h = 2(±√

η)

and
d2

dh2
=

d

dh
(
−2η

h2
+

1

2
) =

4η

h3
> 0

for all h > 0. Thus, 2η
h + h

2 + 1 is decreasing in h for all h ∈ (0, 2
√
η) and increasing in h for all

h ∈ (2
√
η,∞), so h = 2

√
n is the unique h > 0 that minimizes 2η

h + h
2 + 1 (and thus 2η( 2ηh + h

2 + 1)).
Thus, the value of h that minimizes the error bound in this case is h = 2

√
η.
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(e) We use the following MATLAB code:

a = 1.2;

i = -20:0.5:0;

h = 10.^i;

approx = (sin(a+h)-sin(a))./h;

val = cos(a);

abs_err = abs(val - approx);

disc_err = abs((cos(a).*h)./2);

loglog(h, abs_err);

hold on;

loglog(h, disc_err);

axis([10^(-20) 10^0 10^(-15) 10^0])

legend(["Absolute Error", "Discretization Error"])

xlabel("Step Size (h)");

ylabel("Error");

hold off;

to produce the following graph:

The discretization error is in red while the absolute error is in blue.

(f) The graph from (e) aligns with the expectations from the analysis in parts (a)-(d). The absolute error
is dominated by the discretization error for larger values of h, specifically those h >> 10−8. On the
other hand, the absolute error is dominated by the rounding error for smaller values of h, specifically
h << 10−8. In parts (a) and (b), we showed that the upper bounds on rounding error depend inversely
on h for both ∣∣∣f(a+ h)− f(a)

h
− fc(a+ h)− fc(a)

h

∣∣∣
and ∣∣∣fc(a+ h)− fc(a)

h
− (fc(a+ h)−algorithm fc(a))÷algorithm h

∣∣∣
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Thus, we would expect rounding error to increase as h→ 0, which would help explain why the rounding
error dominated the absolute error for small values of h.
Also, in lecture, we showed that the upper bound on the discretization error∣∣∣f ′(a)− f(a+ h)− f(a)

h

∣∣∣
is directly proportional to h. Thus, we would expect rounding error to increase as |h| increases.
Therefore, our analysis from lecture, part (a), and part (b) combine to imply that the discretization
error should be much larger than the rounding error for large h while the rounding error should be
much larger than the discretization error for small h. This provides a qualitative explanation of the
reason discretization error dominates for h >> 10−8 while rounding error dominates for h << 10−8.
We can use part (d) to provide a quantitative explanation for the behavior. Since MATLAB uses IEEE
standards, we know, during the creation of our graph, we have

η =
1

2
(2)−52 ≈ 1.1 · 10−16

so, based on our calculations in part (d), the absolute error should be minimized when

h = 2
√
η = 2

√
2−52 ≈ 2.11 · 10−8

Comparing this expected value to the graph, we see that the absolute error indeed reaches a minimum
around 2 · 10−8. Thus, the term that dominates the absolute error demonstrated in the graph agrees
with both qualitative and quantitative expectations based on parts our analysis from parts (a), (b),
and (d).
The absolute error in the graph levels off when h is very small, seemingly around h = 10−16. This is
the first point in our array h for which we have h < η, and since it is reasonable to assume ε ≈ η, we
have rounding error so high that a+ h = 1.2+ 10−16 evaluates to 1.2 = a. This results in catastrophic
cancellation, as MATLAB evaluates sin(a+ h) = sin(1.2 + 10−16) as equal to sin(a) = sin(1.2), so it
evaluates

|f ′(a)− (fc(a+ h)−algorithm fc(a))÷algorithm h|

as equal to
|f ′(a)− 0| = |f ′(a)|

leading to constant absolute error |f ′(a)|. As previously discussed, the rounding error already domi-
nates the absolute error by the time h is as small as 10−16, so decreasing h further cannot decrease the
absolute error, despite minimizing discretization error. Thus, the overall behavior of the absolute error
demonstrated in the graph, both the term that dominates it and the reason/point at which it levels
off, can be explained both quantitatively and qualitatively with the analysis from parts (a) through
(d).

MATH 408: Mathematical Statistics

All assignments in this section were written by Steven M. Heilman, RTPC Assistant Professor of Mathemat-
ics, USC. Solutions to assignments 1 through 6 are provided.

Assignment 1

Exercise 1.

No work requested.
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Exercise 2.

No work requested.

Exercise 3.

Two people take turns throwing darts at a board. Person A goes first, and each of their throws has a
probability of 1/4 of hitting the bullseye. Person B goes next, and each of their throws has a probability of
1/3 of hitting the bullseye. Then Person A goes, and so on. With what probability will Person A hit the
bullseye before Person B does?

Solution.
First, note that, by the formula for an infinite Geometric Series, we have

∞∑
n=0

a · rn =
a

1− r
(1)

for all real-valued |r| < 1.

Now, let A = the event that a randomly selected one of Person A’s throws hits the bullseye.
Let B = the event that a randomly selected one of Person B’s throw’s hits the bullseye.
Then Ac = the event that a randomly selected one of Person A’s throws misses the bullseye, and Bc = the
event that a randomly selected one of Person B’s throws misses the bullseye.

Let Ai = the event that Person A and Person B both miss the bullseye on their first i throws, then
Person A hits the bullseye on their i+ 1’th throw.
This allows us to define

A∗ = the event that Person A hits the bullseye first =
⋃∞
i=0Ai

Note that, if the first bullseye hit from either player occurs on Person A’s i + 1’th throw, then it could
not possibly occur on Person A’s j + 1’th throw, for all i ̸= j. This ensures that

Ai ∩Aj = ∅

for all 0 ≤ i ̸= j, i, j ∈ Z.
Applying the axiom that, for any countable set of disjoint events A1, ..., An,

P(
n⋃
i=1

Ai) =

n∑
i=1

P(Ai)

we find

P(A∗) = P(
∞⋃
i=0

Ai) =

∞∑
i=0

P(Ai) (2)

so we just need to find a formula for P(Ai) in terms of i. Since we are given P(A) = 1
4 and P(B) = 1

3 , we
know

P(Ac) = 1− P(A) = 1− 1

4
=

3

4

and

P(Bc) = 1− P(B) = 1− 1

3
=

2

3
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Assuming all throws are made independently of each other, we find the probability that Person A misses the
bullseye, followed by Person B missing the bullseye is

P(Ac ∩Bc) = P(Ac)P(Bc) =
3

4

2

3
=

2

4
=

1

2

Thus, the probability of Person A and Person B both missing their first i throws is

(P(Ac ∩Bc))i =
(1
2

)i
Once again assuming the independence of throws, this implies that

P(Ai) = (P(Ac ∩Bc))i · P(A) =
(1
2

)i · 1
4

for all 0 ≤ i ∈ Z. Plugging this result into (2), we find

P(A∗) =

∞∑
i=0

P(Ai) =
∞∑
i=0

1

4
·
(1
2

)i
Applying the geometric series formula from (1) (since r = 1

2 < 1), we find that the probability that Perosn
A hits the bullseye before Person B does is

P(A∗) =
1
4

1− 1
2

=
1
4
1
2

=
1

4
· 2 =

1

2
= 50%

Thus, assuming the independence of throws, there is a 50% chance that Person A will hit the bullseye before
Person B does.

Exercise 4

Suppose you have a car with twenty tires, and the car mechanic removes all twenty tires. Suppose the
mechanic now puts the tires back on randomly, so that all arrangements of the tires are equally likely. With
what probability will no tire end up in its original position? Give an answer to ten decimal places of accu-
racy (e.g. your answer could be 0.1234567891). Can you guarantee that these ten decimal places are correct?

Solution.
Let A = the event that no tire ends up in its original position.
Let Bi = the event that the i’th tire ends up in its original position.
Note that A = (

⋃20
i=1Bi)

c, so P(A) = 1−P(
⋃20
i=1Bi) There are 20! possible arrangements of the tires, so the

sample space, Ω, has a size of |Ω| = 20!. Since all possible arrangements are equally likely, we can calculate

P(
⋃20
i=1Bi) by counting |

⋃20
i=1Bi| and applying the formula

P(
20⋃
i=1

Bi) =
|
⋃20
i=1Bi|
|Ω|

(3)
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. To count |
⋃20
i=1Bi|, we apply the principle of inclusion exclusion to find

|
20⋃
i=1

Bi| =
20∑
i=1

(
20

i

)
(20− i)!(−1)i−1

=

(
20

1

)
· 19!−

(
20

2

)
· 18! +

(
20

3

)
· 17!−

(
20

4

)
· 16! +

(
20

5

)
· 15!−

(
20

6

)
· 14!

+

(
20

7

)
· 13!−

(
20

8

)
· 12! +

(
20

9

)
· 11!−

(
20

10

)
· 10! +

(
20

11

)
· 9!−

(
20

12

)
· 8!

+

(
20

13

)
· 7!−

(
20

14

)
· 6! +

(
20

15

)
· 5!−

(
20

16

)
· 4! +

(
20

17

)
· 3!−

(
20

18

)
· 2!

+

(
20

19

)
· 1!−

(
20

20

)
· 0!

≈ 1.53788738 · 1018

Plugging in the unrounded value of |
⋃20
i=1Bi| into (3), we find

P(
20⋃
i=1

Bi) =
|
⋃20
i=1Bi|
|Ω|

=
1.53788738 · 1018

20!
= 0.6321205588

This allows us to compute that

P(A) = 1− 0.6321205588 = 0.3678794412

Thus, the probability that no tire ends up in its original position, expressed to ten decimal places of accuracy,
is 0.3678794412.

Assuming that all arrangements of the tires are equally likely, and assuming that the calculator used did not
round any results early, I can guarantee these ten decimal places are correct.

20∑
i=1

(
20

i

)
(20− i)!(−1)i−1

is a precise quantity for the number of arrangements in which at least one tire ends up in its original place,
and there are exactly 20! possible arrangements of the 20 tires, so

1−
∑20
i=1

(
20
i

)
(20− i)!(−1)i−1

20!
(4)

is precisely the probability that no tire ends up in its original place. Therefore, operating under the as-
sumption that the calculator used accurately computed the expression from (4), I can guarantee that the
ten decimal places in 0.3678794412 are correct.

Exercise 5.

Suppose a test for a disease is 99.9% accurate. That is, if you have the disease, the test will be positive
with 99.9% probability. And if you do not have the disease, the test will be negative with 99.9% probability.
Suppose also the disease is fairly rare, so that roughly 1 in 20, 000 people have the disease. If you test
positive for the disease, with what probability do you actually have the disease?

Solution.
Let P = the event that you test positive for the disease.
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Let H = the event that you have the disease.
Then we are given

P(H) =
1

20000
, P(P |H) = 0.999, P(P c|Hc) = 0.999

and want to compute
P(H|P )

By Bayes’ Theorem, we know that for any two events A and B, we have

P(A|B) =
P(B|A) · P(A)

P(B)
(5)

Thus, we can rewrite P(H|P ) as

P(H|P ) = P(P |H)P(H)

P(P )
(6)

We are given P(P |H) and P(H).
By the Law of Total Probability, since H ∪Hc = Ω and H ∩Hc = ∅, we have

P(P ) = P(P |H)P(H)+P(P |Hc)P(Hc) = P(P |H)P(H)+(1−P(P c|Hc))P(Hc) = 0.999 · 1

20000
+0.001 · 19999

20000

Plugging this result into (6), we find

P(H|P ) =
0.999 · 1

20000

0.999 · 1
20000 + 0.001 · 19999

20000

≈ 0.047576

Thus, if you test positive for the disease, there is approximately a 4.76% chance that you actually have the
disease.

Exercise 6.

Suppose I tell you that the following list of 20 numbers is a random sample from a Gaussian random variable,
but I don’t tell the mean or standard deviation.

5.1715, 3.2925, 5.2172, 6.1302, 4.9889, 5.5347, 5.2269, 4.1966, 4.7939, 3.7127 5.3884, 3.3529, 3.4311, 3.6905,
1.5557, 5.9384, 4.8252, 3.7451, 5.8703, 2.7885

To the best of your ability, determine what the mean and standard deviation are of this random vari-
able. (This question is a bit open-ended, so there could be more than one correct way of justifying your
answer.)

Solution.
Since the sample is random, we know that the sample mean is an unbiased estimator for the mean of the
Gaussian random variable. Therefore, the best way to determine the mean of the Gaussian random variable
X is to calculate the sample mean, X̄. Since the size of the sample is 20, we can compute that

X̄ =
1

20

(
5.1715 + 3.2925 + 5.2172 + 6.1302 + 4.9889 + 5.5347 + 5.2269 + 4.1966

+ 4.7939 + 3.7127 + 5.3884 + 3.3529 + 3.4311 + 3.6905 + 1.5557 + 5.9384 + 4.8252

+ 3.7451 + 5.8703 + 2.7885
)
= 4.44256

Since X̄ is an unbiased estimator for the X’s mean µ, this allows us to estimate that the mean of the Gaussian
random variable X is

µX ≈ 4.44256
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Unlike the mean of X, there is no unbiased estimator for the standard deviation of X, so we must rely on
a corrected sample standard deviation. Since X is a Gaussian random variable, we can use the corrected
sample standard deviation

σ̂ =

√√√√ 1

n− 1.5

n∑
i=1

(Xi − X̄)2

where Xi = the i’th number from the random sample. This ensures the error of our estimate remains low
with a relatively large sample of size n = 20. We can compute that

σ̂ =
( 1

18.5

(
(5.1715− 4.44256)2 + (3.2925− 4.44256)2 + (5.2172− 4.44256)2 + (6.1302− 4.44256)2

+ (4.9889− 4.44256)2 + (5.5347− 4.44256)2 + (5.2269− 4.44256)2 + (4.1966− 4.44256)2

+ (4.7939− 4.44256)2 + (3.7127− 4.44256)2 + (5.3884− 4.44256)2 + (3.3529− 4.44256)2

+ (3.4311− 4.44256)2 + (3.6905− 4.44256)2 + (1.5557− 4.44256)2 + (5.9384− 4.44256)2

+ (4.8252− 4.44256)2 + (3.7451− 4.44256)2 + (5.8703− 4.44256)2 + (2.7885− 4.44256)2
)) 1

2 ≈ 1.2253

Thus, since X is a Gaussian random variable and we have a random sample of size n = 20, the best estimate
for the standard deviation of X is

σX ≈ 1.2253

Exercise 7.

Suppose I tell you that the following list of 20 numbers is a random sample from a Gaussian random variable,
but I don’t tell you the mean or standard deviation. Also, around one or two of the numbers was corrupted
by noise, computational error, tabulation error, etc., so that it is totally unrelated to the actual Gaussian
random variable.

-1.2045, -1.4829, -0.3616, -0.3743, -2.7298, -1.0601, -1.3298, 0.2554, 6.1865, 1.2185, -2.7273, -0.8453, -3.4282,
-3.2270, -1.0137, 2.0653, -5.5393, -0.2572, −1.4512, 1.2347

To the best of your ability, determine what the mean and standard deviation are of this random vari-
able. Supposing you had instead a billion numbers, and 5 or 10 percent of them were corrupted samples, can
you come up with some automatic way of throwing out the corrupted samples? (Once again, there could be
more than one right answer here; the question is intentionally open-ended.)

Solution.
Since 6.1865 and −5.5393 both differ by more than 2.5 from their closest (least different) sample value, and
all other values differ by no more than 1 from their closest sample value, we assume that 6.1865 and −5.5393
are the two corrupted samples. To achieve a more accurate estimate of the mean and standard deviation, we
will discard these two samples and focus on the remaining 18, presumably un-corrupted samples. This leaves
us with a sample of size n = 18 which we assume is a valid random sample. We can now apply the same
processes as in Exercise 6 to estimate the mean and standard deviation of the Gaussian random variable,
X.
For the mean, we once again rely on the unbiased estimator X̄. Now, since n = 18, we have

X̄ =
1

18

(
−1.2045 +−1.4829 +−0.3616 +−0.3743 +−2.7298 +−1.0601 +−1.3298

+ 0.2554 + 6.1865 + 1.2185 +−2.7273 +−0.8453 +−3.4282 +−3.2270 +−1.0137

+ 2.0653 +−5.5393 +−0.2572 +−1.4512 + 1.2347
)
≈ −0.92883
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Thus, since the sample of size n = 18 is a assumed to be a valid random sample, we have the unbiased
estimate that the mean of the Gaussian random variable X is

µX ≈ −0.92883

Once again, we cannot find an unbiased estimate for the standard deviation of the Gaussian random variable
X, even after removing the corrupted samples, so we will rely on the corrected sample standard deviation,

σ̂ =

√√√√ 1

n− 1.5

n∑
i=1

(Xi − X̄)2

where Xi is the i’th number from our valid random sample of size n = 18. We can compute that

σ̂ =
( 1

16.5

(
(−1.2045− (−0.92883))2 + (−1.4829− (−0.92883))2 + (−0.3616− (−0.92883))2 + (−0.3743− (−0.92883))2

+ (−2.7298− (−0.92883))2 + (−1.0601− (−0.92883))2 + (−1.3298− (−0.92883))2 + (0.2554− (−0.92883))2

+ (1.2185− (−0.92883))2 + (−2.7273− (−0.92883))2 + (−0.8453− (−0.92883))2 + (−3.4282− (−0.92883))2

+ (−3.2270− (−0.92883))2 + (−1.0137− (−0.92883))2 + (2.0653− (−0.92883))2 + (−5.5393− (−0.92883))2

+ (−0.2572− (−0.92883))2 + (−1.4512− (−0.92883))2 + (1.2347− (−0.92883))2
)) 1

2 ≈ 1.549

Thus, since X is a Gaussian random variable, and we assume to have a random sample of size n = 18, the
best estimate for the standard deviation of X is

σX ≈ 1.549

I can come up with some automatic way of throwing out the corrupted samples. I will use the 1.5 · IQR rule
to identify and discard outliers. This involves removing any values less than Q1− 1.5 · IQR or greater than
Q3 + 1.5 · IQR. Here Q1 is the median of the smallest n

2 numbers in the sample, while Q3 is the median
of the largest n

2 numbers in the sample, and IQR = Q3 − Q1. By applying this method to Exercise 7,
we find Q3 = −0.0009, Q1 = −2.1051, IQR = 2.1042, so we need to discard all values less than −5.2614
or greater than 3.1554. In this case, the method only discards the two numbers we already identified
as corrupted samples. While this method is not guaranteed to remove all corrupted samples, and it will
occasionally remove legitimately random (albeit unlikely) samples, it ensures that all outlying corrupted
samples are removed. This should ensure the remaining sample represents the population random variable
most accurately.

Assignment 2

Mathematical Statistics 408 Steven Heilman

Please provide complete and well-written solutions to the following exercises.
Due September 7, 12PM noon PST, to be uploaded as a single PDF document to Gradescope.

Homework 2 - Emerson Kahle

Exercise 1. Let n ≥ 2 be an integer. Let X1, . . . , Xn be a random sample of size n (that is, X1, . . . , Xn are
i.i.d. random variables). Assume that µ := EX1 ∈ R and σ :=

√
var(X1) < ∞. Let X be the sample mean

and let S be the sample standard deviation of the random sample. Show the following
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• Var(X) = σ2/n.

• ES2 = σ2.

Solution.
First, we will show that V ar(X) = σ2

n . Note that

V ar(X) = V ar(
X1 + · · ·+Xn

n
) (1)

Since V ar(aX + b) = a2V ar(X) for all random variables X and constants a, b ∈ R we can simplify (1) to
find:

V ar(X) =
1

n2
V ar(X1 + · · ·+Xn) (2)

For any independent random variables X and Y , we know V ar(X +Y ) = V ar(X)+V ar(Y ). We can apply
this fact repeatedly to (2) to find

V ar(X) =
1

n2

n∑
i=1

V ar(Xi) (3)

Since X1, ...XN are i.i.d., and we are given
√
V ar(X1) := σ => V ar(X1) = σ2, we know V ar(Xi) = σ2 for

all i ∈ {1, ..., n}. Applying this to (3), we find

V ar(X) =
1

n2

n∑
i=1

σ2 =
1

n2
· nσ2 =

nσ2

n2
=
σ2

n

This completes the proof that V ar(X) = σ2

n .

Now, we will show that E[S2] = σ2. Note that

E[S2] = E[
1

n− 1

n∑
i=1

(Xi −X)2] (4)

Applying the fact that E[aX] = aE[X] and Linearity of Expectation to (4), we find

E[S2] =
1

n− 1

n∑
i=1

E[(Xi −X)2]

Expanding (Xi −X)2 and applying Linearity of Expectation to the result, we find

E[S2] =
1

n− 1

n∑
i=1

E[X2
i − 2XiX +X

2
] =

1

n− 1

n∑
i=1

(
E[X2

i ]− 2E[XiX] + E[X2
]
)

(5)

We can solve for the three expectations inside the sum separately. We will repeatedly use the fact that, for
any random variable X, we have

V ar(X) = E[X2]− E[X]2 =⇒ V ar(X) + E[X]2 = E[X2] (6)

We know V ar(Xi) = σ2 for all i ∈ {1, ..., n} by the previous proof, and, since allXi are identically distributed,
we know

E[X1] = µ =⇒ E[Xi] = µ

for all i ∈ {1, ..., n}. Combining this with (6), we find

E[X2
i ] = V ar(Xi) + E[Xi]

2 = σ2 + µ2 (7)
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for all i ∈ {1, ..., n}.
To find E[XiX], we have to expand the product using the definition of X. Note that

XiX = Xi
X1 + · · ·+Xn

n
=

1

n

(
X2
i +

∑
j∈{1,...,n}s.t.j ̸=i

XiXj

)
Now, applying E[aX] = aE[X] and Linearity of Expectation, we find

E[XiX] = E[
1

n

(
X2
i +

∑
j∈{1,...,n}s.t.j ̸=i

XiXj

)
] =

1

n

(
E[X2

i ] +
∑

j∈{1,...,n}s.t.j ̸=i

E[XiXj ]
)

(8)

Note: Since we have restricted that j ̸= i, we know that Xi and Xj are independent random variables. This
allows us to use the fact that, for any independent random variables X and Y , we have

E[XY ] = E[X]E[Y ] (9)

Combing the result from (7), the fact from (9), and the fact that E[Xi] = µ for all i ∈ {1, ..., n}, to (8), we
find

E[XiX] =
1

n

(
σ2 + µ2 +

∑
j∈{1,...,n}s.t.j ̸=i

E[Xi]E[Xj ]
)
=

1

n

(
σ2 + µ2 +

∑
j∈{1,...,n}s.t.j ̸=i

µ · µ
)

(10)

Simplifying (10) yields

E[XiX] =
1

n

(
σ2 + µ2 + (n− 1)µ2

)
=
σ2 + nµ2

n
=
σ2

n
+ µ2 (11)

We can find the last needed expectation, E[X]2, by applying (6) once more. We already proved that

V ar(X) = σ2

n and we can use Linearity of Expectation to compute that

E[X] = E[
X1 + · · ·+Xn

n
] =

1

n

n∑
i=1

E[Xi] =
1

n
· nµ =

nµ

n
= µ (12)

Now, we can apply (6) to find

E[X2
] = V ar(X) + E[X]2 =

σ2

n
+ µ2 (13)

Plugging in our results from (7), (11), and (13) into (5), we find

E[S2] =
1

n− 1

n∑
i=1

(
σ2 + µ2 − 2(

σ2

n
+ µ2) +

σ2

n
+ µ2

)
=

1

n− 1

n∑
i=1

(
σ2 − σ2

n

)
(14)

Simplifying (14) yields

E[S2] =
1

n− 1
· n · (n− 1)σ2

n
= σ2

This completes the proof that E[S2] = σ2.

Exercise 2 (Optional). Let X1, . . . , Xn be i.i.d. standard Gaussian random variables (i.e. Gaussian random
variables with mean zero and variance one). Show that

X2
1 + · · ·+X2

n
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has a chi-squared distribution with n degrees of freedom.
(Hint: Let B(0, r) := {(x1, . . . , xn) ∈ Rn : x21 + · · ·+ x2n ≤ r2}. Using hyperspherical coordinates, write

P(X2
1 + · · ·+X2

n ≤ t) = (2π)−n/2
∫
B(0,

√
t)

e−(x2
1+···+x2

n)/2dx1 · · · dxn

= (2π)−n/2
∫ r=

√
t

r=0

∫
∂B(0,1)

rn−1e−r
2/2dσdr,

where dσ denotes integration on the boundary of the unit ball ∂B(0, 1). To find the latter quantity, let
t = ∞ to note that

1 = (2π)−n/2
∫ r=∞

r=0

rn−1e−r
2/2dr ·

∫
∂B(0,1)

dσ,

so that ∫
∂B(0,1)

dσ =
(2π)n/2∫ r=∞

r=0
rn−1e−r2/2dr

,

and then change variables to obtain the Gamma function on the right side denominator.)

Exercise 3. Let X be a chi squared random variables with p degrees of freedom. Let Y be a chi squared
random variable with q degrees of freedom. Assume that X and Y are independent. Show that (X/p)/(Y/q)
has the following density, known as Snedecor’s f-distribution with p and q degrees of freedom

f(X/p)/(Y/q)(t) :=
t(p/2)−1(p/q)p/2Γ((p+ q)/2)

Γ(p/2)Γ(q/2)

(
1 + t(p/q)

)−(p+q)/2

, ∀ t > 0.

Solution. By definition of the chi-squared distribution, we know that, since X is a chi-squared random
variable with p degrees of freedom, its PDF is

fX(x) =

x
p
2
−1e−

x
2

2
p
2 Γ( p

2 )
if x > 0

0 otherwise.

Similarly, since Y is a chi-squared random variable with q degrees of freedom, its PDF is

fY (y) =


y

q
2
−1e−

y
2

2
q
2 Γ( q

2 )
if y > 0

0 otherwise.

To find fX/p
Y/q

(t), we will use the fact that fX/p
Y/q

(t) = d
dtFX/p

Y/q

(t), where FX/p
Y/q

(t) is the CDF of X/pY/q . Applying

the definition of the CDF and the fact that X and Y , as chi-squared random variables, are always non-
negative, we find

FX/p
Y/q

(t) = P(
X/p

Y/q
≤ t) = P(

X

Y
≤ tp

q
) =

∫ ∫
{(x,y)∈R2| xy≤ tp

q ,x,y>0}
fX(x)fY (y)dxdy (15)

Since it is difficult to clearly define bounds for the region of integration, we will apply a change of variables.
Define ϕ : R2 → R2 as ϕ(a, b) = (ab, a) = (x, y), so ϕ−1(x, y) = ϕ−1(ab, a) = (a, b). This implies that a = y
and x = ab = yb ⇐⇒ x

y = b. Thus, integrating over all points (x, y) s.t. x
y ≤ tp

q , x, y > 0 is equivalent to

integrating over all points (a, b) s.t. b ≤ tp
q , a, b > 0. This allows us to clearly define bounds on a and b as

0 < a ≤ ∞ and 0 < b ≤ tp
q . To complete the change of variables, we recall the general change of variables

formula, ∫ ∫
ϕ(U)

f(x, y)dxdy =

∫ ∫
U

f(ϕ(a, b))|Jac(ϕ(a, b))|dadb
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Here, fX(x)fY (y) = f(x, y),

{(x, y) ∈ R2|xy ≤ tp
q , x, y > 0} = ϕ({(a, b) ∈ R2|a, b > 0, b ≤ tp

q }), and

|Jac(ϕ(a, b))| = |Jac(ab, a)| = |det(
∂(ab)
∂a

∂(ab)
∂b

∂(a)
∂a

∂(a)
∂b

)| = |det(b a
1 0

)| = |0− a| = | − a| = |a|

Plugging these values into the change of variables formula and combining with (15), we find

FX/p
Y/q

(t) =

∫ ∫
{(a,b)∈R2|a,b>0, b≤ tp

q }
fX(ab)fY (a)|a|dadb =

∫ tp
q

b=0

∫ ∞

a=0

fX(ab)fY (a)|a|dadb (16)

Since we are integrating w.r.t a from 0 to ∞, we can replace |a| with a in (16) since a = |a| for all 0 < a ≤ ∞.
Then, we can apply the fact that fX/p

Y/q

(t) = d
dtFX/p

Y/q

(t) and the Fundamental Theorem of Calculus to find

fX/p
Y/q

(t) =
d

dt
FX/p

Y/q

(t) =
d

dt

∫ tp
q

b=0

∫ ∞

a=0

afX(ab)fY (a)dadb =
p

q

∫ ∞

a=0

afX(a(
tp

q
))fY (a)da (17)

with the constant p
q appearing as the result of d

dt (
tp
q ).

Now, we can plug in the previously established PDFs of X and Y to find

fX/p
Y/q

(t) =
p

q

∫ ∞

a=0

a ·
(atpq )

p
2−1e−

atp
2q

2
p
2Γ(p2 )

· a
q
2−1e−

a
2

2
q
2Γ( q2 )

da (18)

Pulling out constants from (18) and simplifying yields

fX/p
Y/q

(t) =

p
q ·

tp
q

p
2−1

2
p+q
2 · Γ(p2 ) · Γ(

q
2 )

∫ ∞

a=0

a·a
p
2−1·a

q
2−1·e−

atp
2q ·e− a

2 da =
(pq )

p
2 t

p
2−1

2
p+q
2 Γ(p2 )Γ(

q
2 )

∫ ∞

a=0

a
p+q
2 −1e−

a(1+
tp
q

)

2 da (19)

Note: By definition, a Gamma random variable G with parameters α and β has PDF

fG(x) :=

{
xα−1e

− x
β

βαΓ(α) if x > 0

0 otherwise.

and

P(0 < G <∞) =

∫ ∞

0

fG(x)dx = 1

If we let α = p+q
2 and β = 2

(1+ tp
q )

, we see the PDF becomes

fG(x) :=

x
p+q
2

−1e−
x(1+

tp
q

)

2

βαΓ(α) if x > 0

0 otherwise.

Comparing this to (19), we see that the integrand is simply the density of a Gamma random variable
multiplied by βαΓ(α). That is

a
p+q
2 −1e−

a(1+
tp
q

)

2 = βαΓ(α)fG(a)

where α = p+q
2 and β = 2

(1+ tp
q )

.

Plugging this result into (19), we find

fX/p
Y/q

(t) =
t
p
2−1(pq )

p
2

2
p+q
2 Γ(p2 )Γ(

q
2 )

· βα · Γ(α) ·
∫ ∞

0

fG(a)da =
t
p
2−1(pq )

p
2

2
p+q
2 Γ(p2 )Γ(

q
2 )

· ( 2

(1 + tp
q )

)
p+q
2 · Γ(p+ q

2
) (20)
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Simplifying (20) yields

fX/p
Y/q

(t) =
t
p
2−1(pq )

p
2Γ(p+q2 )

Γ(p2 )Γ(
q
2 )

(1 +
tp

q
)−

p+q
2

for all t > 0. This completes the proof that

f(X/p)/(Y/q)(t) :=
t(p/2)−1(p/q)p/2Γ((p+ q)/2)

Γ(p/2)Γ(q/2)

(
1 + t(p/q)

)−(p+q)/2

, ∀ t > 0.

Exercise 4 (Order Statistics). Let X : Ω → R be a random variable. Let X1, . . . , Xn be a random sample
of size n from X. Define X(1) := min1≤i≤nXi, and for any 2 ≤ i ≤ n, inductively define

X(i) := min
{
{X1, . . . , Xn}∖ {X(1), . . . , X(i−1)}

}
,

so that
X(1) ≤ X(2) ≤ · · · ≤ X(n) = max

1≤i≤n
Xi.

The random variables X(1), . . . , X(n) are called the order statistics of X1, . . . , Xn.

• Suppose X is a discrete random variable and we can order the values that X takes as x1 < x2 < · · · .
For any i ≥ 1, define pi := P(X ≤ xi). Show that, for any 1 ≤ i, j ≤ n,

P(X(j) ≤ xi) =

n∑
k=j

(
n

k

)
pki (1− pi)

n−k.

(Hint: Let Y be the number of indices 1 ≤ j ≤ n such that Xj ≤ xi. Then Y is a binomial random
variable with parameters n and pi.)

You don’t have to show it, but if X is a continuous random variable with density fX and cumulative
distribution function FX , then for any 1 ≤ j ≤ n, FX(j)

has density

fX(j)
(x) :=

n!

(j − 1)!(n− j)!
fX(x)(FX(x))j−1(1− FX(x))n−j , ∀x ∈ R.

(This follows by differentiating the above identity for the cumulative distribution function, i.e. by dif-
ferentiating P(X(j) ≤ x) =

∑n
k=j

(
n
k

)
FX(x)k(1−FX(x))n−k, where FX(x) := P(X ≤ x) for any x ∈ R.)

Solution.
Let Y = the number of indices 1 ≤ j ≤ n s.t. Xj ≤ xi. Then Y ∼ Binomial(n, pi). Note that X(j) is
the jth smallest item from our sample of size n. Thus, X(j) ≤ xi is only possible if ∃ ≥ j items from
the sample that are ≤ xi. Note that Y is exactly the number of items from the sample that are smaller
than xi. Moreover, if ∃ ≥ j items from the sample that are ≤ xi (i.e. if Y ≥ j), then since X(j) is the
jth smallest item, we are guaranteed to have X(j) ≤ X(Y ) ≤ xi. Therefore, (Xj ≤ xi) ⇐⇒ (Y ≥ j).
This allows us to rewrite the probability in question as

P(X(j) ≤ xi) = P(Y ≥ j) (21)

Since Y ∼ Binomial(n, pi), we know it’s CDF is

FY (x) = P(Y ≤ x) =

x∑
k=0

(
n

k

)
pki (1− pi)

n−k
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and we can easily compute that

P(Y ≥ x) = 1− FY (x) + P(Y = x) = 1n − FY (x) + P(Y = x)

= (pi + (1− pi))
n − FY (x) +

(
n

x

)
pxi (1− pi)

n−x

=∗

n∑
k=0

(
n

k

)
pki (1− pi)

n−k −
x∑
k=0

(
n

k

)
pki (1− pi)

n−k +

(
n

x

)
pxi (1− pi)

n−x

=

n∑
k=x

(
n

k

)
pki (1− pi)

n−k (22)

With the =∗ indicating that the equality follows from the Binomial Theorem. Plugging the result from
(22) into (21) with x = j, we find

P(X(j) ≤ xi) = P(Y ≥ j) =

n∑
k=j

(
n

k

)
pki (1− pi)

n−k

This completes the proof that, for any 1 ≤ i, j ≤ n,

P(X(j) ≤ xi) =

n∑
k=j

(
n

k

)
pki (1− pi)

n−k.

• Let X be a random variable uniformly distributed in [0, 1]. For any 1 ≤ j ≤ n, show that X(j) is a beta
distributed random variable with parameters j and n− j+1. Conclude that (as you might anticipate)

EX(j) =
j

n+ 1
.

Solution.
Since X ∼ ContinuousUniform([0, 1]), we are given that

fX(j)
(x) :=

n!

(j − 1)!(n− j)!
fX(x)(FX(x))j−1(1− FX(x))n−j , ∀x ∈ R.

To classify X(j) as a Beta distributed random variable with parameters j and n− j + 1, we first need
to find FX(x) and fX(x). Since X ∼ ContinuousUniform([0, 1]), we know that

FX(x) = P(X ≤ x) =


1 if x ≥ 1

x if 0 < x < 1

0 otherwise.

(23)

Applying the fact that d
dtFX(x) = fX(x) to (23) yields

fX(x) =

{
1 if 0 < x < 1

0 otherwise
(24)

Plugging the results from (23) and (24) into the definition of fX(j)
yields

fX(j)
(x) =

{
n!

(j−1)!(n−j)!x
j−1(1− x)n−j if 0 < x < 1

0 otherwise
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Claim: For all n ≥ 1, n ∈ Z, we have
Γ(n) = (n− 1)!

Proof: We apply mathematical induction on n.
Base Case: n = 1, we have

Γ(1) =

∫ ∞

0

x0e−xdx = −e−x|∞0 = 0 + 1 = 1 = 0!;

Inductive Hypothesis: Assume Γ(n) = (n− 1)! for all 1 ≤ n ≤ k.
Inductive Step: Consider Γ(k+1). Let dv = e−xdx, v = −e−x, u = xk, du = kxk−1. Then integrate
by parts to find

Γ(k + 1) =

∫ ∞

0

xke−xdx = −xke−x|∞0 + k

∫ ∞

0

xk−1e−xdx = 0 + kΓ(k) = kΓ(k) (25)

By the Inductive Hypothesis, we know Γ(k) = (k − 1)!. Plugging this result into (25), we find

Γ(k + 1) = k(k − 1)! = k!

The conclusion that Γ(n) = (n− 1)! follows for all 1 ≤ n ∈ Z by induction.

We can now rewrite fX(j)
as

fX(j)
(x) =

{
Γ(n+1)

Γ(j)Γ(n−j+1)x
j−1(1− x)n−j if 0 < x < 1

0 otherwise.
(26)

By definition, the PDF of the Beta distribution is

f(x) :=

{
1

B(α,β)x
α−1(1− x)β−1 if 0 < x < 1

0 otherwise.

where B(α, β) =
∫ 1

0
xα−1(1− x)β−1.

Note: From lecture notes, we know that

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)

If we let α = j and β = n− j + 1, this identity becomes

B(j, n− j + 1) =
Γ(j)Γ(n− j + 1)

Γ(n+ 1)

Applying this identity to (26), we find that X(j) has density function

fX(j)
(x) =

{
1

B(j,n−j+1)x
j−1(1− x)(n−j+1)−1 if 0 < x < 1

0 otherwise.
(27)

which is precisely the PDF of a Beta distributed random variable with parameters α = j, β = n−j+1.
This concludes the proof that X(j) is a Beta distributed random variable with parameters α = j and
β = n− j + 1.

We can directly compute that, by definition,

E[X(j)] =

∫ ∞

−∞
xfX(j)

(x)dx =
1

B(j, n− j + 1)

∫ 1

0

xj(1− x)n−j =
B(j + 1, n− j + 1)

B(j, n− j + 1)
(28)
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since
∫ 1

0
xj(1 − x)n−j := B(j + 1, n − j + 1). Applying the identity that B(α, β) = Γ(α)Γ(β)

Γ(α+β) to (28)

yields

E[X(j)] =
Γ(j + 1)Γ(n− j + 1)Γ(n+ 1)

Γ(n+ 2)Γ(j)Γ(n− j + 1)
=

Γ(j + 1)Γ(n+ 1)

Γ(n+ 2)Γ(j)
(29)

Applying Γ(n) = (n− 1)! for all 1 ≤ n ∈ Z, we find

E[X(j)] =
j!n!

(n+ 1)!(j − 1)!
=

j

n+ 1

This completes the proof that E[X(j)] =
j

n+1 .

• Let a, b ∈ R with a < b. Let U be the number of indices 1 ≤ j ≤ n such that Xj ≤ a. Let V be
the number of indices 1 ≤ j ≤ n such that a < Xj ≤ b. Show that the vector (U, V, n − U − V ) is a
multinomial random variable, so that for any nonnegative integers u, v with u+ v ≤ n, we have

P(U = u, V = v, n− U − V = n− u− v)

=
n!

u!v!(n− u− v)!
FX(a)u(FX(b)− FX(a))v(1− FX(b))n−u−v.

Consequently, for any 1 ≤ i, j ≤ n,

P(X(i) ≤ a,X(j) ≤ b) = P(U ≥ i, U + V ≥ j) =

j−1∑
k=i

n−k∑
m=j−k

P(U = k, V = m) + P(U ≥ j).

So, it is possible to write an explicit formula for the joint distribution of X(i) and X(j) (but you don’t
have to write it yourself).

Solution.
By definition, a multinomial random variable describes a situation of n independent trials, each of
which falls into one of k mutually disjoint categories with a fixed probability pi for the ith category
for all 1 ≤ i ≤ k, i ∈ Z. In this case, our n independent trials are {X1, ..., Xn}, k = 3, and our three
categories into exactly one of which each Xi must fall are

Xi ≤ a

a < Xi ≤ b

Xi > b

The fixed probabilities that correspond to each of these categories are
P(Xi ≤ a) = FX(a)

P(a < Xi ≤ b) = FX(b)− FX(a)

P(Xi > b) = 1− FX(b)

Note that U counts the number of items from the sample of size n that fall into the Xi ≤ a category,
V counts the number that fall into the a < Xi ≤ b category, and n − U − V , as the number of
remaining items from the sample, counts the number that fall into the Xi > b category. Thus, the
vector (U, V, n − U − V ) perfectly matches the description of a multinomial random variable with 3
categories and fixed category probabilities FX(a), FX(b) − FX(a), and 1 − FX(b) respectively. Since
the PMF of a multinomial random variable is

P(N1 = n1, ..., Nk = nk) =

(
n

n1, ..., nk

) k∏
i=1

pni
i
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where pi = P(Xj is in the ith category) for some randomly selected Xj , we know

P(U = u, V = v, n− U − V = n− u− v) =

(
n

u, v, n− u− v

)
Fx(a)

u(FX(b)− FX(a))v(1− FX(b))n−u−v

=
n!

u!v!(n− u− v)!
Fx(a)

u(FX(b)− FX(a))v(1− FX(b))n−u−v

We can also directly compute P(U = u, V = v, n−U−V = n−u−v) to conclude that (U, V, n−U−V )
is a multinomial random variable. Note that, for (U = u, V = v, n−U−V = n−u−v) to be true under
the restrictions u, v ≥ 0, u+v ≤ n, we need to have three sets A, B, and C s.t. A∪B∪C = {X1, ..., Xn},
|A| = u, |B| = v, |C| = n− u− v, ∀Xi ∈ A,Xi ≤ a, ∀Xi ∈ B, a < Xi ≤ b, and for all Xi ∈ C, b < Xi.
There are

(
n

u,v,n−u−v
)
ways to split {X1, ..., Xn} into sets A, B and C of size u, v, and n − u − v

respectively. Since these groupings are all equally likely, it suffices to find the probability that an
arbitrary such grouping will result in U = u, V = v, n − U − V = n − u − v, then multiply it by the
number of possible such groupings.

For any such grouping of {X1, ..., Xn}, we need all Xi ∈ A to satisfy Xi ≤ a, all Xi ∈ B to sat-
isfy a < Xi ≤ b, and all Xi ∈ C to satisfy b < Xi. Since all Xi are sampled independently of each
other, we have

P(Xi ≤ a) = FX(a)

for all Xi ∈ A. Thus,

P(Xi ≤ a∀X ∈ A) =

u∏
i=1

FX(a) = FX(a)u

Similarly, we have
P(a < Xi ≤ b) = FX(b)− FX(a)

for all Xi ∈ B which implies

P(a < Xi ≤ b∀Xi ∈ B) =

v∏
i=1

(FX(b)− FX(a)) = (FX(b)− FX(a))v

and
P(Xi > b) = 1− FX(b)

for all Xi ∈ C, which implies

P(Xi > b∀Xi ∈ C) =

n−u−v∏
i=1

(1− FX(b))n−u−v

Once again, since all Xi are sampled randomly and independently, we know

P(Xi ≤ a∀Xi ∈ A, a < Xi ≤ b∀Xi ∈ B,Xi > b∀Xi ∈ C) = FX(a)u(FX(b)− FX(a))v(1− FX(b))n−u−v

for any grouping of {X1, ..., Xn} into sets A, B, and C of size u, v, and n − u − v respectively. Since
there are

(
n

u,v,n−u−v
)
such groupings, we know

P(U = u, V = v, n−U −V = n−u−v) =
(

n

u, v, n− u− v

)
FX(a)u(FX(b)−FX(a))v(1−FX(b))n−u−v

Applying the fact that
(

n
n1,...,nk

)
= n!

n1!···nk!
, we find

P(U = u, V = v, n−U − V = n− u− v) =
n!

u!v!(n− u− v)!
FX(a)u(FX(b)−FX(a))v(1−FX(b))n−u−v
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This is the PMF of a multinomial random variable, which completes the computational proof that
(U, V, n− U − V ) is a multinomial random variable with PMF

P(U = u, V = v, n−U − V = n− u− v) =
n!

u!v!(n− u− v)!
FX(a)u(FX(b)−FX(a))v(1−FX(b))n−u−v

Now, we will explain the consequence of this result.
Note that (X(i) ≤ a,X(j) ≤ b) is only possible if there are at least i items in the sample ≤ a and at
least j items in the sample ≤ b. Also note that U counts the number of items in the sample ≤ a and
V counts the number of items in the sample between a and b, so U + V counts the number of items
in the sample ≤ b. Moreover, if U ≥ i and U + V ≥ j, we are guaranteed to have X(i) ≤ XU ≤ a and
X(j) ≤ XU+V ≤ b. Thus, we know

(X(i) ≤ a,X(j) ≤ b) ⇐⇒ (U ≥ i, U + V ≥ j)

so we can write
P(X(i) ≤ a,X(j) ≤ b) = P(U ≥ i, U + V ≥ j)

For (U ≥ i, U + V ≥ j) to be true, either U ≥ j or i ≤ U ≤ j − 1 and j − U ≤ V ≤ n− U . These are
mutually disjoint events, so we can sum their probabilities to compute P(U ≥ i, U + V ≥ j). We can
compute P(U ≥ j) directly, and we can sum over all {(k,m)|i ≤ k ≤ j − 1, j − k ≤ m ≤ n− k} to find

P(U ≥ i, U + V ≥ j) =

j−1∑
k=i

n−k∑
m=j−k

P(U = k, V = m) + P(U ≥ j)

This completes the explanation of the consequence.

Remark 1. We might occasionally do some computer-based exercises. You can use whatever program you
want to do these exercises. Here are some links for downloading such software:

Matlab software download
R software download

Exercise 5. Using Matlab (or any other mathematical system on a computer), verify that its random num-
ber generator agrees with the law of large numbers and central limit theorem. For example, average 107

samples from the uniform distribution on [0, 1] and check how close the sample average is to 1/2. Then,
make a histogram of 107 samples from the uniform distribution on [0, 1] and check how close the histogram
is to a Gaussian.

Solution.
First, we will verify that the random number generator agrees with the Law of Large Numbers. The
(Weak) Law of Large Numbers states that, for any i.i.d. random variables X1, ..., Xn with finite mean
µ := E[Xi] <∞, and any ε > 0, we have

lim
n→∞

P(
∣∣∣∣X1 + · · ·+Xn

n
− µ

∣∣∣∣ > ε) = 0

We sample from the Uniform([0,1]) distribution, which has an expected value of

µ := E[X] =
0 + 1

2
=

1

2

Thus, the law of large numbers tells us that, since our sample of size 107 is so large, the chance that there is
a significant difference between our sample mean and the true mean µ = 1

2 approaches 0. Our simulation of
a size 107 random sample from Uniform([0,1]) on Matlab agrees with this law, as the sample average from
our sample of size 107 was exactly X107 = 0.5000 = 1

2 . Therefore, Matlab’s random number generator agrees
with the Weak Law of Large Numbers.
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Now, we will show that the random number generator agrees with the Central Limit Theorem. The Central
Limit Theorem tells us that, for i.i.d. random variables X1, ..., Xn with mean µ = E[Xi] < ∞ and variance
0 < V ar(Xi) = σ2 <∞, then for any −∞ ≤ a ≤ ∞, we have

lim
n→∞

P(
X1 + · · ·Xn − nµ

σ
√
n

≤ a) =

∫ a

−∞
e−

t2

2
dt√
2π

which implies that X1+···Xn−nµ
σ
√
n

converges in distribution to a Gaussian(0, 1) random variable. Note that

X =
(σ
√
n
(
X1+···Xn−nµ

σ
√
n

)
+ nµ)

n

so the CLT tells us that X also converges in distribution to a Gaussian random variable as n→ ∞ with

E[X] =
1

n
· (0 + nµ) =

nµ

n
= µ

and

V ar(X) =
1

n2
· σ2n · 1 =

σ2n

n2
=
σ2

n

Thus, to test whether the Matlab random number generator agrees with the Central Limit Theorem, we
take 39,577 random samples, each of size n = 107, and plot a histogram of the 39,577 corresponding Xn’s.
We also plot a Gaussian distribution over the histogram in orange to better judge the fit of the sample data.
The results of the histogram are displayed here:

As the histogram shows, the sample means follow the Gaussian distribution very closely, as the CLT leads
us to expect. Thus, Matlab’s random number generator agrees with both the Weak Law of Large Numbers
and the Central Limit Theorem.

Exercise 6 (Sunspot Data). This exercise deals with sunspot data from the following files (the same data
appears in different formats)
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txt file csv (excel) file
These files are taken from http://www.sidc.be/silso/datafiles#total
To work with this data, e.g. in Matlab you can use the command

x=importdata(’SN_d_tot_V2.0.txt’)

to import the .txt file.
The format of the data is as follows.

• Columns 1-3: Gregorian calendar date (Year, Month, then Day)

• Column 4: Date in fraction of year

• Column 5: Daily total number of sunspots observed on the sun. A value of -1 indicates that no number
is available for that day (missing value).

• Column 6: Daily standard deviation of the input sunspot numbers from individual stations.

• Column 7: Number of observations used to compute the daily value.

• Column 8: Definitive/provisional indicator. A blank indicates that the value is definitive. A ’*’ symbol
indicates that the value is still provisional and is subject to a possible revision (Usually the last 3 to 6
months)

For this data set, do the following:
• Plot the number of sunspots Ut versus time t. Label and scale the axes appropriately. On this same

plot, also plot some moving averages of Ut. For example, for a given time t, plot the average of the twenty
previous days’ sunspot counts, versus time t.

Solution.
Below are the results of the time plot of Daily Observed Sunspots Ut and 20-day Moving Averages of Daily
Observed Sunspots versus time t. The Daily Observed counts appear in blue, while the 20-day Moving
Averages appear in orange.
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• Find the sample average and sample standard deviation of Ut, averaging over all t given in the data.

Solution. We calculated the sample average and sample standard deviation using the mean(A) and std(A)
functions in Matlab, where A was the entire array/vector of daily observed sunspots. The results were
a sample mean of X75118 = 78.7893 and a sample standard deviation of S = 77.1698, with these values
maintaining accuracy up to the rounding error of the Matlab software.

• Do you notice any periodic behavior in Ut versus t?

Solution.
I do notice periodic behavior in Ut versus t. It appears as though, approximately every 10-12 years, the
Daily Sunspot Observations peak at an average around 300, then dip to an average less than 50, then rise
back to an average around 300, at which point the cycle repeats. This cycle appears consistent, albeit with
alterations to the specific averages at different points in time, over the entire recorded time range from 1818
to the 2023. The existence and consistency of this cyclical pattern suggests a relatively strong relationship
between time t and Daily Sunspot Observations Ut.

Assignment 3

Mathematical Statistics 408 Steven Heilman

Please provide complete and well-written solutions to the following exercises.
Due September 21, 12PM noon PST, to be uploaded as a single PDF document to Gradescope.

Homework 3 - Emerson Kahle

Exercise 7. Recall that a gamma distributed random variable X with parameters α, β > 0 satisfies

EX = αβ, EX2 = αβ2.

Find the method of moments estimator for α, and also find the method of moments estimator for β.

Solution.
Since we have two unknowns, α and β, and we have two equations in terms of moments of X and our
unknowns α and β, we can solve the system of equations to express α and β in terms of the first and second
moment of X:

E[X] = αβ (1)

E[X2] = αβ2 (2)

(1) =⇒ E[X]

β
= α (3)

(2), (3) =⇒ E[X2] =
E[X]

β
β2 = E[X]β (4)

(4) =⇒ β =
E[X2]

E[X]
(5)

(3), (5) =⇒ α =
E[X]
E[X2]
E[X]

=
E[X]2

E[X2]
(6)
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Now that we have expressed α and β in terms of E[X] and E[X2], we can substitute the sample moments
for E[X] and E[X2] into (5) and (6) to find the method of moments estimators for α and β.
First, define X1, · · · , Xn to be i.i.d. gamma distributed random variables with parameters α, β > 0. Then
the first sample moment of X is

M1(X1, ..., Xn) =
1

n

n∑
i=1

Xi

and the second sample moment is

M2(X1, ..., Xn) =
1

n

n∑
i=1

X2
i

Substituting M1(X1, ..., Xn) for E[X] and M2(X1, ..., Xn) for E[X2] into (5), we can define our estimator for
β to be

B :=
M2(X1, ..., Xn)

M1(X1, ..., Xn)
=

1
n

∑n
i=1X

2
i

1
n

∑n
i=1Xi

=

∑n
i=1X

2
i∑n

i=1Xi
(7)

Making the same substitutions into (6) similarly allows us to define our estimator for α to be

A =
M1(X1, ..., Xn)

B
=

( 1n
∑n
i=1Xi)

2

1
n

∑n
i=1X

2
i

(8)

Thus, the method of moments estimators for α and β are

A :=
( 1n
∑n
i=1Xi)

2

1
n

∑n
i=1X

2
i

and

B :=

∑n
i=1X

2
i∑n

i=1Xi

respectively.

Exercise 8. Let σ > 0, and suppose a random variable X has density

f(x) :=
1

2σ
e−|x|/σ, ∀x ∈ R.

Find the method of moments estimator for σ.

Solution.
First, we need to express σ in terms of the moments of X. For the first moment of X, we find that

E[X] =

∫ ∞

∞
xf(x)dx =

∫ ∞

∞

x

2σ
e

−|x|
σ dx (9)

Note that, for all x ∈ R,
−x
2σ

e
−|−x|

σ =
−x
2σ

e
−|x|
σ = − x

2σ
e

−|x|
σ

so x
2σ e

−|x|
σ is an odd function, so we know that∫ ∞

0

x

2σ
e

−|x|
σ dx = −

∫ ∞

0

−x
2σ

e
−|−x|

σ dx = −
∫ 0

−∞

x

2σ
e

−|x|
σ dx (10)

since integrating over all values of (−x) from 0 → ∞ is equivalent to integrating over all values of x from
−∞ → 0. Splitting the integral from (9) and applying the result from (10) yields

E[X] =

∫ 0

−∞

x

2σ
e

−|x|
σ dx+

∫ ∞

0

x

2σ
e

−|x|
σ dx =

∫ 0

−∞

x

2σ
e

−|x|
σ dx+

(
−
∫ 0

−∞

x

2σ
e

−|x|
σ dx

)
= 0 (11)
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Since the first moment of X is 0 regardless of σ, we cannot express the first moment in terms of sigma
meaningfully, so we have to consider the second moment. Applying the definition of the second moment of
a continuous random variable, we find

E[X2] =

∫ ∞

−∞
x2f(x)dx =

∫ ∞

−∞

x2

2σ
e

−|x|
σ dx (12)

Note that, for all x ∈ R,
(−x)2

2σ
e

−|−x|
σ =

x2

2σ
e

−|x|
σ

so x2

2σ e
−|x|
σ is an even function, so we know∫ ∞

0

x2

2σ
e

−|x|
σ dx =

∫ ∞

0

(−x)2

2σ
e

−|−x|
σ dx =

∫ 0

−∞

x2

2σ
e

−|x|
σ dx (13)

since integrating over all values of (−x) from 0 → ∞ is equivalent to integrating over all values of x from
−∞ → 0. Splitting the integral from (12) and applying the result from (13) yields

E[X2] =

∫ 0

−∞

x2

2σ
e

−|x|
σ dx+

∫ ∞

0

x2

2σ
e

−|x|
σ dx = 2

∫ ∞

0

x2

2σ
e

−|x|
σ dx =

∫ ∞

0

x2

σ
e

−|x|
σ dx =

∫ ∞

0

x2

σ
e

−x
σ dx (14)

with the last equality following from the fact that |x| = x for all x ∈ [0,∞).
By definition, a Gamma distributed random variable Y with parameters α and β has PDF

fY (y) :=

{
xα−1e

− x
β

βαΓ(α) if x > 0

0 otherwise.

Thus, a Gamma distributed random variable Y with parameters α = 3 and β = σ would have PDF

fY (y) :=

{
x3−1e−

x
σ

σ3Γ(3) if x > 0

0 otherwise.
=

{
x2e−

x
σ

σ3Γ(3) if x > 0

0 otherwise.
(15)

Comparing the integrand in (14) with the definition from (15), we find

x2

σ
e

−x
σ = σ2Γ(3)fY (x) (16)

Plugging the equality from (16) into (14) yields

E[X2] =

∫ ∞

0

σ2Γ(3)fY (x)dx = σ2Γ(3)

∫ ∞

0

fY (x)dx (17)

Note, since fY (x) = 0 for all x ≤ 0, we know∫ ∞

−∞
fY (x)dx =

∫ 0

−∞
0dx+

∫ ∞

0

fY (x)dx =

∫ ∞

0

fY (x)dx (18)

Also, by the third axiom of probability and the definition of a continuous random variable, we have∫ ∞

−∞
fY (x)dx = P(Ω) = 1 (19)

where Ω is the sample space of the continuous random variable. Combining the rsults from (18) and (19)
and plugging into (17) yields

E[X2] = σ2Γ(3)

∫ ∞

−∞
fY (x)dx = σ2Γ(3) · 1 = σ2Γ(3) (20)
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We can use the fact that, for all n ∈ N,
Γ(n+ 1) = n!

to quickly compute that
Γ(3) = Γ(2 + 1) = 2! = 2 (21)

Plugging the result from (21) into (20) yields

E[X2] = 2σ2 (22)

Solving (22) for σ yields

σ =

√
E[X2]

2
(23)

Let X1, · · · , Xn be i.i.d. random variables with the same distribution as X. That is, for all i ∈ {1, ..., n}, Xi

has PDF

fXi
(x) :=

1

2σ
e

−|x|
σ

for all x ∈ R. Then the second sample moment of X is

M2(X1, ..., Xn) =
1

n

n∑
i=1

X2
i (24)

Substituting the second sample moment M2(X1, ..., Xn) for X’s second moment E[X2] in (23) and applying
the result from (24), we can define the method of moments estimator for σ to be

Z :=

√
M2(X1, ..., Xn)

2
=

√
1
n

∑n
i=1X

2
i

2
=

√∑n
i=1X

2
i

2n
(25)

Thus, our method of moments estimator for σ is

Z :=

√∑n
i=1X

2
i

2n

Exercise 9. Suppose you know that the following list of numbers is a random sample of size 20 from a
Gaussian distribution with mean 1 and unknown variance σ2 > 0.

2.0753 4.6678 − 3.5177 2.7243 1.6375 − 1.6154 0.1328 1.6852 8.1568 6.5389

−1.6998 7.0698 2.4508 0.8739 2.4295 0.5901 0.7517 3.9794 3.8181 3.8344.

• Using a method of moments estimator, estimate the value of σ2 for this data. (Hint: Since the mean
is 1, the variance σ2 is equal to the second moment minus 1.)

Solution.
Define X ∼ Normal(1, σ2) to be a Gaussian random variable with mean 1 and unknown variance
σ2 > 0. Let X1, ..., Xn be i.i.d. Gaussian random variables with mean 1 and the same unknown
variance σ2 > 0. We apply the hint to find that

σ2 = E[X2]− 1 (26)

We can define the second sample moment of X to be

M2(X1, ..., Xn) :=
1

n

n∑
i=1

X2
i (27)
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Substituting the second sample moment M2(X1, ..., Xn) for X’s second moment E[X2] into (26), we
can define a method of moments estimator for σ2 to be

Z :=M2(X1, ..., Xn)− 1 =
( 1
n

n∑
i=1

X2
i

)
− 1 (28)

Thus, our method of moments estimator for σ2 is

Z :=
( 1
n

n∑
i=1

X2
i

)
− 1

Plugging in our sample data for X1, ..., Xn, we find that our method of moments estimate for σ2 for
this data is

Z =
( 1

20

20∑
i=1

X2
i )− 1 ≈ 12.7452

• Denote your method of moments estimator for σ2 as Z. Is Z unbiased?

Solution.
Claim: Z is an unbiased estimator for σ2.
Proof: By the definition of an unbiased estimator for σ2, it suffices to show that

E[Z] = σ2 (29)

Note that for all constants a, b ∈ R, and for all random variables X,

E[aX] = aE[X] (30)

and
E[X + b] = E[X] + b (31)

Using (30) and (31) with our definition of Z from (28), we find

E[Z] = E[
( 1
n

n∑
i=1

X2
i

)
− 1] = E[

1

n

n∑
i=1

X2
i ]− 1 =

( 1
n
E[

n∑
i=1

X2
i ]
)
− 1 (32)

For all continuous random variables X and Y , we have

E[X + Y ] =

∫ ∞

−∞

∫ ∞

−∞
(x+ y)fX,Y (x, y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
xfX,Y (x, y)dxdy +

∫ ∞

−∞

∫ ∞

−∞
yfX,Y (x, y)dxdy

=

∫ ∞

−∞
x

∫ ∞

−∞
fX,Y (x, y)dydx+

∫ ∞

−∞
y

∫ ∞

−∞
fX,Y (x, y)dxdy

=

∫ ∞

−∞
xfX(x)dx+

∫ ∞

−∞
yfY (y)dy = E[X] + E[Y ]

by the definitions of the marginals and expected value of continuous random variables. Similarly, for
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all discrete random variables X and Y , we have

E[X + Y ] =
∑
x∈R

∑
y∈R

(x+ y)P(X = x, Y = y)

=
∑
x∈R

∑
y∈R

xP(X = x, Y = y) +
∑
x∈R

∑
y∈R

yP(X = x, Y = y)

=
∑
x∈R

x
∑
y∈R

P(X = x, Y = y) +
∑
y∈R

y
∑
x∈R

P(X = x, Y = y)

=
∑
x∈R

xP(X = x) +
∑
y∈R

yP(Y = y) = E[X] + E[Y ]

by the definitions of the marginals and expected value of discrete random variables. Therefore, for all
random variables X and Y , we have

E[X + Y ] = E[X] + E[Y ] (33)

Applying the result from (33) to (32) n− 1 times yields

E[Z] =
( 1
n

n∑
i=1

E[X2
i ]
)
− 1 (34)

Since we defined X1, ..., Xn to be i.i.d., we know

E[X2
1 ] = · · · = E[X2

n]

Substituting E[X2
1 ] for E[X2

i ] in (34) yields

E[Z] =
( 1
n

n∑
i=1

E[X2
1 ]
)
− 1 =

( 1
n
· nE[X2

1 ]
)
− 1 = E[X2

1 ]− 1 (35)

Note that we defined X1 to be a Gaussian random variable with mean 1 and unknown variance σ2 > 0.
Note also that

V ar(X1) = E[X2
1 ]− (E[X1])

2 =⇒ E[X2
1 ] = V ar(X1) + (E[X1])

2

Since X1 has mean µX1
= E[X1] = 1 and variance σ2 > 0, we know

E[X2
1 ] = σ2 + 12 = σ2 + 1 (36)

Plugging the result from (36) into (35), we find

E[Z] = σ2 + 1− 1 = σ2

By the definition of an unbiased estimator, this completes the proof that Z is unbiased for σ2.

• We know for sure that σ2 > 0. Is it possible that Z could take negative values? If so, then perhaps Z
is not the best way to estimate σ2.

Solution.
Claim: It is possible for Z to take negative values.
Proof: Assume we have a sample of size n in which Xi < 1 for each i ∈ {1, ..., n}. Note that this is
certainly possible as E[Xi] = 1 and σ2 > 0 implies that Xi is not constant. For such a sample, we have
X2
i < 1 for all i ∈ {1, ..., n}. Combining this inequality with (28) yields

Z :=
( 1
n

n∑
i=1

X2
i

)
− 1 <

( 1
n

n∑
i=1

1
)
− 1 =

n

n
− 1 = 0
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Thus, such a possible sample yields a negative value for Z, so Z can take negative values. Since we are
given σ2 > 0, this suggests that Z is not the best estimator for σ2, as Z can take on values which we
know with certainty σ2 cannot take.

• The Delta Method suggests that 1/Z could be a good estimate for 1/σ2. What estimate of 1/σ2 do
you get from the data above? Is E |1/Z| finite? If not, then we cannot even compute the bias of this
estimator. (Note that the distribution of Z should be closely related to a chi-squared distribution.)
(Optional: if you use the fact that limε→0+

∫
ε<|t|<1

1
t dt = 0, then you should be able to estimate

E(1/Z) as the number of samples n goes to infinity.)

Solution.
With the data above, we get an estimate for 1

σ2 of

1

Z
≈ 1

12.7452
≈ 0.0785

Similar to the previous proof that Z can take negative values, Z can also approach 0. Assume a sample
of size n, where Xi ∈ [1 − ε, 1 + ε] for all i ∈ {1, ..., n} and for some ε > 0, which is entirely possible
since E[Xi] = 1 for all i ∈ {1, ..., n} and each Xi is continuous. Then, as ε→ 0+,

Z −
( 1
n

n∑
i=1

12
)
− 1 ≈

( 1
n

n∑
i=1

1
)
− 1 =

n

n
− 1 = 1− 1 = 0

Thus Z ≈ 0 is a possibility, and Z is continuous, so we know Z can approach 0. As Z approaches 0,
we have

lim
Z→0+

1

Z
= ∞, lim

Z→0−

1

Z
= −∞

Thus, it is possible for the random variable 1
Z to be infinite. The expected value of any random variable

which can possibly take infinity as a value is not finite. Thus, we can conclude E[ 1Z ] is not finite.

• The Delta Method also suggests that Z2 could be a good estimate for σ4. What estimate of σ4 do you
get from the data above? Is Z2 an unbiased estimate of σ4?

Solution.
With the data above, we get an estimate for σ4 of

Z2 ≈ (12.7452)2 ≈ 162.4397

Claim: Z2 is not an unbiased estimator for σ4.
Proof: Note that, by the definition of variance

V ar(Z) = E[Z2]− (E[Z])2

which implies
E[Z2] = V ar(Z) + (E[Z])2 (37)

We already computed that E[Z] = σ2, so we can quickly determine that

(E[Z])2 = (σ2)2 = σ2σ2 = σ4 (38)

We can apply the fact that, for all constants a, b ∈ R and random variables X, we have

V ar(aX + b) = a2V ar(X)
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to (28) to find

V ar(Z) = V ar(
( 1
n

n∑
i=1

X2
i

)
− 1) =

1

n2
V ar(

n∑
i=1

X2
i ) (39)

Since X1, ..., Xn are i.i.d., we know X2
1 , ..., X

2
n are i.i.d., so we can apply V ar(X + Y ) = V ar(X) +

V ar(Y ) for all independent variables X, Y n− 1 times to find

V ar(Z) =
1

n2

n∑
i=1

V ar(X2
i ) (40)

Also since X2
1 , ..., X

2
n are i.i.d., we know

V ar(X2
1 ) = · · · = V ar(X2

n)

Substituting V ar(X2
1 ) for V ar(X

2
i ) for each i ∈ {1, ..., n} in (40) yields

V ar(Z) =
1

n2

n∑
i=1

V ar(X1)
2 =

n

n2
V ar(X2

1 ) =
V ar(X2

1 )

n
(41)

Note that
V ar(X2

1 ) = E(X4
1 )− (E[X2

1 ])
2 (42)

by the definition of variance. Since

V ar(X1) = E[X2
1 ]− (E[X1])

2 =⇒ E[X2
1 ] = V ar(X1) + (E[X1])

2

and X1 is a Gaussian random variable with mean E[X1] = 1 and variance V ar(X1) = σ2, we can easily
compute that

E[X2
1 ] = σ2 + 12 = σ2 + 1 (43)

To compute E[X4
1 ], we define T = X−1. Since, for any Gaussian random variable X and any constant

a ∈ R, X + a is also a Gaussian, we know T is a Gaussian random variable. We can easily compute
that

E[T ] = E[X1 − 1] = E[X1]− 1 = 1− 1 = 0 (44)

and
V ar(T ) = V ar(X1 − 1) = V ar(X1) = σ2 (45)

So T is a mean 0, variance σ2 Gaussian random variable.
Claim: For any mean 0, variance σ2 Gaussian random variable X and any continuous function g, we
have

E[g(X)X] = σ2E[g′(X)]

Proof: By definition of a Gaussian random variable with mean 0 and variance σ2, we know X has PDF

fX(x) =
1

σ
√
2π
e−

x2

2σ2 ∀x ∈ R

Applying the definition of expected value, we find

E[g(X)X] =

∫ ∞

−∞
g(X)xfX(x)dx =

1

σ
√
2π

∫ ∞

−∞
g(X)xe−

x2

2σ2 dx

Integrating by parts with u = g(X), du = g′(X)dx, dv = xe−
x2

2σ2 dx, v = −σ2e−
x2

2σ2 yields

E[g(X)X] =
1

σ
√
2π

[−σ2g(X)e−
x2

2σ2 |∞−∞ + σ2

∫ ∞

−∞
g′(X)e−

x2

2σ2 dx]
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Applying L’Hopital’s Rule repeatedly to the leftmost term yields

−σ2g(X)e−
x2

2σ2 |∞−∞ = 0− 0 = 0

so we are left with

E[g(X)X] =
1

σ
√
2π
σ2

∫ ∞

−∞
g′(X)e−

x2

2σ2 dx = σ2

∫ ∞

−∞
g′(X)fX(x)dx = σ2E[g′(X)]

with the last equality following by the definition of expected value. This completes the proof that
E[g(X)X] = σ2E[g′(X)]. We can now use this result since T = X − 1 is a mean 0, variance σ2

Gaussian random variable. Note that

E[X4
1 ] = E[(T − 1)4] = E[T 4 − 4T 3 + 6T 2 − 4T + 1] (46)

Applying linearity of expectation, we find

E[X4
1 ] = E[T 4]− 4E[T 3] + 6E[T 2]− 4E[T ] + 1 (47)

We can use the E[g(T )T ] = E[g′(T )] with g(T ) = T 3 to find

E[T 4] = E[T 3T ] = σ2E[3T 2] = 3σ2E[TT ] = 3σ4E[1] = 3σ4 (48)

Similarly, with g(T ) = T 2, we find

E[T 3] = E[T 2T ] = σ2E[2T ] = σ2E[2 · T ] = σ4E[0] = 0 (49)

and with g(T ) = T , we find

E[T 2] = E[TT ] = σ2E[1] = σ2 (50)

Plugging (48), (49), (50), and (44) into (47), we find

E[X4
1 ] = 3σ4 − 0 + 6σ2 − 0 + 1 = 3σ4 + 6σ2 + 1 (51)

Combining (51), (43), and (42) yields

V ar(X2
1 ) = E[X4

1 ]−(E[X2
1 ])

2 = 3σ4+6σ2+1−(σ2+1)2 = 3σ4+6σ2+1−σ4−2σ2−1 = 2σ4+4σ2 (52)

Plugging (52) into (41) yields

V ar(Z) =
V ar(X2

1 )

n
=

2σ4 + 4σ2

n
(53)

Plugging (53) and (38) into (37), we find

E[Z2] = V ar(Z) + (E[Z])2 =
2σ4 + 4σ2

n
+ σ4 (54)

Comparing (54) with σ4, we find

E[Z2] =
2σ4 + 4σ2

n
+ σ4 ̸= σ4

By the definition of an unbiased estimator, this completes the proof that Z2 is not an unbiased esti-
mator for σ4.
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• Is Z2 an asymptotically unbiased estimate of σ4? That is, as the number of samples n goes to infinity,
does EZ2 converge to σ4?

Solution. Claim: Z2 is an asymptotically unbiased estimator of σ4.
Proof: It suffices to show that

lim
n→∞

E[Z2] = σ4

Using our equation for E[Z2] from (54), we find

lim
n→∞

E[Z2] = lim
n→∞

(
2σ4 + 4σ2

n
+ σ4) = lim

n→∞

2σ4 + 4σ2

n
+ lim
n→∞

σ4 (55)

Since σ4 doesn’t depend on n, we know

lim
n→∞

σ4 = σ4 (56)

We can directly compute that

lim
n→∞

2σ4 + 4σ2

n
= 0 (57)

Plugging (56) and (57) into (55) yields

lim
n→∞

E[Z2] = 0 + σ4 = σ4

Thus, as the number of samples n goes to infinity, E[Z2] converges to σ4, so Z2 is an asymptotically
unbiased estimate of σ4.

Exercise 10 (Conditional Expectation as a Random Variable). LetX,Y, Z : Ω → R be discrete or continuous
random variables. Let A be the range of Y . Define g : A → R by g(y) := E(X|Y = y), for any y ∈ A. We
then define the conditional expectation of X given Y , denoted E(X|Y ), to be the random variable g(Y ).

(i) Let X,Y be random variables such that (X,Y ) is uniformly distributed on the triangle {(x, y) ∈
R2 : x ≥ 0, y ≥ 0, x+ y ≤ 1}. Show that

E(X|Y ) =
1

2
(1− Y ).

Solution.
Note: By the definition of conditional expectation, we have

E[X|Y = y] =

∫ ∞

−∞
xfX|Y (x|y)dx (58)

By the definitions of the conditional PDF fX|Y (x|y) and the Y marginal PDF fY (y), we have

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
(59)

and

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx (60)

First, we have to solve for fX,Y (x, y). Since (X,Y ) is uniformly distributed over A = {(x, y) ∈ R2 :
x ≥ 0, y ≥ 0, x+ y ≤ 1}, we know the joint PDF

fX,Y (x, y) =

{
a if (x, y) ∈ A

0 otherwise
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where a ∈ R is some unknown constant. Combining this with the third Axiom of probability that
P(Ω) = 1, we have

1 =

∫ ∞

−∞

∫ ∞

−∞
fX,Y (x, y)dydx =

∫ 1

0

∫ 1−y

0

adxdy = a

∫ 1

0

∫ 1−y

0

dxdy (61)

Directly evaluating the right hand side of (61) yields

1 = a

∫ 1

0

x|1−y0 dy = a

∫ 1

0

1− ydy = a[y − y2

2
]|10 = a(1− 1

2
) =

a

2
(62)

Note that (62) directly implies that a = 2, so we have

fX,Y (x, y) =

{
2 if (x, y) ∈ A

0 otherwise
(63)

Plugging (63) into (60) yields

fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx =

∫ 1−y

0

2dx = 2x|1−y0 = 2(1− y)

so we know

fY (y) =

{
2(1− y) if 0 ≤ y ≤ 1

0 otherwise
(64)

Plugging (63) and (64) into (59) yields

fX|Y (x|y) =
2

2(1− y)
=

1

1− y

so we know

fX|Y (x|y) =


1

1−y if (x, y) ∈ A

0 if 0 ≤ y ≤ 1, (x, y) ̸∈ A

undefined otherwise.

(65)

Plugging (65) into (58) yields

E[X|Y = y] =

∫ 1−y

0

x
1

1− y
dx =

1

1− y

∫ 1−y

0

xdx =
1

1− y

x2

2
|1−y0 =

1

1− y

(1− y)2

2
=

1− y

2
(66)

for 0 ≤ y ≤ 1. Also, for all y < 0 and for all y > 1, we have fY (y) = 0, so fX|Y (x, y) =
fX,Y (x,y)
fY (y)

is undefined. Similarly, for all 0 ≤ y ≤ 1, x > 1 and for all 0 ≤ y ≤ 1, x < 0, fX,Y (x, y) = 0, so

fX|Y (x, y) =
fX,Y (x,y)
fY (y) = 0. Thus, E[X|Y = y] is only defined and nonzero when (x, y) ∈ A, and

E[X|Y = y] = 1−y
2 for all (x, y) ∈ A. Combining this with the definition of the conditional expectation

of X given Y concludes the proof that

E[X|Y ] =
1− Y

2
=

1

2
(1− Y )

(ii) Prove the following version of the Total Expectation Theorem

E(E(X|Y )) = E(X).

Solution.
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First, we consider the case where X,Y are continuous random variables. Then, applying the definition
of expected value of continuous random variables, and noting that E[X|Y ] is a function of Y and not
X, we find

E[E[X|Y ]] =

∫ ∞

−∞
E[X|Y = y]fY (y)dy (67)

Plugging
∫∞
−∞ xfX|Y (x|y)dx for E[X|Y = y] in (67) yields

E[E[X|Y ]] =

∫ ∞

−∞

∫ ∞

−∞
xfX|Y (x|y)fY (y)dxdy (68)

Plugging (59) in for fX|Y (x|y) in (68) yields

E[E[X|Y ]] =

∫ ∞

−∞

∫ ∞

−∞
xfX,Y (x, y)dxdy

Since none of the bounds depend on x or y, we can switch the order of integration in (69) to find

E[E[X|Y ]] =

∫ ∞

−∞

∫ ∞

−∞
xfX,Y (x, y)dydx =

∫ ∞

−∞
x

∫ ∞

−∞
fX,Y (x, y)dydx (70)

By definition of the X marginal, the inner integral∫ ∞

−∞
fX,Y (x, y)dy = fX(x) (71)

Plugging (71) into (70) yields

E[E[X|Y ]] =

∫ ∞

−∞
xfX(x)dx (72)

By the definition of expected value,

E[X] =

∫ ∞

−∞
xfX(x)dx (73)

Plugging (73) into (72), we find
E[E[X|Y ]] = E[X] (74)

This completes the proof that E[E[X|Y ]] = E[X] for all continuous random variables X and Y .

Now, we will address the discrete case. Applying the definition of the expected value of discrete
random variables, we find

E[E[X|Y ]] =
∑
y∈R

E[X|Y ]P(Y = y) (75)

Plugging
∑
x∈R xP(X = x|Y = y) in for E[X|Y ] in (75) yields

E[E[X|Y ]] =
∑
y∈R

∑
x∈R

xP(X = x|Y = y)P(Y = y) (76)

Note that, by the definition of conditional probability,

P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)
=⇒ P(X = x|Y = y)P(Y = y) = P(X = x, Y = y) (77)
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Plugging the result from (77) into (76) yields

E[E[X|Y ]] =
∑
y∈R

∑
x∈R

xP(X = x, Y = y) (78)

Switching the order of summations in (78) yields

E[E[X|Y ]] =
∑
x∈R

x
∑
y∈R

P(X = x, Y = y) (79)

By definition of the X marginal of a discrete random variable X, we know

P(X = x) =
∑
y∈R

P(X = x, Y = y) (80)

Plugging (80) into (79) yields

E[E[X|Y ]] =
∑
x∈R

xP(X = x) (81)

By definition of the expected value of a discrete random variable X, we know

E[X] =
∑
x∈R

xP(X = x) (82)

Plugging (82) into (81) yields
E[E[X|Y ]] = E[X] (83)

which completes the proof that E[E[X|Y ]] = E[X] for all discrete random variables X and Y .
The combination of (83) and (74) completes the general proof that E[E[X|Y ]] = E[X].

• (Optional) If X is a random variable, and if f(t) := E(X − t)2, t ∈ R, then the function f : R → R is
uniquely minimized when t = EX. A similar minimizing property holds for conditional expectation.
Let h : R → R. Show that the quantity E(X − h(Y ))2 is minimized among all functions h : R → R
when h(Y ) = E(X|Y ). (Hint: use the previous item.)

Solution.
It suffices to show that

E[(X − h(Y ))2] ≥ E[(X − E[X|Y ])2]

for all h : R → R. We can add and subtract E[X|Y ] to the interior of E[(X − h(Y ))2] to find

E[(X − h(Y ))2] = E[(X − E[X|Y ] + E[X|Y ]− h(Y ))2] (84)

Grouping the interior of (84) into (X − E[X|Y ]) + (E[X|Y ]− h(Y )) and expanding yields

E[(X − h(Y ))2] = E[(X −E[X|Y ])2 + 2(X −E[X|Y ])(E[X|Y ]− h(Y )) + (E[X|Y ]− h(Y ))2] (85)

Applying linearity of expectation to (85) yields

E[(X−h(Y ))2] = E[(X−E[X|Y ])2]+E[(E[X|Y ]−h(Y ))2]+2E[(X−E[X|Y ])(E[X|Y ]−h(Y ))] (86)

By the Total Expectation Theorem, we know

E[(X − E[X|Y ])(E[X|Y ]− h(Y ))] = E[E[(X − E[X|Y ])(E[X|Y ]− h(Y ))|Y ]] (87)

Page 100



Since E[X|Y ] and h(Y ) both already depend on Y, E[E[X|Y ]|Y ] = E[X|Y ] and E[h(Y )|Y ] = E[h(Y )].
Plugging these results and (87) into (86) yields

E[(X − h(Y ))2] = E[(X − E[X|Y ])2] + E[(E[X|Y ]− h(Y ))2] + 2E[(E[X|Y ]− E[X|Y )(E[X|Y ]− h(Y )]]

= E[(X − E[X|Y ])2] + E[(E[X|Y ]− h(Y ))2] + 2E[0 ∗ (E[X|Y ]− h(Y ))]

= E[(X − E[X|Y ])2] + E[(E[X|Y ]− h(Y ))2] + 2E[0]
= E[(X − E[X|Y ])2] + E[(E[X|Y ]− h(Y ))2] (88)

Since a2 ≥ 0 for all a ∈ R, we know (E[X|Y ]− h(Y ))2 ≥ 0, so we know

E[(E[X|Y ]− h(Y ))2] ≥ 0 (89)

Combining (89) with (88) yields

E[(X−h(Y ))2] = E[(X−E[X|Y ])2]+E[(E[X|Y ]−h(Y ))2] ≥ E[(X−E[X|Y ])2]+0 = E[(X−E[X|Y ])2] (90)

Thus, we have shown that, for any h : R → R

E[(X − h(Y ))2] ≥ E[(X − E[X|Y ])2]

which completes the proof that h(Y ) = E[X|Y ] minimizes E[(X−h(Y ))2] among all functions h : R →
R.

(iv) Show the following
E(X|X) = X.

E(X + Y |Z) = E(X|Z) + E(Y |Z).

Solution.
First, we will show E[X|X] = X. Since we are given X, and X = X tautologically, we know that

fX,X(y, x) =

{
fX(x) if x = y

0 otherwise.
(91)

Plugging (91) into (59), we find

fX|X=x(y|x) =

{
fX(x)
fX(x) = 1 if y = x

0 otherwise.
(92)

Note that, for all constants a ∈ R, we have

fa(x) :=

{
1 if x = a

0 otherwise
(93)

Comparing (93) and (92), we find that X|X = x is a constant with value x. Since E[a] = a for all
constants a ∈ R, we know

E[X|X = x] = (X|X = x) = x (94)

By the definition of the conditional expectation of X given X, the conclusion that

E[X|X] = X
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follows, which completes the proof.
Note: The discrete case follows by exactly the same logic, simply replacing all PDFs f with corre-
sponding PMFs p.

Now, we will show that E[(X + Y )|Z] = E[X|Z] + E[Y |Z]. First, consider the case where X,Y, Z
are discrete random variables. Then by the definition of the discrete conditional expectation of X + Y
given Z = z, we have

E[(X+Y )|Z = z] =
∑

t=x+y,x,y∈R
tP(X+Y = t|Z = z) =

∑
x∈R

∑
y∈R

(x+y)P(X = x, Y = y|Z = z) (95)

Distributing (x+ y) and splitting the resulting sum yields

E[(X + Y )|Z = z] =
∑
x∈R

∑
y∈R

xP(X = x, Y = y|Z = z) +
∑
x∈R

∑
y∈R

yP(X = x, Y = y|Z = z)

=
∑
x∈R

x
∑
y∈R

P(X = x, Y = y|Z = Z) +
∑
y∈R

y
∑
x∈R

P(X = x, Y = y|Z = Z) (96)

By the definition of the X|Z marginal of a discrete random variable X|Z = z, we have

P(X = x|Z = z) =
∑
y∈R

P(X = x, Y = y|Z = z) (97)

and similarly

P(Y = y|Z = Z) =
∑
x∈R

P(X = x, Y = y|Z = z) (98)

Plugging (97) and (98) into (96) yields

E[(X + Y )|Z = z] =
∑
x∈R

xP(X = x|Z = z) +
∑
y∈R

yP(Y = y|Z = z) (99)

By the definitions of the conditional expectations of discrete random variables X|Z = z and Y |Z = z,
respectively, we know

E[X|Z = z] =
∑
x∈R

xP(X = x|Z = z) (100)

and
E[Y |Z = z] =

∑
y∈R

yP(Y = y|Z = z) (101)

Plugging (100) and (101) into (99), we find

E[(X + Y )|Z = z] = E[X|Z = z] + E[Y |Z = z]

The conclusion that
E[(X + Y )|Z] = E[X|Z] + E[Y |Z]

follows by the definition of conditional expectation for all discrete random variables X,Y, Z.
For continuous random variables, we follow a similar proof. This time, by the definition of the contin-
uous conditional expectation of X + Y given Z = z, we have

E[(X + Y )|Z = z] =

∫ ∞

−∞

∫ ∞

−∞
(x+ y)fX,Y |Z(x, y|z)dxdy (102)

Distributing (x+ y) to the integrand of (102) and splitting the integral yields

E[(X + Y )|Z = z] =

∫ ∞

−∞
x

∫ ∞

−∞
fX,Y |Z(x, y|z)dydx+

∫ ∞

−∞
y

∫ ∞

−∞
fX,Y |Z(x, y|z)dxdy (103
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By the definitions of the X|Z and Y |Z marginals of the continuous random variables X|Z = z and
Y |Z = z, we know

fX|Z(x|z) =
∫ ∞

−∞
fX,Y |Z(x, y|z)dy (104)

and

fY |Z(y|z) =
∫ ∞

−∞
fX,Y |Z(x, y|z)dx (105)

Plugging (105) and (104) into (103) yields

E[(X + Y )|Z = z] =

∫ ∞

−∞
xfX|Z(x|z)dx+

∫ ∞

−∞
yfY |Z(y|z)dy (106)

By the definitions of the conditional expectations of the continuous random variables X|Z = z and
Y |Z = z, we have

E[X|Z = z] =

∫ ∞

−∞
xfX|Z(x|z)dx (107)

and

E[Y |Z = z] =

∫ ∞

−∞
yfY |Z(y|z)dy (108)

Combining (107) and (108) with (106) yields

E[(X + Y )|Z = z] = E[X|Z = z] + E[Y |Z = z]

The conclusion that
E[(X + Y )|Z] = E[X|Z] + E[Y |Z]

follows by the definition of the conditional expectation of X + Y given Z for all continuous random
variables X,Y, Z. This combines with the previous proof for the discrete case to complete the proof
that

E[(X + Y )|Z] = E[X|Z] + E[Y |Z]

for any random variables X,Y, Z.

(v) If Z is independent of X and Y , show that

E(X|Y,Z) = E(X|Y ).

(Here E(X|Y, Z) is notation for E(X|(Y,Z)) where (Y,Z) is interpreted as a random vector, so that X
is conditioned on the random vector (Y,Z).)

Solution.
First, we will prove the statement for discrete random variables X,Y, Z. By the definition of the
conditional expectation of the discrete random variable X given Y = y, Z = z, we know

E[X|Y = y, Z = z] =
∑
x∈R

xP(X = x|Y = y, Z = z) (109)

Applying the definition of conditional probability to (109) yields

E[X|Y = y, Z = z] =
∑
x∈R

x
P(X = x, Y = y, Z = z)

P(Y = y, Z = z)
(110)

Since Z is independent of X and Y , we know

P(X = x, Y = y, Z = z) = P(X = x, Y = y)P(Z = z) (111)
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and
P(Y = y, Z = z) = P(Y = y)P(Z = z) (112)

Plugging (111) and (112) into (110) yields

E[X|Y = y, Z = z] =
∑
x∈R

x
P(X = x, Y = y)P(Z = z)

P(Y = y)P(Z = z)

=
∑
x∈R

x
P(X = x, Y = y)

P(Y = y)

=
∑
x∈R

xP(X = x|Y = y) (113)

By the definition of the conditional expectation of the discrete random variable X|Y = y, we know
that

E[X|Y = y] =
∑
x∈R

xP(X = x|Y = y) (114)

Plugging (114) into (113) yields

E[X|Y = y, Z = z] = E[X|Y = y]

By the definition of the conditional expectation of X given Y , Z, this implies

E[X|Y, Z] = E[X|Y ] (115)

for all discrete random variables X,Y, Z s.t. Z is independent of X and Y .
Now, we can complete a similar proof for the continuous case. By the definition of the conditional
expectation of the continuous random variable X given Y = y, Z = z, we know

E[X|Y = y, Z = z] =

∫ ∞

−∞
xfX|Y,Z(x|y, z)dx =

∫ ∞

−∞
x
fX,Y,Z(x, y, z)

fY,Z(y, z)
dx (116)

Since Z is independent of X and Y , we know

fX,Y,Z(x, y, z) = fX,Y (x, y)fZ(z) (117)

and
fY,Z(y, z) = fY (y)fZ(z) (118)

Plugging (118) and (117) into (116) yields

E[X|Y = y, Z = z] =

∫ ∞

−∞
x
fX,Y (x, y)fZ(z)

fY (y)fZ(z)
dx

=

∫ ∞

−∞
x
fX,Y (x, y)

fY (y)
dx

=

∫ ∞

−∞
xfX|Y (x|y)dx (119)

By the definition of the conditional expectation of the continuous random variable X|Y = y, we know

E[X|Y = y] =

∫ ∞

−∞
xfX|Y (x|y)dx (120)

Plugging (120) into (119) yields

E[X|Y = y, Z = z] = E[X|Y = y]
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The conclusion that
E[X|Y,Z] = E[X|Y ]

follows by the definition of the conditional expectation of X given Y, Z for all continuous random
variables X,Y, Z s.t. Z is independent of X and Y . This combines with the previous proof for discrete
X,Y, Z to complete the proof that

E[X|Y,Z] = E[X|Y ]

for all random variables X,Y, Z s.t. Z is independent of X and Y .

Exercise 11 (Sunspot Data, Version 2). This exercise deals with sunspot data from the following files (the
same data appears in different formats)

txt file csv (excel) file
These files are taken from http://www.sidc.be/silso/datafiles#total
To work with this data, e.g. in Matlab you can use the command

x=importdata(’SN_d_tot_V2.0.txt’)

to import the .txt file.
The format of the data is as follows.

• Columns 1-3: Gregorian calendar date (Year, Month, then Day)

• Column 4: Date in fraction of year

• Column 5: Daily total number of sunspots observed on the sun. A value of -1 indicates that no number
is available for that day (missing value).

• Column 6: Daily standard deviation of the input sunspot numbers from individual stations.

• Column 7: Number of observations used to compute the daily value.

• Column 8: Definitive/provisional indicator. A blank indicates that the value is definitive. A ’*’ symbol
indicates that the value is still provisional and is subject to a possible revision (Usually the last 3 to 6
months)

In a previous Exercise, we examined the number of sunspots Ut versus time t, where the units of t in
the data are in integers divided by 365 (or by 365.25),. You should have observed that the sunspots had a
roughly 11-year periodicity. To make this more precise, we will use an estimator that checks for frequencies
present in the data.

Denote i :=
√
−1. For any real number r, consider the following estimator

Û(r) :=
∑

t∈Z/365

Ute
2πitr.

This estimator measures the “amount” of frequency r that the number of sunspots has. (As usual Z denotes
the set of integers.)

Plot |Û(r)| versus r, where r ∈ [−1, 1]. Do you observe any large absolute values of Û(r) for any values
of r near 1/11?

You should observe some large values of Û(r) when r takes the values: .0842, .0921, and .0995, cor-
responding to frequencies of 11.87, 10.858, and 10.05, respectively. This large signal should correspond to
r ∈ [.08, .105] (and to r ∈ [−.105,−.08]).

Solution. Plotting |Û(r)| versus r, where r ∈ [−1, 1], yields the following graph:
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As expected, there are large absolute values of |Û(r)| around r = ± 1
11 . Also as expected, the values of |Û(r)|

exhibit symmetrically large magnitudes over r ∈ [0.08, 0.105] and r ∈ [−.105,−0.08]. Thus, our graph of
|Û(r)| versus r demonstrates expected behavior based on the roughly 11-year periodicity of Ut versus t.

Exercise 12. Let θ ∈ R be an unknown parameter. Consider the density

fθ(x) :=

{
e−(x−θ), if x ≥ θ

0, if x < θ.

Suppose X1, . . . , Xn is a random sample of size n, such that Xi has density fθ for all 1 ≤ i ≤ n.
Show that X(1) = min1≤i≤nXi is a sufficient statistic for θ.

Solution.
First, note that X(1) is a sufficient statistic for θ ⇐⇒ the distribution of (X1, ..., Xn)|X(1) = a does not
depend on θ. Applying the definition of conditional density, we find

fX1,...,Xn|X(1)=a(x1, ..., xn|a) =
fX1,...,Xn,X(1)

(X1 = x1, ..., Xn = xn, X(1) = a)

fX(1)
(a)

(121)

We can assume a = min1≤i≤n xi so that

fX1,...,Xn|X(1)=a(x1, ..., xn|a) =
fX1,...,Xn,X(1)

(x1, ..., xn,min1≤i≤n xi)

fX(1)
(a)

(122)

Since min1≤i≤n xi is a function of x1, ..., xn, its value is entirely determined by x1, ..., xn, so we know

fX1,...,Xn,X(1)
(x1, ..., xn, min

1≤i≤n
xi) = fX1,...,Xn(x1, ..., xn) (123)

This follows from A ⊆ B =⇒ A ∩B = A. Plugging (123) into (122) yields

fX1,...,Xn|X(1)=a(x1, ..., xn|a) =
fX1,...,Xn

(x1, ..., xn)

fX(1)
(a)

(124)
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Since X1, ..., Xn are i.i.d. with density fθ(x), we can directly compute that

fX1,...,Xn
(x1, ..., xn) = fX1

(x1) · · · · · fXn
(xn) = fθ(x1) · · · fθ(xn)

= 1X1≥θ(x1)e
−(x1−θ) · · · · · 1Xn≥θ(xn)e

−(xn−θ)

= 1X1,...,Xn≥θ(x1, ..., xn)e
−(x1−θ)+···+−(xn−θ)

= 1X1,...,Xn≥θ(x1, ..., xn)e
(−(x1+···+xn)+nθ)

= 1X1,...,Xn≥θ(x1, ..., xn)e
−(x1+···+xn)enθ (125)

for all x1, ..., xn ∈ Rn.
Also, we can use the fact that if X is a continuous random variable with density fX and cumulative distri-
bution function FX , then for any 1 ≤ j ≤ n, FX(j)

has density

fX(j)
(x) :=

n!

(j − 1)!(n− j)!
fX(x)(FX(x))j−1(1− FX(x))n−j , ∀x ∈ R. (126)

which was given in Exercise 4 of Homework 2, to compute fX(1)
(a). First, we need to compute Fθ(x). We

directly find

Fθ(x) = P(X ≤ x) =

∫ x

−∞
fθ(t)dt =

∫ x

θ

e−(t−θ)dt = −e−(t−θ)|xθ = −e−(x−θ) + e−(θ−θ) = 1− e−(x−θ) (127)

for all θ ≤ x ≤ ∞, and Fθ(x) = 0 otherwise. Plugging (127) and the given fθ(x) into (126) yields

fX(1)
(x) :=

{
n!

0!(n−1)!e
−(x−θ)(1− (1− e−(x−θ)))n−1 if x ≥ θ

0 otherwise.

=

{
n!

(n−1)!e
−(x−θ)[e−(x−θ)]n−1 if x ≥ θ

0 otherwise.

=

{
n[e−(x−θ)]n = ne−n(x−θ) = ne−nx+nθ if x ≥ θ

0 otherwise

=

{
ne−nxenθ if x ≥ θ

0 otherwise.

= 1X(1)≥θ(x)ne
−nxenθ

= 1X1,...,Xn≥θ(x1, ..., xn) (128)

with the last equality following from the fact that X(1) ≥ θ ⇐⇒ X1, ..., Xn ≥ θ.
Plugging (128) and (125) into (124) yields

fX1,...,Xn|X(1)=a(x1, ..., xn|a) =
1X1,...,Xn≥θ(x1, ..., xn)e

−(x1+···+xn)enθ

1X1,...,Xn≥θ(x1, ..., xn)ne
−naenθ

=
e−(x1+···+xn)

ne−na
(129)

Note that the right hand side of (129) expresses fX1,...,Xn|X(1)=a(x1, ..., xn|a) in a way that does not depend
on θ. Therefore, (129) implies that the distribution of X1, ..., Xn given X(1) = a is not dependent on θ,
which completes the proof that X(1) is a sufficient statistic for θ.
Note: We could also apply the Factorization Theorem. Let

h(x1, ..., xn) = e−(x1+···+xn)

and
gθ(a) = gθ( min

1≤i≤n
xi) = 1X(1)≥θ(a)e

nθ
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Then h(x1, ..., xn) depends only on our sample (not on θ), and gθ(a) is a function of our statistic X(1) =
min1≤i≤nXi that does depend on θ. Comparing h(x1, ..., xn) · gθ(a) with (125) yields

fX1,...,Xn
(x1, ..., xn) = 1X1,...,Xn≥θ(x1, ..., xn)e

−(x1+···+xn)enθ

= e−(x1+···+xn) · 1X1,...,Xn≥θ(x1, ..., xn)e
nθ

= e−(x1+···+xn) · 1X(1)≥θ(a)e
nθ

= h(x1, ..., xn) · gθ(a) (130)

Since the equality from (130) holds for all (x1, ..., xn) ∈ Rn except a set of measure 0, the conclusion that
X(1) = min1≤i≤nXi is a sufficient statistic for θ follows by the Factorization Theorem. This completes the
alternative proof that X(1) is sufficient for θ.

Assignment 4

Mathematical Statistics 408 Steven Heilman

Please provide complete and well-written solutions to the following exercises.
Due October 12, 12PM noon PST, to be uploaded as a single PDF document to Gradescope.

Homework 4 - Emerson Kahle

Exercise 13. Let X1, . . . , Xn be a random sample of size n from a Poisson distribution with unknown
parameter λ > 0. (So, P(X1 = k) = e−λλk/k! for all integers k ≥ 0.)

Let Y be the estimator Y = 1{X1=0}. Suppose we want to estimate e−λ.

• Find a method of moments estimator for e−λ. Is this estimator consistent?

• Show that Y is unbiased for e−λ.

• Show that
∑n
i=1Xi is sufficient for e−λ.

• Compute Wn := Eλ(Y |
∑n
i=1Xi), as in the Rao-Blackwell Theorem.

• As n → ∞, does Wn converge in any sense? If so, what does it converge to? Does this mean that
W1,W2, . . . is consistent?

Solution.

(a) By definition of the expected value of a discrete random variable, we have

E[X1] =

∞∑
k=0

ke−λ
λk

k!
(1)

Since the first term in this sum, 0 ∗ e−λ λ
0

0! = 0, we can rewrite (1) as

E[X1] = 0 +

∞∑
k=1

ke−λ
λk

k!
(2)
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Moving the constant λe−λ outside the sum and simplifying k · 1
k! in (2) yields

E[X1] = λe−λ
∞∑
k=1

λk−1

(k − 1)!
= λe−λ

∞∑
k=0

λk

k!
(3)

By the power series definition for the exponential function, we know

ex :=

∞∑
i=0

xi

i!
(4)

Plugging the definition from (4) into (3) yields

E[X1] = λe−λeλ = λ (5)

Negating then applying the exponential function to both sides of (5) yields

e−λ = e−E[X1] (6)

Note that (6) expresses e−λ as a function of the first moment E[X1] = µ1 Define M1(X1, ..., Xn) to be
the first sample moment. That is,

M1(X1, ..., Xn) :=
1

n

n∑
i=1

Xi (7)

Substituting M1 for µ1 = E[X1] in (6) yields

Zn := e−M1(X1,..,Xn) = e−(
∑n

i=1 Xi
n ) (8)

Thus, a method of moments estimator for e−λ is

Zn := e−(
∑n

i=1 Xi
n )

Assuming
E[X1] = λ <∞ (9)

the Weak Law of Large Numbers guarantees that

P(|X1 + · · ·+Xn

n
− λ| > ε) = 0

for all ε > 0 as n → ∞. That is, the first sample moment (sample mean) is consistent for E[X1] = λ
(the population mean). So the sequence X1, X2, ... converges in probability E[X1] = λ (where Xn :=
1
n

∑n
i=1Xi). By Exercise 2.36 (from the Notes), we know for any continuous function f : R → R, the

sequence f(X1), f(X2), ... converges in probability to f(E[X1]) = f(λ). Thus, if we let f(x) := e−x,

which is continuous across all of R, we know the sequence e−X1 , e−X2 , ... converges in probability to
e−E[X1] = e−λ. That is,

lim
n→∞

P(|e−Xn − e−λ| > ε) = 0 (10)

for all ε > 0. We defined our method of moments estimator Zn in (8) to be

Zn := e−(
∑n

i=1 Xi
n ) = e−Xn (11)

The combination of (10) and (11) implies

lim
n→∞

P(|Zn − e−λ| > ε) = 0 (12)

for all ε > 0. By the definition of consistency, since the sequence Z1, Z2, ... converges in probability to
the constant value f(E[X1]) = f(λ) = e−λ, for all 0 < λ < ∞, we know our sequence of method of
moments estimators Z1, Z2, ... is consistent for e

−λ.
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(b) Since Y is defined to be an indicator function, we know Y ∈ {0, 1}. By the definition of the expected
value of a discrete random variable, we have

E[Y ] = 0 · P(Y = 0) + 1 · P(Y = 1) = P(Y = 1) (13)

Since Y = 1X1=0 =

{
1 if X1 = 0

0 otherwise
, (13) yields

E[Y ] = P(Y = 1) = P(X1 = 0) (14)

Since X1 is a Poisson distributed random variable with parameter λ > 0, we know

P(X1 = 0) = e−λ
λ0

0!
= e−λ (15)

Plugging (15) into (14) yields
E[Y ] = e−λ (16)

By the definition of an unbiased estimator, this completes the proof that Y is unbiased for e−λ.

(c) Since X1, ..., Xn are i.i.d. Poisson distributed random variables with parameter λ > 0, we know each
Xi has PMF

fXi(xi) := P(Xi = xi) = e−λ
λxi

xi!
(17)

for all i ∈ {1, ..., n}. Since X1, ..., Xn are independent, we know the joint PMF of X1, ..., Xn is just the
product of the individual PMFs of X1, ..., Xn. That is,

fX1,...,Xn(x1, ..., xn) := P(X1 = x1, ..., Xn = xn) =

n∏
i=1

fXi(xi) (18)

Plugging the result from (17) into (18) and simplifying yields

fX1,...,Xn
(x1, ..., xn) =

n∏
i=1

e−λ
λxi

xi!
= (e−λ

λx1

x1!
) · · · · · (e−λλ

xn

xn!
) = e−λn

λx1+···+xn

x1! · · · · · xn!
(19)

Noting that λ = −ln(e−λ), we can rewrite the joint PMF of X1, ..., Xn from (19) as

fX1,...,Xn(x1, ..., xn) = (e−λ)n(−ln(e−λ))x1+···+xn
1

x1! · · · · · xn!
(20)

Now, let ge−λ(a) := (e−λ)n(−ln(e−λ))a, let h(x1, ..., xn) = 1
x1!·····xn!

and let t(X1, ..., Xn) :=
∑n
i=1Xi =

X1 + · · ·+Xn. Note that g depends on e−λ while h depends only on the sample values that X1, ..., Xn

take. We can rewrite (20) as

fX1,...,Xn(x1, ..., xn) = ge−λ(t(x1, ..., xn))h(x1, ..., xn) (21)

Thus, we can write the joint PMF of X1, ..., Xn as the product of ge−λ(t(x1, ..., xn)) and h(x1, ..., xn).
Since ge−λ(t(x1, ..., xn)) is a function of our statistic t which does depend on e−λ, and h(x1, ..., xn) is a
function of our sample X1, ..., Xn which does not depend on e−λ, the Factorization Theorem guarantees
that t(X1, .., Xn) := X1 + · · · + Xn =

∑n
i=1Xi is sufficient for e−λ. This completes the proof that∑n

i=1Xi is a sufficient statistic for e−λ.

(d) Since Y being an indicator function implies Y ∈ {0, 1}, we know the conditional expectation of Y given∑n
i=1Xi = k is

Eλ[Y |
n∑
i=1

Xi = k] = 0·P(Y = 0|
n∑
i=1

Xi = k)+1·P(Y = 1|
n∑
i=1

Xi = k) = P(Y = 1|
n∑
i=1

Xi = k) (22)
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Applying the definition of conditional probability to (22) yields

Eλ[Y |
n∑
i=1

Xi = k] =
P(Y = 1,

∑n
i=1Xi = k)

P(
∑n
i=1Xi = k)

(23)

As noted in part (b), Y = 1 ⇐⇒ X1 = 0, so we can rewrite the numerator from (23) as

P(Y = 1,

n∑
i=1

Xi = k) = P(X1 = 0,

n∑
i=1

Xi = k) (24)

Moreover, X1 = 0 =⇒
∑n
i=1Xi =

∑n
i=2Xi, so we know (X1 = 0,

∑n
i=1Xi = k) ⇐⇒ (X1 =

0,
∑n
i=2Xi = k). This implies that

P(X1 = 0,

n∑
i=1

Xi = k) = P(X1 = 0,

n∑
i=2

Xi = k) (25)

Plugging the result from (25) into (24) yields

P(Y = 1,

n∑
i=1

Xi = k) = P(X1 = 0,

n∑
i=2

Xi = k) (26)

Since X1, ..., Xn are independent, we know X1 is independent of
∑n
i=2Xi, so we know

P(X1 = x,

n∑
i=2

Xi = k) = P(X1 = x)P(
n∑
i=2

Xi = k) (27)

Plugging (26) into (23) and applying the result from (27) yields

Eλ[Y |
n∑
i=1

Xi = k] =
P(X1 = 0)P(

∑n
i=2Xi = k)

P(
∑n
i=1Xi = k)

(28)

Now, note that for any 2 independent Poisson random variables X,Y with parameters λ1, λ2 > 0, we
have X + Y = k ⇐⇒ X = i, Y = k − i for some i ∈ {0, ..., k}, so

P(X + Y = k) = P(
k⋃
i=0

(X = i, Y = k − i)) (29)

For all i ̸= j, i, j ∈ {0, ..., k}, (X = i, Y = k − i) and (X = j, Y = k − j) are mutually disjoint events.
Applying the second axiom of probability to (29) yields

P(X + Y = k) =

k∑
i=0

P(X = i, Y = k − i) (30)

Since X and Y are independent, we know P(X = i, Y = k − i) = P(X = i)P(Y = k − i) for all
i ∈ {0, ..., k}. Applying this result to (30) yields

P(X + Y = k) =

k∑
i=0

P(X = i)P(Y = k − i) (31)

Since X ∼ Poisson(λ1) and Y ∼ Poisson(λ2), we know

P(X = k) = e−λ1
λk1
k!

P(Y = k) = e−λ2
λk2
k!

(32)
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Plugging the result from (32) into (31) yields

P(X + Y = k) =

k∑
i=0

e−λ1
λi1
i!
e−λ2

λk−i2

(k − i)!
= e−(λ1+λ2)

k∑
i=0

1

i!(k − i)!
λi1λ

k−i
2 (33)

Noting that
(
k
i

)
:= k!

i!(k−i)! so
1

i!(k−i)! =
1
k!

(
k
i

)
, and plugging this result into (33) yields

P(X + Y = k) = e−(λ1+λ2)
k∑
i=0

1

k!

(
k

i

)
λi1λ

k−i
2 = e−(λ1+λ2)

1

k!

k∑
i=0

(
k

i

)
λi1λ

k−i
2 (34)

Applying the Binomial Theorem to (34) yields

P(X + Y = k)e−(λ1+λ2)
1

k!

k∑
i=0

(
k

i

)
λi1λ

k−i
2 = e−(λ1+λ2)

1

k!
(λ1 + λ2)

k = e−(λ1+λ2)
(λ1 + λ2)

k

k!
(35)

Note that the PMF of X + Y in (35) is just the PMF of a Poisson distributed random variable with
parameter λ1 + λ2 > 0. Since (35) holds for all k ∈ Z such that k ≥ 0, we know that, for any two
independent Poisson distributed random variables X and Y with parameters λ1, λ2 > 0, the random
variable X + Y is Poisson distributed with parameter λ1 + λ2 > 0. Using the fact that X1, ..., Xn are
i.i.d. Poisson distributed random variables with parameter λ > 0, and applying the previous result
n− 1 times, we find

P(X1 + · · ·+Xn = k) = e−(
∑n

i=1 λ)
(
∑n
i=1 λ)

k

k!
= e−nλ

(nλ)k

k!
(36)

Since the PMF for X1+· · ·+Xn from (36) is just the PMF of a Poisson random variable with parameter
nλ > 0, and (36) holds for all k ∈ Z such that k ≥ 0, we know

∑n
i=1Xi is a Poisson distributed random

variable with parameter nλ. Similarly,
∑n
i=2Xi is a Poisson random variable with parameter (n−1)λ.

That is,

P(
n∑
i=2

Xi = k) = e−(n−1)λ ((n− 1)λ)k

k!
(37)

for all k ∈ Z such that k ≥ 0.
Plugging the results from (36) and (37) into (28) yields

Eλ[Y |
n∑
i=1

Xi = k] =
e−λ λ

0

0! e
−(n−1)λ ((n−1)λ)k

k!

e−nλ (nλ)k

k!

=
e−λ−(n−1)λ ((n−1)λ)k

k!

e−nλ (nλ)k

k!

=
e−nλ ((n−1)λ)k

k!

e−nλ (nλ)k

k!

(38)

Cancelling like terms to simplify (38) yields

Eλ[Y |
n∑
i=1

Xi = k] =
((n− 1)λ)k

(nλ)k
= (

(n− 1)λ

nλ
)k = (

n− 1

n
)k = (

n

n
− 1

n
)k = (1− 1

n
)k =: g(k) (39)

where k =
∑n
i=1Xi. By the definition of Conditional Expectation as a random variable, we can

substitute
∑n
i=1Xi for k in (39) to find

Wn := Eλ[Y |
n∑
i=1

Xi] = (1− 1

n
)
∑n

i=1Xi (40)

Thus, the closed form expression for Wn is

Wn = (1− 1

n
)
∑n

i=1Xi

This completes the computation of Wn.
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(e) Claim: As n→ ∞, Wn converges in probability to e−λ, and W1,W2, ... is consistent for e
−λ.

Proof. We need to show
lim
n→∞

P(|Wn − e−λ| > ε) = 0 (∗)

for all ε > 0. First, note that

n∑
i=1

Xi = X1 + · · ·+Xn = nXn (41)

Plugging the result from (41) into (40) yields

Wn = (1− 1

n
)nXn = ((1− 1

n
)n)Xn (42)

By Lemma 1.28 (from the Notes), we know that, for any sequence λ1, λ2, ... > 0 and number λ∗ > 0
such that limn→∞ λn = λ∗, we have

lim
n→∞

(1− λn
n
)n = e−λ

∗
(43)

Thus, for λ1, λ2, ... = 1, 1, ... such that limn→∞ λn = λn = 1 = λ∗, (43) implies that

lim
n→∞

(1− λn
n
)n = lim

n→∞
(1− 1

n
)n = e−λ

∗
= e−1 (44)

Writing Wn as in (42) and applying the result from (44) to (*) yields

lim
n→∞

(P(|Wn − e−λ| > ε) = lim
n→∞

P(|(e−1)Xn − e−λ| > ε) = lim
n→∞

P(|e−Xn − e−λ| > ε) (45)

Comparing (45) with (10), we find that

lim
n→∞

(P(|Wn − e−λ| > ε) = lim
n→∞

P(|e−Xn − e−λ| > ε) = 0 (46)

for all ε > 0.

Just like in part (a), this once again follows from a combination of three things:
(i) The Weak Law of Large Numbers guarantees that Xn converges in probability to E[X1] = λ;
(ii) Exercise 2.36 (from the Notes) guarantees that, for any sequence Y1, Y2, ... that converges in prob-
ability to a random variable U and any continuous function f : R → R, f(Y1), f(Y2), ... converges in
probability to f(U);
(iii) f(x) = e−x is a continuous real-valued function from R → R.

From (46), we see that Wn converges in probability to e−λ as n → ∞. By the definition of con-
sistency, since this holds for all 0 < λ < ∞, we know the sequence W1,W2, ... is consistent for e−λ.
This completes the proof that Wn converges in probability to e−λ as n→ ∞, and W1,W2, ... is consis-
tent for e−λ.

Exercise 14. Let X1, . . . , Xn be a random sample of size n from the uniform distribution on [0, θ] where
θ > 0 is unknown.

On a previous homework, we showed that

X(n) = max
1≤i≤n

Xi

is a sufficient statistic for θ.
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• Show that 2X1 is an unbiased estimator of θ.

• Compute W := Eθ(2X1 |X(n)), as in the Rao-Blackwell Theorem. (Hint: with probability 1/n, X1 =
X(n). And with probability 1 − 1/n, X1 < X(n), and if additionally X(n) = x, then X1 is uniform on
(0, x).) Using whatever method you wish, show that W is unbiased for θ.

• A method of moments estimator for θ is 2 1
n

∑n
i=1Xi. Compute

Eθ
(
2
1

n

n∑
i=1

Xi

∣∣∣X(n)

)
.

Solution.

(a) Since E[aX] = aE[X] for all random variables X and constants a ∈ R, we know

E[2X1] = 2E[X1] (47)

Since X1 is uniformly distributed on [0, θ], we know X1 has PDF

fX1(x) :=

{
1
θ if x ∈ [0, θ]

0 otherwise.
(48)

Thus, we can directly compute that

E[X1] =

∫ ∞

−∞
xfX1(x)dx =

∫ θ

0

x

θ
dx =

1

θ
[
x2

2

∣∣∣∣θ
0

] =
1

θ
(
θ2

2
) =

θ

2
(49)

Plugging the result from (49) into (47) yields

E[2X1] = 2
θ

2
= θ (50)

By the definition of an unbiased estimator, since E[2X1] = θ for all 0 < θ < ∞, this completes the
proof that 2X1 is unbiased for θ.

(b) Since E[aX|Y ] = aE[X|Y ] for all random variables X,Y and constants a ∈ R, we have

E[2X1|X(n) = k] = 2E[X1|X(n) = k] (51)

Following the hint, if X(n) := max1≤i≤nXi = k, then

P (X1 = X(n)) =
1

n
(52)

Since (X(n) = X1) and (X(n) ̸= X1) are mutually exclusive, we can rewrite E[X1|X(n) = k] as

E[X1|X(n) = k] = E[X1|X(n) = k,X1 = X(n)]P(X1 = X(n))

+ E[X1|X(n) = k,X1 ̸= X(n)]P(X1 ̸= X(n)) (53)

This is analogous to the identity that, for any random variable X and event A ⊆ Ω, E[X] =
E[X|A]P(A) + E[X|Ac]P(Ac), which follows from the Law of Total Probability. If X1 = X(n) and
X(n) = k, we know X1 = k, so X1|X(n) = k,X1 = X(n) is the constant random variable of value k.
That is, P(X1 = k|X(n) = k,X1 = X(n)) = 1. This implies

E[X1|X(n) = k,X1 = X(n)] = k (54)
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Also, since (X(n) = k) =⇒ X1 ∈ (0, k], we know (X(n) = k,X1 ̸= X(n)) =⇒ 0 ≤ X1 < k. Since
X1 is uniformly distributed on [0, θ], restricting the upper bound of X1 to X1 < k means that X1 is
uniformly distributed on (0, k). Thus, given X(n) = k,X1 ̸= X(n), we know

fX1|X(n)=k,X1 ̸=X(n)
(x|k) =

{
1
k if x ∈ (0, k)

0 otherwise.
(55)

The results from (54) and (55) motivate the need to split E[X1|X(n) = k] as in (53). When X(n) = X1,

which occurs with probability 1
n , X1 is a constant random variable, so it takes exactly one value with

nonzero probability, and is thus discrete. However, when X(n) ̸= X1, which occurs with probability

1− 1
n = n−1

n , X1 is a continuous uniform random variable. By the definition of the expected value of a
continuous random variable, we need a summation (with a single term) to compute the E[X1|X(n) = k]
when X(n) = X1. However, by the definition of the expected value of a continuous random variable,
we need an to integrate fX1|X(n)=k,X1 ̸=X(n)

(x|k) over (0, k). Thus, we cannot compute E[X1|X(n) = k]
without splitting the expectation to consider both the case when X(n) = X1 and the case when
X(n) ̸= X1.
Now, we can apply the definition of the conditional expectation of a continuous random variable, along
with the result from (55), to find

E[X1|X(n) = k,X1 < X(1)] =

∫ ∞

−∞
xfX1|X(n)=k,X1 ̸=X(n)

(x|k)dx =

∫ k

0

x
1

k
dx =

1

k
[
x2

2

∣∣∣∣k
0

] =
1

k

k2

2
=
k

2
(56)

Also, since X1 < X(n) ⇐⇒ X1 ̸= X(n) (by definition of Xn as the maximum of X1, ..., Xn), we know

P(X1 < X(n)) = P(X1 ̸= X(n)) = 1− P(X1 = X(n)) (57)

Plugging (52) into (57) yields

P(X1 < X(n)) = 1− 1

n
=
n− 1

n

Plugging (52), (54), (56), and (57) into (52) yields

E[X1|X(n) = k] = k
1

n
+
k

2

n− 1

n
(58)

Plugging (58) into (51) yields

E[2X1|X(n) = k] = 2(k
1

n
+
k

2

n− 1

n
) =

2k

n
+
k(n− 1)

n
=
k(2 + n− 1)

n
=
n+ 1

n
k =: g(k) (59)

By the definition of conditional expectation as a random variable, since we assumed X(n) = k, we can
substitute X(n) for k in (59) to find

W := Eθ[2X1|X(n)] =
n+ 1

n
X(n) (60)

From Example 4.7 (from the Notes), we know (1 + 1
n )X(n) =

n+1
n X(n) is unbiased for θ. That is,

E[
n+ 1

n
X(n)] = θ (61)

Since W = n+1
n X(n) by (60), we know

E[W ] = E[
n+ 1

n
X(n)] = θ (61)

By the definition of an unbiased estimator for θ, this completes the proof that W := Eθ[2X1|X(n)] is
unbiased for θ.
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We can also show that W is unbiased via the Law of Iterated Expectation (also known as the Law of
Total Expectation), which states that for any two random variablesX and Y where E[X] is well-defined,

E[E[X|Y ]] = E[X] (62)

Since E[2X1] = θ is well-defined by part (a), we can apply (62) to find

E[W ] := E[Eθ[2X1|X(n)]] = Eθ[2X1] = θ (63)

with the last equality following from equation (50) in part (a). By the definition of an unbiased
estimator, this completes the alternative proof that W := Eθ[2X1|X(n)] is unbiased for θ.

(c) Claim:

Eθ[2
1

n

n∑
i=1

Xi|X(n)] =
n+ 1

n
X(n)

Proof. Using the fact that n is a real-valued constant and E[aX|Y ] = aE[X|Y ] for all constants a ∈ R,
we have

Eθ[2
1

n

n∑
i=1

Xi|X(n) = k] =
2

n
Eθ[

n∑
i=1

Xi|X(n) = k] ∀k ≥ 0 (64)

Note that P(X(n) < 0) = 0, so we only need to consider X(n) taking non-negative values k. By
definition, X(n) ∈ {X1, ..., Xn}, so we know ∃i{1, ..., n} such that Xi = X(n). Given that X(n) = k,
we have Xi = k. Also, we can safely assume that Xj ̸= X(n) = k for all j ∈ {1, ..., n} such that j ̸= i
because

P(Xj = X(n)) = P(Xj = Xi) =

∫ ∫
{(x,y)∈R2|x=y}

fXj ,Xi
(x, y)dxdy

=

∫ ∞

y=−∞

∫ y

x=y

fXj ,Xi
(x, y)dxdy =

∫ ∞

−∞
0dy = 0 (65)

with the second to last equality following because
∫ a
a
fdx = 0 for all functions f . By (65), given

X(n) = k, we know ∃i∗ ∈ {1, ..., n} such that Xi∗ = X(n) = k and Xj ̸= X(n) for all j ∈ {1, ..., n}
such that j ̸= i∗. By the definition of X(n) as the maximum of X1, ..., Xn, we know Xj < Xi∗ = k
for all j ∈ {1, ..., n} such that j ̸= i∗. Since X1, ..., Xn are i.i.d. uniform random variables on [0, θ],
we know P(Xa < 0) = 0 for all a ∈ {1, ..., n}, so Xj ≥ 0 for all j ∈ {1, ..., n} such that j ̸= i∗.
So we know (Xi∗ |X(n) = k) is the constant random variable with P(Xi∗ = k|X(n) = k) = 1, and
J := {(Xj |j ∈ {1, ..., n}, j ̸= i∗)|X(n) = k} is a set of n−1 i.i.d. random variables uniformly distributed
on (0, k). Define Y1, ..., Yn−1 such that {Y1, ..., Yn−1} = J . That is, Y1, ..., Yn−1 are n− 1 i.i.d random
variables uniformly distributed on (0, k). Now, we can rewrite the interior of the expectation from (64)
as

(

n∑
i=1

Xi|X(n) = k) = (Xi∗ |X(n) = k) +

n−1∑
j=1

Yj (66)

Plugging (66) into (64) and applying Exercise 4.14, we find

Eθ[2
1

n

n∑
i=1

Xi|X(n) = k] =
2

n
Eθ[(Xi∗ |X(n) = k)+

n−1∑
j=1

Yj ] =
2

n
Eθ[(Xi∗ |X(n) = k)]+

2

n
Eθ[

n−1∑
j=1

Yj ] (67)

Since P(Xi∗ = k|X(n) = k) = 1, we know

E[(Xi∗ |X(n) = k] = k (68)

Since Y1, ..., Yn−1 are identically distributed, we know

Eθ[
n−1∑
j=1

Yj ] = E[Y1] + · · ·+ E[Yn−1] = (n− 1)E[Y1] (69)
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Since Y1, ..., Yn−1 are uniformly distributed on (0, k), we know

fY1
(y) =

{
1
k if y ∈ (0, k)

0 otherwise
(70)

We can use (70) to directly compute that

E[Y1] =
∫ ∞

−∞
yfY1(y)dy =

∫ k

0

y
1

k
dy =

1

k

y2

2
|ky=0 =

1

k

k2

2
=
k

2
(71)

Plugging (71) into (69), we find that

Eθ[
n−1∑
i=1

Yj ] = (n− 1)
k

2
(72)

Plugging (72) and (68) into (67) yields

Eθ[2
1

n

n∑
i=1

Xi|X(n) = k] =
2

n
k+

2

n

(n− 1)k

2
=

2k + (n− 1)k

n
=

(2 + n− 1)k

n
=
n+ 1

n
k =: g(k) (73)

By the definition of conditional expectation as a random variable, we can substitute X(n) for k in (73)
to find

Eθ[2
1

n

n∑
i=1

Xi|X(n)] =
n+ 1

n
X(n) (74)

This completes the proof.
Note that this result makes intuitive sense, as

Eθ[2
1

n

n∑
i=1

Xi] =
2

n

n∑
i=1

Eθ[Xi] =
2

n
· nθ

2
= θ (75)

so the Law of Iterated Expectation guarantees that

E[Eθ[2
1

n

n∑
i=1

Xi|X(n)]] = Eθ[2
1

n

n∑
i=1

Xi] = θ (76)

and we already know from part (b) and (74) that

E[Eθ[2
1

n

n∑
i=1

Xi|X(n)]] = E[
n+ 1

n
X(n)] = θ (77)

Exercise 15. Let X1, . . . , Xn be a random sample of size n from the Bernoulli distribution with 0 < θ < 1
unknown. (So, P(X1 = 1) = θ and P(X1 = 0) = 1− θ.)

In class, we showed that
∑n
i=1Xi is consistent for θ, and also that

Eθ
(
X1

∣∣∣ n∑
i=1

Xi

)
=

1

n

n∑
i=1

Xi.

That is, the Rao-Blackwell Theorem suggests that the sample mean has small variance among all unbiased
estimators for θ.

• Compute the Fisher information IX1
(θ).

• Compute the Fisher information I(X1,...,Xn)(θ).
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• Show that Var
(

1
n

∑n
i=1Xi

)
= θ(1−θ)

n .

• Does the sample mean 1
n

∑n
i=1Xi achieve equality in the Cramer-Rao inequality? If so, then 1

n

∑n
i=1Xi

is UMVU.

Solution.
First, we will compute a few values which will prove useful in various parts of this exercise. Note that, since
X1, ..., Xn are independent and identically distributed, we have

E[X1] = · · · = E[Xn] (78)

Since X1 is a Bernoulli distributed random variable with parameter 0 < θ < 1, we know P(X1 ∈ {0, 1}) = 1,
so we have

E[X1] =

1∑
x=0

xP(X1 = x) = 0 · P(X1 = 0) + 1 · P(X1 = 1) = P(X1 = 1) = θ (79)

and

E[X2
1 ] =

1∑
x=0

x2P(X1 = x) = 02 · P(X1 = 0) + 12 · P(X1 = 1) = P(X1 = 1) = θ (80)

Now let Y :=
∑n
i=1Xi = X1 + · · · + Xn. Then Y is binomial random variable with parameters n and θ.

Applying Linearity of Expectation and (78), we have

E[Y ] = E[
n∑
i=1

Xi] =

n∑
i=1

E[Xi] = nE[X1] = nθ (81)

Also, since V ar(X) = E[X2]− E[X]2 for all random variables X, we know

E[Y 2] = V ar(Y ) + E[Y ]2 (82)

Using the fact that V ar(A+B) = V ar(A)+V ar(B) for all independent random variables A and B, we can
directly compute that

V ar(Y ) = V ar(

n∑
i=1

Xi) =

n∑
i=1

V ar(Xi) = nV ar(X1) = n(E[X2
1 ]− E[X1]

2) = n(θ − θ2) = nθ(1− θ) (83)

Plugging the results from (83) and (81) into (82) yields

E[Y 2] = nθ(1− θ) + n2θ2 (84)

Now, we can proceed with the individual sections of the exercise.

(a) By definition of the Fisher Information, we have

IX1(θ) := Eθ[(
d

dθ
lnfθ(X1))

2] (85)

Since X1 is a Bernoulli distributed random variable with parameter 0 < θ < 1, we know X1 has PMF

fθ(X1) =


θ if X1 = 1

1− θ if X1 = 0

0 otherwise

= θX1(1− θ)1−X11X1∈{0,1}
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so we can compute that

d

dθ
(lnfθ(X1)) = 1X1∈{0,1}

d

dθ
ln(θX1(1− θ)1−X1) = 1X1∈{0,1}

d

dθ
(X1ln(θ) + (1−X1)ln(1− θ))

= 1X1∈{0,1}(
X1

θ
− 1−X1

1− θ
) (86)

Since P(X1 ∈ {0, 1}) = 1 by definition of a Bernoulli distributed random variable, we know P(1X1∈{0,1} =
1) = 1. That is, there is a 100% probability that 1X1∈{0,1} = 1, so with 100% probability, we can
rewrite (86) as

d

dθ
(lnfθ(X1)) = 1(

X1

θ
− 1−X1

1− θ
) =

X1

θ
− 1−X1

1− θ
(87)

Squaring (87) yields

(
d

dθ
(lnfθ(X1)))

2 = (
X1

θ
− 1−X1

1− θ
)2 =

X2
1

θ2
− 2

X1

θ

1−X1

1− θ
+

(1−X1)
2

(1− θ)2

=
X2

1

θ2
− 2

X1

θ

1−X1

1− θ
+

1− 2X1 +X2
1

(1− θ)2

=
X2

1

θ2
− 2

X1 −X2
1

θ(1− θ)
+

1− 2X1 +X2
1

(1− θ)2
(88)

Taking the expectation of (88) and applying Linearity of Expectation yields

Eθ[(
d

dθ
(lnfθ(X1)))

2] = Eθ[
X2

1

θ2
− 2

X1 −X2
1

θ(1− θ)
+

1− 2X1 +X2
1

(1− θ)2
]

=
1

θ2
E[X2

1 ]−
2

θ(1− θ)
(E[X1]− E[X2

1 ]) +
1

(1− θ)2
(1− 2E[X1] + E[X2

1 ]) (89)

Plugging the results from (79) and (80) into (89) yields

Eθ[(
d

dθ
(lnfθ(X1)))

2] =
1

θ2
θ − 2

θ(1− θ)
(θ − θ) +

1

(1− θ)2
(1− 2θ + θ)

=
1

θ
+ 0 +

1− θ

(1− θ)2
=

1

θ
+

1

1− θ
=

(1− θ)

θ(1− θ)
+

θ

θ(1− θ)
=

1

θ(1− θ)
(90)

Comparing (90) with (85), we find that

IX1(θ) := Eθ[(
d

dθ
(lnfθ(X1)))

2] =
1

θ(1− θ)
(91)

which completes part (a).

(b) By the definition of the Fisher Information, we have

I(X1,...,Xn)(θ) := Eθ[(
d

dθ
(lnfθ(X1, ..., Xn)))

2] (92)

Since X1, ..., Xn are independent, we have

fθ(X1, ..., Xn) =

n∏
i=1

fθ(Xi) (93)

Since X1, ..., Xn are identically distributed Bernoulli random variables with parameter 0 < θ < 1, we
know

fθ(Xi) =


θ if Xi = 1

1− θ if Xi = 0

0 otherwise.

= θXi (1− θ)1−Xi1Xi∈{0,1} (94)
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Plugging the closed form expression from (94) into (93) yields

fθ(X1, ..., Xn) =

n∏
i=1

θXi(1−θ)1−Xi1Xi∈{0,1} = 1X1,...,Xn∈{0,1}θ
X1+···+Xn(1−θ)n−(X1+···+Xn) (95)

Since X1, ..., Xn are i.i.d. Bernoulli distributed random variable, we know P(X1, ..., Xn ∈ {0, 1}) = 1,
so we know P(1X1,...,Xn∈{0,1} = 1) = 1. Thus, with 100% probability, we have

fθ(X1, ..., Xn) = θX1+···+Xn(1− θ)n−(X1+···+Xn) (96)

Taking the natural log of (96) yields

ln(fθ(X1, ..., Xn)) = ln(θX1+···+Xn(1− θ)n−(X1+···+Xn))

= (X1 + · · ·+Xn)ln(θ) + (n− (X1 + · · ·+Xn))ln(1− θ) (97)

Differentiating (97) with respect to θ yields

d

dθ
(ln(fθ(X1, ..., Xn))) =

d

dθ
((X1 + · · ·+Xn)ln(θ) + (n− (X1 + · · ·+Xn))ln(1− θ))

=
X1 + · · ·+Xn

θ
− n− (X1 + · · ·+Xn)

(1− θ)
(98)

To simplify (98), we can use our definition of Y :=
∑n
i=1Xi = X1 + · · ·+Xn to find

d

dθ
(ln(fθ(X1, ..., Xn))) =

Y

θ
− n− Y

1− θ
(99)

Squaring (99) yields

(
d

dθ
(ln(fθ(X1, ..., Xn))))

2 = (
Y

θ
− n− Y

1− θ
)2

=
Y 2

θ2
− 2

Y (n− Y )

θ(1− θ)
+

(n− Y )2

(1− θ2

=
Y 2

θ2
− 2

nY − Y 2

θ(1− θ)
+

(n− Y )2

(1− θ)2
(100)

Taking the expectation of (100) and applying Linearity of Expectation yields

E[(
d

dθ
(ln(fθ(X1, ..., Xn))))

2] = E[
Y 2

θ2
− 2

nY − Y 2

θ(1− θ)
+

(n− Y )2

(1− θ)2
]

=
1

θ2
E[Y 2]− 2

θ(1− θ)
(nE[Y ]− E[Y 2]) +

1

(1− θ)2
E[(n− Y )2] (101)

Since Y is a Binomial distributed random variable with parameters n and 0 < θ < 1, P(Y ∈
{0, 1, ..., n}) = 1, so Y has PMF

fY (k) = P(Y = k) =

(
n

k

)
θk(1− θ)n−k (102)

We can use (102) to note that

P(n− Y = k) = P(Y = n− k) =

(
n

n− k

)
θn−k(1− θ)k =

(
n

k

)
(1− θ)kθn−k = P(Z = k) (103)
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where Z is a Binomial distributed random variable with parameters n and 0 < 1 − θ < 1. That is,
Z = n− Y is the sum of n i.i.d. Bernoulli random variables Z1, ..., Zn with parameter 1− θ. Thus, we
can compute

E[n− Y ] = E[Z] = E[
n∑
i=1

Zi] =

n∑
i=1

E[Zi] = nE[Z1] = n(1− θ) (104)

and

V ar(n− Y ) = V ar(Z) = V ar(

n∑
i=1

Zi) =

n∑
i=1

V ar(Xi) = nV ar(Z1) = n(1− θ)θ (105)

Combining the results of (104) and (105) yields

E[(n− Y )2] = V ar(n− Y ) + E[n− Y ]2 = nθ(1− θ) + n2(1− θ)2 (106)

Plugging the results from (106), (84), and (81) into (101) yields

E[(
d

dθ
(ln(fθ(X1, ..., Xn))))

2]

=
1

θ2
(nθ(1− θ) + n2θ2)− 2

θ(1− θ)
(n2θ − nθ(1− θ)− n2θ2) +

1

(1− θ)2
(nθ(1− θ) + n2(1− θ)2)

=
n(1− θ)

θ
+ n2 − 2n2

(1− θ)
+ 2n+

2n2θ

(1− θ)
+

nθ

1− θ
+ n2

=
n(1− θ)

θ
+

nθ

1− θ
+ 2n2 − 2n2

1− θ

1− θ
+ 2n

=
n(1− θ)

θ
+

nθ

1− θ
+ 2n2 − 2n2 + 2n

=
n(1− θ)2 + 2nθ(1− θ) + nθ2

(1− θ)(θ)

= n
θ2 + 2θ(1− θ) + (1− θ)2

(1− θ)θ

= n
(θ + (1− θ))2

θ(1− θ)

= n
12

θ(1− θ)
=

n

θ(1− θ)
(107)

Comparing (107) with (92), we find

I(X1,...,Xn)(θ) := Eθ[(
d

dθ
(lnfθ(X1, ..., Xn)))

2] =
n

θ(1− θ)
(108)

which completes part (b).

We could also note that, since X1, ..., Xn are independent, Proposition 4.26 guarantees that

IX1,...,Xn
(θ) =

n∑
i=1

IXi
(θ) (109)

Since X1, ..., Xn are identically distributed, we have IX1
(θ) = · · · = IXn

(θ), so we find

IX1,...,Xn(θ) = nIX1(θ) (110)
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Plugging the result from (91) into (110) yields

IX1,...,Xn
(θ) = n

1

θ(1− θ)
=

n

θ(1− θ)
(111)

Note that the result from (111) agrees with the result from (108), verifying our solution to part (b).

(c) We will prove that

V ar(
1

n

n∑
i=1

Xi) =
θ(1− θ)

n
(112)

in two ways. First, note that 1
nY := 1

n

∑n
i=1Xi, so we know

V ar(
1

n

n∑
i=1

Xi) =
1

n2
V ar(

n∑
i=1

Xi) =
1

n2
V ar(Y ) (113)

Plugging the result from (83) into (113) yields

V ar(
1

n

∑
i=1n

Xi) =
1

n2
nθ(1− θ) =

θ(1− θ)

n
(114)

which completes the first proof of (112). For the second proof, we directly compute that

V ar(
1

n

n∑
i=1

Xi) =
1

n2
V ar(

n∑
i=1

Xi) (115)

By the independence of X1, ..., Xn, we have

V ar(
1

n

n∑
i=1

Xi) =
1

n2

n∑
i=1

V ar(Xi) (116)

By the identical distribution of X1, ..., Xn, we have

V ar(
1

n

n∑
i=1

Xi) =
1

n2
nV ar(X1) (117)

Simplifying and lugging the results from (79) and (80) into (117) to compute V ar(X1) yields

V ar(
1

n

n∑
i=1

Xi) =
1

n
(θ − θ2) =

θ(1− θ)

n
(118)

which completes the second proof of (112).

(d) Note that, since X1, ..., Xn are i.i.d. with E[X1] = · · · = E[Xn] = θ, we have

E[
1

n

n∑
i=1

Xi] =
1

n
E[

n∑
i=1

Xi] =
1

n

n∑
i=1

E[Xi] =
1

n
nE[X1] = E[X1] = θ (119)

That is, 1
n

∑n
i=1Xi is unbiased for θ. By the Cramer-Rao inequality, for any statstic Z = t(X1, ..., Xn)

such that E[Z] = θ, we have

V arθ(Z) ≥
1

I(X1,...,Xn)(θ)
∀θ ∈ Θ (120)
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Plugging the result from (111) into (120) yields

V arθ(Z) ≥
1
n

θ(1−θ)
=
θ(1− θ)

n
∀θ ∈ Θ (121)

Comparing (118)/(114) with (121), we have

V arθ(Z) ≥
θ(1− θ)

n
= V ar(

1

n

n∑
i=1

Xi) ∀θ ∈ Θ (122)

for all Z = t(X1, ..., Xn) such that Eθ[Z] = θ. That is, the sample mean 1
n

∑n
i=1Xi does achieve

equality in the Cramer-Rao inequality. Since E[ 1n
∑n
i=1Xi] = θ, we know the sample mean 1

n

∑n
i=1Xi

is UMVU for θ.
Note, while the comparison of (118) and (121) directly shows the equality of the Cramer-Rao inequality,
we can also use the fact that equality occurs ⇐⇒ d

dθ ln(fθ(X1, ..., Xn)) and
1
n

∑n
i=1Xi−Eθ[ 1n

∑n
i=1Xi]

are multiples of each other. From (98), we know that

d

dθ
ln(fθ(X1, ..., Xn)) =

X1 + · · ·+Xn

θ
− n− (X1 + · · ·+Xn)

1− θ
(123)

Distributing the coefficient to the rightmost term in the RHS of (123) yields

d

dθ
ln(fθ(X1, ..., Xn)) =

X1 + · · ·+Xn

θ
+
X1 + · · ·+Xn

1− θ
− n

1− θ
(124)

Multiplying and dividing the RHS of (124) by 1
n and simplifying yields

d

dθ
ln(fθ(X1, ..., Xn)) =

1

θ

1

n

n∑
i=1

Xi +
1

1− θ

1

n

n∑
i=1

Xi −
1

1− θ

= (
1

θ
+

1

1− θ
)
1

n

n∑
i=1

Xi −
1

1− θ
=

1

θ(1− θ)

1

n

n∑
i=1

Xi −
1

1− θ

=
1

θ(1− θ)

1

n

n∑
i=1

Xi −
θ

θ(1− θ)
=

1

θ(1− θ)

( 1
n

n∑
i=1

Xi − θ
)

(125)

Recalling (119) and comparing to (125) yields

d

dθ
ln(fθ(X1, ..., Xn)) =

1

θ(1− θ)
(
1

n

n∑
i=1

Xi − E[
1

n

n∑
i=1

Xi]) (126)

From (126), we see that d
dθ ln(fθ(X1, ..., Xn)) and

1
n

∑n
i=1Xi − Eθ[ 1n

∑n
i=1Xi] indeed are multiples of

each other, so we know 1
n

∑n
i=1Xi achieves equality in the Cramer-Rao inequality. Once again, since

1
n

∑n
i=1Xi is unbiased for θ, this implies 1

n

∑n
i=1Xi is UMVU for θ, which completes part (d).

Assignment 5

Mathematical Statistics 408 Steven Heilman

Please provide complete and well-written solutions to the following exercises.
Due October 26, 12PM noon PST, to be uploaded as a single PDF document to Gradescope.
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Homework 5 - Emerson Kahle

Exercise 16. I believe that the number of home runs hit by an MLB baseball player in a single season
satisfies a Poisson distribution with some unknown parameter λ > 0. In this exercise, let’s try to find the
parameter λ > 0 that best fits the data, using whatever estimation method you want (e.g. MLE is fine).

Here the data can be found from:
http://seanlahman.com/download-baseball-database/
I recommend using the 2020 Version, comma delimited version. The data is in a zip file, and home run

data can be found in Core then batting.csv then the column HR.
After fitting the Poisson distribution to the data, compute the total variation distance of the data from

the fitted Poisson distribution. If P,Q are two probability laws on e.g. the positive integers, then the total
variation distance between P and Q is

||P −Q||TV :=
1

2

∞∑
k=0

|P (k)−Q(k)| .

Here P would be the fitted Poisson distribution, and Q would be the probability distribution corresponding
to the data. If ||P −Q||TV is close to 0, then the Poisson distribution that you found fits well to the data.
If ||P −Q||TV is far from 0 (perhaps close to 1), then the Poisson distribution that you found does not fit
the data well.

Try to answer the same question as above for the number of made 3 point shots among 2020 WNBA
players. Data can be found here:

(this link).
The data we are particularly interested in is the column 3P.

Solution.
First, we will find the parameter λ that best fits the data, assuming the data satisfies a Poisson distribution.
We will use maximum likelihood estimation to find such a λ.
Claim: For any i.i.d. random variables X,X1, ..., Xn from a Poisson distribution with parameter λ > 0, a
maximum likelihood estimator for λ is

Yn :=
1

n

n∑
i=1

Xi = Xn (1)

Proof: Note that the PDF of any X ∼ Poisson(λ) has PDF

fλ(x) =

{
e−λ λ

x

x! if x ∈ Z, x ≥ 0

0 otherwise
(2)

By the definition of the likelihood function (and since X1, ..., Xn ≥ 0,∈ Z with probability 1), we have

L(λ) :=

n∏
i=1

fλ(Xi) =

n∏
i=1

e−λ
λXi

Xi!
= e−nλ

λ
∑n

i=1Xi

X1! · · ·Xn!
(3)

Taking the natural logarithm of both sides of (3) yields the log-likelihood function:

ln(L(λ)) = ln
(
e−nλ

λ
∑n

i=1Xi

X1! · · ·Xn!

)
= ln(e−nλ) + ln(λ

∑n
i=1Xi)− ln(X1! · · ·Xn!)

= − nλ+ ln(λ)

n∑
i=1

Xi −
n∑
i=1

ln(Xi!) (4)
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Since maximizing the likelihood function is equivalent to maximizing the log-likelihood function, to find the
MLE for λ, it suffices to find the value of λ that maximizes ln(L(λ)). Note that differentiating (4) with
respect to λ yields

d

dλ
ln(L(λ)) =

∑n
i=1Xi

λ
− n (5)

Setting (5) equal to 0 and solving for λ yields∑n
i=1 xi
λ

− n = 0 =⇒ λ =
1

n

n∑
i=1

xi (6)

Thus, the log-likelihood function ln(L(λ)) as computed in (4) achieves a critical point at λ = 1
n

∑n
i=1 xi.

Differentiating (5) once more with respect to λ yields

d2

dλ2
ln(L(λ)) = −

∑n
i=1Xi

λ2
(7)

Since X1, ..., Xn ≥ 0 with probability 1 and we are given λ > 0 for all Poisson random variables, we know∑n
i=1Xi

λ2 ≥ 0 with probability 1, so we know

d2

dλ2
ln(L(λ)) ≤ 0 (8)

with probability 1. Thus, since the log-likelihood function is non-decreasing until λ = 1
n

∑n
i=1Xi and non-

increasing after λ = 1
n

∑n
i=1Xi, we know λ = 1

n

∑n
i=1Xi is a global maximum of the log-likelihood function

ln(L(λ)). Since maximizing the log-likelihood function ln(L(λ)) is equivalent to maximizing the likelihood
function λ, this completes the proof that

Yn :=
1

n

n∑
i=1

Xi = Xn

is a maximum likelihood estimator for λ for any random variables X,X1, ..., Xn which are independent and
identically Poisson distributed with parameter λ > 0.

Thus, to estimate the parameter λ that best fits the data, using maximum likelihood estimation, we just
need to calculate the mean of the Home Run data. We do so with the following MATLAB code:

data = Batting.HR;

mle = mean(data);

Printing the variable mle yields our maximum likelihood estimator for the λ that best fits the Home Run
data, which was mle= 2.8501 in this case. Thus, the value of the parameter λ that best fits the Home Run
data is λ = 2.8501 (using maximum likelihood estimation).

We plot the PDF of a Poisson distributed random variable with parameter λ = 2.8501 on top of a his-
togram of the Home Run data to get a general sense of the fit of our estimated distribution. We use the
following MATLAB code:

hist = histogram(data, ’BinWidth’, 1, ’FaceColor’,’auto’);

x=0:max(data);

poisson_pdf = poisspdf(x, mle);

hold on;

plot(x, poisson_pdf*numel(data), ’r’, ’LineWidth’,2);

title(’Poisson Fit to Histogram of Home Runs’);

xlabel(’Number of Home Runs Hit (in a season)’);

ylabel(’Frequency’);

legend(’Observed HR Data’, ’Maximum Likelihood Poisson Fit’);
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and observe the following output plot:

Visually, this plot suggests that our estimated Poisson distribution with parameter λ = 2.8501 does not fit
the Home Run data very well.

Now, we compute ||P −Q||TV to quantify how well the Home Run data fits the estimated Poisson dis-
tribution with parameter λ = 2.8501. To compute ||P −Q||TV, we just need to sum the absolute differences
between P(X = k) for an X ∼ Poisson(λ) and the probability that a randomly selected player hit exactly
k home runs for all k ∈ Z from 0 to ∞, then divide by two. Note that the random selection of the player
implies that each player has an equal probability of being selected. Thus, the probability that a randomly
selected player hit exactly k home runs is

|{ players in the HR data set who hit exactly k home runs }|
|{ players in the HR data set }|

This expression, combined with the PDF of a Poisson distributed random variable with parameter λ = 2.8501,
allows us to compute ||P −Q||TV with the following MATLAB code:

tv = 0;

max1 = max(data);

freqs = zeros(max(data)+1,1);

for i=1:numel(data)

freqs(data(i)+1) = freqs(data(i)+1) + 1;

end

for i=1:numel(freqs)

tv = tv + abs(poissonProb(mle, i-1) - (freqs(i)/numel(data)));

end

tv = tv/2;

Printing tv yields tv= 0.6708, so our computed value of ||P −Q||TV is

||P −Q||TV ≈ 0.6708
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Since 0.6708 is much closer to 1 than it is to 0, this result suggests that our estimated Poisson distribution
with parameter λ = 2.8501 does not fit the Home Run data very well.

We follow a very similar process for the WNBA Three Point shot data. We already showed that the maxi-
mum likelihood estimator for λ is Yn = 1

n

∑n
i=1Xi for any i.i.d.random variablesX,X1, ..., Xn ∼ Poisson(λ).

Thus, we can estimate the parameter λ that best fits the Three Point data by computing the mean number
of Three Point shots made of the Three Point data. We do so with the following MATLAB code:

data2 = threePoint.PA;

mle2 = mean(data2);

Printing the variable mle2 yields our maximum likelihood estimator for the λ that best fits the Three Point
data, which was mle2= 35.1227 in this case. Thus, the value of the parameter λ that best fits the Three
Point data is λ = 35.1227 (using maximum likelihood estimation).

We plot the PDF of a Poisson distributed random variable with parameter λ = 35.1227 on top of a histogram
of the Three Point data to get a general sense of the fit of our estimated distribution. We use the following
MATLAB code:

hist2 = histogram(data2, ’BinWidth’, 1, ’FaceColor’,’auto’);

x2=0:max(data2);

poisson_pdf2 = poisspdf(x2, mle2);

hold on;

plot(x2, poisson_pdf2*numel(data2), ’r’, ’LineWidth’,2);

title(’Poisson Fit to Histogram of Three Pointers’);

xlabel(’Number of Three Pointers Made (in a season)’);

ylabel(’Frequency’);

legend(’Observed 3P Data’, ’Maximum Likelihood Poisson Fit’);

and observe the following plot:

Visually, this plot suggests that our estimated Poisson distribution with parameter λ = 35.1227 does not fit
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the Three Point data very well. In fact, it appears as though this estimated Poisson distribution (with
λ = 35.1227) fits the Three Point data worse than the previous estimated Poisson distribution (with
λ = 2.8501) fit the Home Run data.

Now, we compute ||P −Q||TV to quantify how well the Three Point data fits the estimated Poisson distri-
bution with parameter λ = 35.1227. To compute ||P −Q||TV, we just need to sum the absolute differences
between P(X = k) for an X ∼ Poisson(λ) and the probability that a randomly selected player made exactly
k three pointers for all k ∈ Z from 0 to ∞, then divide by two. Note that the random selection of the player
implies that each player has an equal probability of being selected. Thus, the probability that a randomly
selected player made exactly k three pointers is

|{ players in the 3P data set who made exactly k three pointers }|
|{ players in the 3P data set }|

This expression, combined with the PDF of a Poisson distributed random variable with parameter λ =
35.1227, allows us to compute ||P −Q||TV with the following MATLAB code:

tv2 = 0;

freqs2 = zeros(max(data2)+1,1);

for i=1:numel(data2)

freqs2(data2(i)+1) = freqs2(data2(i)+1) + 1;

end

for i=1:numel(freqs2)

tv2 = tv2 + abs(poissonProb(mle2, i-1) - (freqs2(i)/numel(data2)));

end

tv2 = tv2/2;

Printing tv2 yields tv2= 0.7706, so our computed value of ||P −Q||TV is

||P −Q||TV ≈ 0.7706

Since 0.7706 is much closer to 1 than it is to 0, this result suggests that our estimated Poisson distribution
with parameter λ = 35.1227 does not fit the Home Run data very well. Moreover, note that 0.7706 > 0.6708,
which was the value of ||P −Q||TV for the estimated Poisson distribution with λ = 2.8501 and the Home
Run data. Thus, our computed value of ||P −Q||TV supports our visual observation that this estimated
Poisson distribution (with λ = 35.1227) fits the Three Point data worse than the previous estimated Poisson
distribution (with λ = 2.8501) fit the Home Run data.

Exercise 17. Wikipedia has a list of best selling video games with at least 10 million units sold, sorted by
the number of units sold:

(this link)
This is an open-ended question, related to this list.
Plot a histogram of the player counts of this list of games (i.e. the second column of the table). Does

this histogram resemble any particular distribution? If so, try to fit that distribution to the data, as in the
previous question, and use the total variation distance as a measure of goodness of fit.

Solution.
After importing the Video Game Sales data, we create the histogram with the following MATLAB code:

videoGames = Listofbestsellingvideogames1.Sales;

videoGames = videoGames./1e6;

histogram(videoGames, ’BinWidth’, 2);
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Note that we divide each value in the data by 1,000,000, as my computer does not have sufficient memory
to compute and store the PDF of a Poisson distributed random variable for all integer values from 0 to
300,000,000. This code produces the following plot:

Note that this histogram visually resembles the PDF of a Poisson distributed random variable. Thus, we
can try to fit the Video Game data to a Poisson distribution with some parameter λ > 0.

We proceed the same way as in Exercise 1. We already showed that the maximum likelihood estima-
tor for λ is Yn = 1

n

∑n
i=1Xi for any i.i.d.random variables X,X1, ..., Xn ∼ Poisson(λ). Thus, we can

estimate the parameter λ that best fits the Video Game data by computing the mean number of Video
Games sold (in millions of copies) from the Video Game data. We do so with the following MATLAB code:

vgMle = mean(videoGames);

Printing the variable vgMle yields our maximum likelihood estimator for the λ that best fits the Video Game
data, which was vgMle= 44.1546 million copies in this case. Thus, the value of the parameter λ that best
fits the Video Game data is λ = 44.1546 (using maximum likelihood estimation).

We plot the PDF of a Poisson distributed random variable with parameter λ = 44.1546 on top of a histogram
of the Video Game data to get a general sense of the fit of our estimated distribution. We use the following
MATLAB code:

videoGames = Listofbestsellingvideogames1.Sales;

videoGames = videoGames./1e6;

histogram(videoGames, ’BinWidth’, 2);

vgMle = mean(videoGames);

rangeVg = 0:max(videoGames);

poissonVg = poisspdf(rangeVg, vgMle);

hold on;

plot(rangeVg, poissonVg*numel(videoGames), ’r’, ’LineWidth’, 2);

title(’Poisson Fit to Histogram of Top Video Game Sales’);

xlabel(’Number of Copies Sold (Millions)’);
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ylabel(’Frequency’);

legend(’Observed Sales Data’, ’Maximum Likelihood Poisson Fit’);

which yields the following plot:

Visually, this plot suggests that our estimated Poisson distribution with parameter λ = 44.1546 does not fit
the Video Game data very well.

Now, we compute ||P −Q||TV to quantify how well the Video Game data fits the estimated Poisson distri-
bution with parameter λ = 44.1546. To compute ||P −Q||TV, we just need to sum the absolute differences
between P(X = k) for an X ∼ Poisson(λ) and the probability that a randomly selected video game sold
exactly k million copies (when rounded to the nearest million) for all k ∈ Z from 0 to ∞, then divide by two.
Note that the random selection of the video game implies that each video game has an equal probability
of being selected. Thus, the probability that a randomly selected video game sold exactly k million copies,
when rounded to the nearest million, is

|{ video games in the VG data set who sold exactly k million copies (after rounding)}|
|{ video games in the VG data set }|

This expression, combined with the PDF of a Poisson distributed random variable with parameter λ =
44.1546, allows us to compute ||P −Q||TV with the following MATLAB code:

tvVg = 0;

videoGamesInt = int64(videoGames);

freqsVg = zeros(max(videoGames)+1);

for i=1:numel(videoGamesInt)

freqsVg(videoGamesInt(i) + 1) = freqsVg(videoGamesInt(i) + 1) + 1;

end

for i = 1:numel(freqsVg)

tvVg = tvVg + abs(poissonProb(vgMle, i-1) - (freqsVg(i)/numel(videoGamesInt)));

end

tvVg = tvVg/2;
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Printing tvVg yields tvVg= 0.7310, so our computed value of ||P −Q||TV is

||P −Q||TV ≈ 0.7310

Since 0.7310 is much closer to 1 than it is to 0, this result suggests that our estimated Poisson distribution
with parameter λ = 44.1546 does not fit the Video Game data very well.

Note that the peak of the maximum likelihood Poisson distribution is approximately 18 million video games
higher than the peak of the histogram of the Video Game data. Thus, intuitively, a Poisson distribution
with parameter λ = 44.1546 − 18 = 26.1546 should fit the Video Game data much better than the Pois-
son distribution with parameter λ = 44.1546. Indeed, using the exact same MATLAB code as before, but
changing the plot legends and substituting

vgMle = mean(videoGames) - 18;

for

vgMle = mean(videoGames)

we obtain the following plot:

Visually, the Poisson distribution with parameter λ = 26.1546 seems to fit the Video Game data much better.
Indeed, using the same exact code (with the updated value of vgMle) to compute total variation distance,
we find tvVg= 0.4066. Thus, we have

||P −Q||TV ≈ 0.4066

Since 0.4066 is closer to 0 than to 1, we find that the Poisson distribution with parameter λ = 26.1546
fits the Video Game data significantly better than the Poisson distribution with the maximum likelihood
parameter λ = 44.1546.

In summary, while maximum likelihood estimation of the parameter λ not result in a Poisson distribu-
tion that fit the Video Game data very well, using a different value of λ produced a Poisson distribution
which fits the Video Game data reasonably well. This completes the discussion of the fit of an estimated
distribution to the Video Game data.
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Exercise 18. Suppose you flip a coin 1000 times, resulting in 560 heads and 440 tails. Is it reasonable to
conclude that the coin is fair (i.e. it has one half probability of heads and one half probability of tails)?
Justify your answer. (Hint: if the coin is fair, then with what probability will you observe at least 560 heads
being flipped? That is, is it a rare observation?)

Solution. Let X1, ..., X1000 such that

Xi =

{
1 if the i’th coin flip is heads

0 otherwise
∀i ∈ {1, ..., 1000} (9)

Assume that the coin is fair (i.e. P(heads) = P(tails) = 1
2 for any randomly selected coin flip. Then

X1, ..., Xn are i.i.d. Bernoulli distributed random variables with parameter p = 1
2 . That is,

P(Xi = 1) =
1

2
= P(Xi = 0) ∀i ∈ {1, ..., 1000} (10)

Using (10), we can quickly compute that

E[X1] = · · · = E[X1000] =

1∑
i=0

iP(X1 = i) = 1 · P(X1 = 1) + 0 · P(X1 = 0) = P(X1 = 1) =
1

2
(11)

and

E[X2
1 ] = · · · = E[X2

1000] =

1∑
i=0

i2P(X1 = i) = 12P(X1 = 1) + 02P(X1 = 0) = P(X1 = 1) =
1

2
(12)

We can use (11) and (12) in combination with the definition of variance to compute

V ar(X1) = · · · = V ar(X1000) = E[X2
1 ]− E[X1]

2 =
1

2
− (

1

2
)2 =

1

2
− 1

4
=

1

4
(13)

Now, recall that for all i.i.d random variables X1, ..., Xn with E|X1| <∞ and 0 < V ar(X1) <∞, the Central
Limit Theorem guarantees that

lim
n→∞

P(
X1 + · · ·+Xn − nµ

σ
√
n

≤ a) =

∫ a

−∞

1√
2π
e−

t2

2 dt (14)

for all −∞ < a <∞ where µ := E[X1] and σ :=
√
V ar(X1).

Also, note that

P( At least k heads out of n fair coin tosses )

= P(X1 + · · ·+Xn ≥ k) = 1− P(X1 + · · ·+Xn ≤ k − 1)

= 1− P(X1 + · · ·+Xn − nE[X1] ≤ k − 1− nE[X1])

= 1− P
(
X1 + · · ·+Xn − nE[X1]√

nV ar(X1)
≤ k − 1− nE[X1]√

nV ar(X1)

)
(15)

From (14), we see that, for large n,

P ( At least k heads out of n fair coin tosses ) ≈
∫ k−1−nE[X1]√

nV ar(X1)

−∞

1√
2π
e−

t2

2 dt (16)

Plugging k = 560, n = 1000, E[X1] =
1
2 and V ar(X1) =

1
4 into (15) yields

P( At least 560 heads out of 1000 fair coin tosses)

= 1− P
(
X1 + · · ·+Xn − 1000 1

2√
1000 1

4

≤
559− 1000 1

2√
1000 1

4

)

= 1− P
(
X1 + · · ·+Xn − 500

5
√
10

≤ 59

5
√
10

)
(17)
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Since n = 1000 is a relatively large sample size, we know from (16) that

P( At least 560 heads out of 1000 fair coin tosses) ≈ 1−
∫ 59

5
√

10

−∞

1√
2π
e−

t2

2 dt (18)

Computing the right side of (18) yields

P( At least 560 heads out of 1000 fair coin tosses) ≈ 1− 0.999905 = 0.000095 (19)

Thus, there is approximately a 0.0095% chance of observing at least 560 heads flipped from 1000 independent
tosses of a fair coin. Therefore, it would be very rare to observe 560 heads out of 1000 fair coin tosses, so it
is not reasonable to conclude that the coin is fair. If the coin was fair, we would be very unlikely to observe
so many heads (≥ 560) from only 1000 coin tosses, so observing so many heads actually provides evidence
that the coin is not fair. Thus, the observation of 560 heads out of 1000 coin tosses does not support the
conclusion that the coin is fair, and it actually supports the alternative hypothesis that the coin is not fair
(specifically, that the coin favors heads based on our calculations i.e. P(Xi = 1) > 1

2 ).

Exercise 19. Suppose the number of typos in my notes in a given year follows a Poisson distribution. In
the last few years, the average number of typos was 15, and this year, I had 10 typos in my notes. Is it
reasonable to conclude that the rate of typos has dropped this year? Justify your answer. (Hint: if the
Poisson random variable X has a mean of 15, then with what probability will you observe that X ≤ 10?
That is, is it a rare observation?)

Solution. Following the hint, assume X is a Poisson distributed random variable with parameter λ = 15 > 0.
That is,

P(X = k) =

{
e−15 15k

k! if k ∈ Z, k ≥ 0

0 otherwise.
(20)

so we can write

P(X ≤ 10) = P(
10⋃
i=1

X = i) =

10∑
k=0

P(X = k) =

10∑
k=0

e−15 15
k

k!
= e−15

10∑
k=0

15k

k!
(21)

Expanding (21) and directly computing yields

P(X ≤ 10) = e−15
(150
0!

+
15

1!
+

152

2!
+

153

3!
+

154

4!
+

155

5!
+

156

6!
+

157

7!
+

158

8!
+

159

9!
+

1510

10!

)
= e−15(1 + 15 +

225

2
+

153

6
+

154

24
+

155

120
+

156

720
+

157

5040
+

158

40320
+

159

362880
+

1510

3628800

)
≈ 0.118464 (22)

Thus, if the true average number of typos in the notes in a given year follows a Poisson distribution with
parameter λ = 15, then there is approximately a 11.8464% chance that the number of typos in the notes in
a given year will be less than or equal to 10. So, in about 1 out of every 10 years, we would expect there to
be ≤ 10 typos in the notes. Thus, it is not reasonable to conclude that the rate of typos has dropped this
year just because we observed only 10 typos this year, as observing such few typos would not be that rare if
the true typo rate still follows a Poisson distribution with parameter λ = 15.

Alternatively, we could apply the Central Limit Theorem similarly to our application in Exercise 3. How-
ever, since we only have a sample of one year to observe, the Gaussian approximation of the Poisson random
variable is much more crude. That being said, we proceed with this method anyway, simply to provide a
sanity check for the previous work. Note that

P(X ≤ 10) = P(X − E[X] ≤ 10− E[X]) = P(
X − E[X]√
V ar(X)

≤ 10− E[X]√
V ar(X)

) (23)
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We can use (20) to directly compute that

E[X] =

∞∑
k=0

kP(X = k) =

∞∑
k=0

ke−15 15
k

k!
= e−15

∑
k=1

k
15k

k!
= e−15

∞∑
k=1

15k

(k − 1)!

= 15e−15
∞∑
k=1

15k−1

(k − 1)!
= 15e−15

∞∑
k=0

15k

k!
= 15e−15e15 = 15 (24)

and

E[X2] =

∞∑
k=0

k2P(X = k) =

∞∑
k=0

k2e−15 15
k

k!
= e−15

∞∑
k=1

k2
15k

k!
= e−15

∞∑
k=1

k
15k

(k − 1)!

= 15e−15
∞∑
k=1

k
15k−1

(k − 1)!
= 15e−15

∞∑
k=0

(k + 1)
15k

k!
= 15e−15[

∞∑
k=0

k
15k

k!
+

∞∑
k=0

15k

k!
]

= 15e−15[

∞∑
k=1

k
15k

k!
+ e15] = 15e−15[15

∞∑
k=1

15k−1

(k − 1)!
+ e15] = 15e−15[15

∞∑
k=0

15k

k!
+ e15]

= 15e−15(15e15 + e15) = 152e−15e15 + 15e−15e15 = 152 + 15 (25)

so
V ar(X) = E[X2]− E[X]2 = 152 + 15− 152 = 15 (26)

Plugging (24) and (26) into (23) and applying the Central Limit Theorem (crudely) yields

P(X ≤ 10) = P(
X − 15√

15
≤ −5√

15
) ≈

∫ − 5√
15

−∞

1√
2π
e−

t2

2 dt ≈ 0.098353 (27)

The result from (27) shows that the (crude) application of the Central Limit Theorem verifies that the
probability of observing a single year with ≤ 10 typos in the notes is around 10%.

Regardless of which method we use to determine the probability of observing X ≤ 10, we find that this
probability is around 10%, and is thus not that rare if the true distribution of annual typos follows a Poisson
distribution with parameter λ = 15. Thus, in both cases, the observed event is not that rare given the null
hypothesis that λ = E[X] = 15, so we do not have enough evidence to reasonably conclude that the rate of
typos has dropped this year (the year in which we observed only 10 typos).

Assignment 6

Mathematical Statistics 408 Steven Heilman

Please provide complete and well-written solutions to the following exercises.
Due November 16, 12PM noon PST, to be uploaded as a single PDF document to blackboard (under the

Assignments tab).

Homework 6 - Emerson Kahle

Exercise 20. Let X1, . . . , Xn be a random sample from an exponential distribution with unknown location
parameter θ > 0, i.e. X1 has density

g(x) := 1x≥θe
−(x−θ), ∀x ∈ R.

Fix θ0 ∈ R. Suppose we want to test that hypothesis H0 that θ ≤ θ0 versus the alternative H1 that
θ > θ0. That is, Θ = R, Θ0 = {θ ∈ R : θ ≤ θ0} and Θc0 = Θ1 = {θ ∈ R : θ > θ0}.
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• Explicitly describe the rejection region of the generalized likelihood ratio test for this hypothesis. (Hint:
it might be easier to describe the region using x(1) = min(x1, . . . , xn).)

• (Optional) If H0 is true, then does

2 log
supθ∈Θ fθ(X1, . . . , Xn)

supθ∈Θ0
fθ(X1, . . . , Xn)

converge in distribution to a chi-squared distribution as n→ ∞?

Solution.

(a) Since X1, ..., Xn are independent and identically distributed, we know their joint PDF is

fθ(x) = fθ(x1, ..., xn) =

n∏
i=1

gθ(xi) =

n∏
i=1

1x≥θe
−(x−θ) = 1x1,...,xn≥θe

nθe−(x1+···xn) (1)

for all x = (x1, ..., xn) ∈ Rn. Define

x(1) := min
i∈{1,...,n}

xi (2)

Note that, for all θ ∈ Θ,
x1, ..., xn ≥ θ ⇐⇒ x(1) ≥ θ

so we can rewrite the joint PDF from (1) using the definition from (2) to find

fθ(x) = fθ(x1, ..., xn) = 1x(1)≥θe
nθe−(x1+···+xn) (3)

From Definition 5.22 in the notes, the rejection region C of the generalized likelihood ratio test for this
hypothesis and a constant k ≥ 1 is

C := {x ∈ Rn : sup
θ∈Θ

fθ(x) ≥ k sup
θinΘ0

fθ(x)} = {x ∈ Rn :
supθ∈Θ fθ(x)

supθ∈Θ0
fθ(x)

≥ k} (4)

To write C explicitly, we need to individually compute the numerator and denominator from the RHS
of (4). The numerator is easier to compute, so we will start there.
Fix x = (x1, ..., xn) ∈ Rn arbitrarily. For this arbitrary choice, consider x(1) as defined in (2). fθ(x)
behaves distinctly depending on whether θ ≤ x(1) or θ > x(1). For all θ > x(1), we have

fθ(x) = 1x(1)≥θe
nθe−(x1+···+xn) = 0 · enθe−(x1+···+xn) = 0 (5)

so fθ(x) is the constant function which always takes value 0 for all θ > x(1).
On the other hand, for all θ ≤ x(1), we have

fθ(x) = 1x(1)≥θe
nθe−(x1+···+xn) = 1 · enθe−(x1+···+xn) = enθe−(x1+···+xn) (6)

so fθ(x) is an exponential function in θ for all θ ≤ x(1). Moreover, since ex > 0 for all x ∈ R (except in

the limit as x→ −∞), we know enθ > 0 and e−(x1+···+xn) > 0 for all θ ∈ Θ and all x = (x1, ..., xn) ∈ Rn.
Thus, for all θ ≤ x(1), we have

fθ(x) = enθe−(x1+···+xn) > 0 (7)

Comparing the values of fθ(x) in (7) and (5), we find that fθ(x) is strictly greater for all θ ≤ x(1) than
for all θ > x(1). Thus, fθ(x) must be maximized at some θ ≤ x(1). Differentiating (7), we find that,
for all such θ ≤ x(1),

d

dθ
fθ(x) = nenθe−(x1+···+xn) (8)
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Using the fact that n, enθ, and e−(x1+···+xn) are each always positive (for any x = (x1, ..., xn) ∈ Rn
and any θ ∈ Θ), we can deduce from (8) that

d

dθ
fθ(x) > 0 · 0 · 0 = 0 (9)

for all θ ≤ x(1).
In summary, fθ(x) is a strictly positive, monotonically increasing function in θ for all θ ≤ x(1), and
fθ(x) is a constant function taking value 0 for all θ > x(1). Thus, the value that maximizes fθ(x)
for any x = (x1, ..., xn) ∈ Rn is the largest θ such that fθ(x) ̸= 0, which is clearly θ = x(1). Since
θ > 0 =⇒ X1, ..., Xn > 0 with probability 1 (Xi ≤ 0 =⇒ 1x≥θ = 0), we know x(1) > 0, so we know
x(1) ∈ Θ. Thus, we can simplify the numerator of the RHS of (4) to be

sup
θ∈Θ

fθ(x) = fx(1)
(x) = enx(1)e−(x1+···+xn) (10)

Now, we will simplify the denominator of the RHS of (4). Once again, consider an arbitrary x =
(x1, ..., xn) ∈ Rn and consider the minimum value x(1) as defined in (2). Then supθ∈Θ0

fθ(x) depends
on whether or not x(1) ∈ Θ0. Note that Θ0 = {θ ∈ R : 0 < θ ≤ θ0}, and we already know x(1) > 0, so

x(1) ∈ Θ0 ⇐⇒ x(1) ≤ θ0 (11)

If x(1) ∈ Θ0, then fθ(x) is still a strictly positive, monotonically increasing function in θ for all
0 < θ ≤ x(1), and fθ(x) is still the constant function 0 for all x(1) < θ ≤ θ0. Thus, for all x ∈ Rn such
that x(1) ∈ Θ0, we have

sup
θ∈Θ0

fθ(x) = fx(1)
(x) = enx(1)e−(x1+···+xn) (12)

Note that supθ∈Θ0
fθ(x) is equivalent to supθ∈Θ fθ(x) for all such x. This equivalence does not hold

when x(1) /∈ Θ0. For all such x ∈ Rn where x(1) /∈ Θ0, fθ(x) is a strictly positive, monotonically
increasing function in θ for all 0 < θ ≤ x(1). Since θ0 < x(1), fθ(x) is a strictly positive, monotonically
increasing function in θ for all 0 < θ ≤ θ0, or all θ ∈ Θ0. Since fθ(x) is positive and strictly increasing
for all θ ∈ Θ0, the θ ∈ Θ0 which maximizes fθ(x) for an arbitrary x ∈ Rn is just the maximal
θ ∈ Θ0. By definition, supθ∈Θ0

θ = θ0. Thus, for all x ∈ Rn such that x(1) > θ0, we can simplify the
denominator of the RHS of (4) to be

sup
θ∈Θ0

fθ(x) = fθ0(x) = enθ0e−(x1+···+xn) (13)

To achieve an explicit expression of the rejection region C, we combine the expressions for supθ∈Θ0
fθ(x)

from (12) and (13) into a single expression. To do so, we make use of the following facts:

1−1x>y, 1x>y ∈ {0, 1} 1−1x>y = 0 ⇐⇒ 1x>y = 1 1−1x>y = 1 ⇐⇒ 1x>y = 0 (14)

The results from (14) allow us to express the two different cases for supθ∈Θ0
fθ(x) simultaneously using

1x(1)>θ and 1− 1x(1)
as follows:

sup
θ∈Θ0

fθ(x) = 1x(1)>θ0e
nθ0e−(x1+···+xn) + (1− 1x(1)>θ0)e

nx(1)e−(x1+···+xn) (15)

The results from (15) and (10) allow us to rewrite the rejection region C from (4) as

C = {x ∈ Rn :
enx(1)e−(x1+···+xn)

1x(1)>θ0e
nθ0e−(x1+···+xn) + (1− 1x(1)>θ0)e

nx(1)e−(x1+···+xn)
≥ k} (16)

for some constant k ≥ 1. We can also express (16) as the union of the rejection region for x ∈ Rn
satisfying x(1) ≤ θ0 and the rejection region for x ∈ Rn satisfying x(1) > θ0, which simplifies the
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expression. Define A := {x ∈ Rn : x(1) ≤ θ0} and B := Rn ∖ A = {x ∈ Rn : x(1) > θ0}, and we can
rewrite (16) as

C = {x ∈ A :
enx(1)e−(x1+···+xn)

enx(1)e−(x1+···+xn)
≥ k} ∪ {x ∈ B :

enx(1)e−(x1+···+xn)

enθ0e−(x1+···+xn)
≥ k}

= {x ∈ A : 1 ≥ k} ∪ {x ∈ B : en(x(1)−θ0) ≥ k}

= {x ∈ A : 1 ≥ k} ∪ {x ∈ B : x(1) − θ0 ≥ ln(k)

n
} (17)

The last line of (17) explicitly describes the rejection region of the generalized likelihood ratio test for
this hypothesis for any constant k ≥ 1. From (17), we see that, if k = 1, the rejection region C contains
all x ∈ Rn. On the other hand, if k > 1, the rejection region C contains all x ∈ Rn such that x(1) > θ0

and x(1) − θ0 ≥ ln(k)
n . Thus, for all such k > 1, the rejection region includes only those x ∈ Rn whose

corresponding minimum x(1) is sufficiently larger than θ0.

(b) If H0 is true,

2log
supθ∈Θ fθ(X1, ..., Xn)

supθ∈Θ0
fθ(X1, ..., Xn)

does not necessarily converge in distribution to a chi-squared distribution as n→ ∞. From Theorem
5.28 in the notes, we know that

2log
supθ∈Θ fθ(X1, ..., Xn)

supθ∈Θ0
fθ(X1, ..., Xn)

converges in distribution to a chi-squared distribution as n → ∞ if we are testing the hypothesis H0

that {θ = θ0} versus the alternative {θ ̸= θ0}. In this case, however, we are testing the hypothesis
H0 that {θ ≤ θ0} versus the alternative {θ > θ0}. Thus, Theorem 5.28 does not apply, so we cannot
conclude that

2log
supθ∈Θ fθ(X1, ..., Xn)

supθ∈Θ0
fθ(X1, ..., Xn)

converges in distribution to a chi-squared distribution as n→ ∞.

Exercise 21. Let X1, . . . , Xn be a random sample from a Gaussian random variable with unknown mean
µ ∈ R and unknown variance σ2 > 0.

Fix µ0 ∈ R. Suppose we want to test that hypothesis H0 that µ = µ0 versus the alternative H1 that
µ ̸= µ0.

• Explicitly describe the rejection region of the generalized likelihood ratio test for this hypothesis.

• Give an explicit formula for the p-value of this hypothesis test. (Hint: If S2 denotes the sample variance

and X denotes the sample mean, you should then be able to use the statistic (X−µ0)
2

S2 . Since we have
an explicit formula for Snedecor’s distribution, you should then be able to write an explicit integral
formula for the p-value of this test.)

Solution.

(a) The PDF of a Gaussian random variable X with mean µ and variance σ2 > 0 is

fX(x) :=
1

σ
√
2π
e−

(x−µ)2

2σ2 ∀x ∈ R (18)

Since X1, ..., Xn are independent and identically distributed, we know their joint PDF is

fµ,σ2(x) = fµ,σ2(x1, ..., xn) =

n∏
i=1

fXi
(x) =

n∏
i=1

1

σ
√
2π
e−

(x−µ)2

2σ2

=
( 1

σ
√
2π

)ne−
∑n

i=1(xi−µ)2

2σ2 =
( 1

σ22π

)n/2
e−

∑n
i=1(xi−µ)2

2σ2 (19)
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for all x = (x1, ..., xn) ∈ Rn. By Definition 5.22, the rejection region of the generalized likelihood
ratio for this test is

C := {x ∈ Rn : sup
θ∈Θ

fθ(x) ≥ k sup
θ∈Θ0

fθ(x)} = {x ∈ Rn :
supθ∈Θ fθ(x)

supθ∈Θ0
fθ(x)

≥ k} (20)

In our case Θ = R × (0,∞), as µ ∈ R and σ2 ∈ (0,∞). Thus, we can simplify the numerator of the
RHS of (20) to be

sup
θ∈Θ

fθ(x) = sup
(µ,σ2)∈Θ

( 1

σ22π

)n/2
e−

∑n
i=1(xi−µ)2

2σ2 (21)

The null hypothesis H0 only imposes the restriction µ = µ0 on Θ. Thus, Θ0 = {(µ, σ2) ∈ Θ : µ =
µ0} = {(µ0, σ

2) : σ2 ∈ (0,∞)}. This allows us to simplify the denominator of the RHS of (20) to be

sup
θ∈Θ0

fθ(x) = sup
(µ0,σ2)∈Θ0

fµ,σ(x) = sup
σ2∈(0,∞)

( 1

σ22π

)n/2
e−

∑n
i=1(xi−µ0)2

2σ2 (22)

Note that (21) is just the likelihood function evaluated at the (µ, σ2) ∈ Θ which maximizes it. Thus,
supθ∈Θ fθ(x) is just the likelihood function evaluated at the Maximum Likelihood Estimators for µ and
σ2. Recall from Exercise 4.41 that, for a random sample from a Gaussian distribution with unknown
mean µ ∈ R and unknown variance σ2 > 0, the MLE for µ is

µ̂ :=
1

n

n∑
i=1

Xi = X (23)

and the MLE for σ2 is

σ̂2 :=
1

n

n∑
i=1

(Xi −X)2 (24)

Substituting the results from (23) and (24) into (21) yields

sup
θ∈Θ

fθ(x) =
( 1

2π 1
n

∑n
i=1(xi − x)2

)n/2
exp
(
−
∑n
i=1(xi −

1
n

∑n
i=1 xi)

2

2 1
n

∑n
i=1(xi − x)2

)
= (2π)−

n
2

( 1
n

n∑
i=1

(xi − x)2
)−n

2 exp
(
−
∑n
i=1(xi −X)2

2 1
n

∑n
i=1(xi − x)2

)
= (2π)−

n
2

( 1
n

n∑
i=1

(xi − x)2
)−n

2 e
− 1

2
n

= (2π)−
n
2

( 1
n

n∑
i=1

(xi − x)2
)−n

2 e−
n
2 (25)

Similarly, (22) is just the likelihood function evaluated at the (µ0, σ
2) ∈ Θ0 which maximizes it. Since

µ = µ0 is fixed, supθ∈Θ0
fθ(x) is just the likelihood function evaluated at µ0 and the MLE for σ2 given

µ = µ0.
Note that taking the natural log of the likelihood function from (19) with µ = µ0 known, σ2 unknown
is

ln(f(µ0,σ2)(x)) = −nln(2π)− nln(σ)−
∑n
i=1(xi − µ0)

2

2σ2
(26)

Differentiating (26) with respect to σ yields

d

dσ
ln(f(µ0,σ2)(x)) =

−n
σ

+
1

σ3

n∑
i=1

(xi − µ0)
2 (27)
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Setting (27) equal to 0 and solving for σ2 yields

−n
σ

+
1

σ3

n∑
i=1

(xi − µ0)
2 = 0 ⇐⇒ n

σ
=

1

σ3

n∑
i=1

(xi − µ0)
2 ⇐⇒ σ2 =

1

n

n∑
i=1

(xi − µ0)
2 (28)

Thus, our MLE for σ2 with known mean µ = µ0 is

σ̂2∗ =
1

n

n∑
i=1

(Xi − µ0)
2 (29)

Substituting µ0 for µ and σ̂2∗ for σ2 in (22) yields

sup
θ∈Θ0

fθ(x) =
( 1

2π 1
n

∑n
i=1(xi − µ0)2

)n/2
e
−

∑n
i=1(xi−µ0)2

2 1
n

∑n
i=1

(xi−µ0)2

= (2π)−
n
2

( 1
n

n∑
i=1

(xi − µ0)
2)−

n
2 exp (− 1

2
n

)

= (2π)−
n
2

( 1
n

n∑
i=1

(xi − µ0)
2)−

n
2 e−

n
2 (30)

Plugging the results from (25) and (30) into (20) yields

C = {x ∈ Rn :
(2π)−

n
2

(
1
n

∑n
i=1(xi − x)2

)−n
2 e−

n
2

(2π)−
n
2

(
1
n

∑n
i=1(xi − µ0)2)−

n
2 e−

n
2

≥ k}

= {x ∈ Rn :

(
1
n

∑n
i=1(xi − x)2

)−n
2(

1
n

∑n
i=1(xi − µ0)2)−

n
2

≥ k}

= {x ∈ Rn :
(∑n

i=1(xi − µ0)
2∑n

i=1(xi − x)2
)n

2 ≥ k}

= {x ∈ Rn :

∑n
i=1(xi − µ0)

2∑n
i=1(xi − x)2

≥ k
2
n } (31)

While the last line of (31) does provide an explicit expression for the generalized likelihood ratio test
for this hypothesis with a constant k ≥ 1, but we can simplify it further to make the expression of C
more informative.
First, note that

n∑
i=1

(xi − µ0)
2 =

n∑
i=1

((xi − x) + (x− µ0))
2 =

n∑
i=1

((xi − x)2 + (x− µ0)
2 + 2(xi − x)(x− µ0))

=

n∑
i=1

(xi − x)2 +

n∑
i=1

(x− µ0)
2 =

( n∑
i=1

(xi − x)2
)
+ n(x− µ0)

2 + 2(x− µ0)

n∑
i=1

x− xi

=
( n∑
i=1

(xi − x)2
)
+ n(x− µ0)

2 + 2(x− µ0)(nx−
n∑
i=1

xi)

=
( n∑
i=1

(xi − x)2
)
+ n(x− µ0)

2 + 2(x− µ0)(

n∑
i=1

xi −
n∑
i=1

xi)

=
( n∑
i=1

(xi − x)2
)
+ n(x− µ0)

2 (32)
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Now, we can simplify the fraction from the last line of (31) to find∑n
i=1(xi − µ0)

2∑n
i=1(xi − x)2

=

(∑n
i=1(xi − x)2

)
+ n(x− µ0)

2∑n
i=1(xi − x)2

= 1 +
n(x− µ0)

2∑n
i=1(xi − x)2

(33)

Using (33), we can rewrite (31) as

C = {x ∈ Rn : 1 +
n(x− µ0)

2∑n
i=1(xi − x)2

≥ k
2
n }

= {x ∈ Rn :
n(x− µ0)

2∑n
i=1(xi − x)2

≥ k
2
n − 1}

= {x ∈ Rn :
(x− µ0)

2∑n
i=1(xi − x)2

≥ 1

n
(k

2
n − 1)} (34)

Note that the sample variance satisfies

S2 =
1

n− 1

n∑
i=1

(xi − x)2 (35)

so we can multiply both sides of the inequality from (34) by (n-1) to find

C = {x ∈ Rn :
(x− µ0)

2

1
n−1

∑n
i=1(xi − x)2

≥ n− 1

n
(k

2
n − 1)}

= {x ∈ Rn :
(x− µ0)

2

S2
≥ n− 1

n
(k

2
n − 1)} (36)

The last line of (36) provides a more informative explicit expression for the generalized likelihood ratio
test for this hypothesis with a constant k ≥ 1, completing part (a). We will utilize the information
provided by this expression in part (b).

(b) We will use the statistic t : Rn → R, defined by

t(x) = t(x1, ..., xn) =
( 1n
∑n
i=1 xi − µ0)

2

1
n−1

∑n
i=1(xi −

1
n

∑n
i=1 xi)

2
=

(x− µ0)
2

S2
(37)

for all x = (x1, ..., xn) ∈ Rn. This allows us to rewrite the rejection region C from (36) as

C = {x ∈ Rn : t(x) ≥ n− 1

n
(k

2
n − 1) (38)

Since n and k are constants, c = n−1
n (k

2
n −1) is a constant. Thus, by definition of the p-value, we have

p(x) := sup
θ∈Θ0

Pθ(t(X) ≥ t(x)) = sup
(µ0,σ2)∈Θ0

P(µ0,σ2)(
(X − µ0)

2

S2
X

≥ (x− µ0)
2

S2
x

) (39)

Note that for all θ = (µ, σ2) ∈ Θ0, µ = µ0, so X1, ..., Xn are i.i.d. Gaussian random variables with
known mean µ0 and unknown variance σ2 > 0. This implies

E[X1] = · · · = E[Xn] = E[X] = µ0 (40)

Since the sum of Gaussians random variables is also a Gaussian random variable, we know X is also a
Gaussian random variable, also with mean µ0, although it has variance

V ar(X) =
1

n2

n∑
i=1

V ar(Xi) =
n

n2
σ2 =

σ2

n
(41)
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Thus, X−µ0 is a Gaussian random variable with mean 0 and variance σ2

n , so dividing by by σ√
n
yields

a Gaussian random variable with mean µ0 and variance

V ar(
X − µ0

σ√
n

) =
n

σ2
V ar(X − µ0) =

n

σ2

σ2

n
= 1 (42)

That is,
√
n(X−µ0)

σ is a standard Gaussian random variable. By definition of the chi-squared distribu-
tion, this means

χ∗ :=
(√n(X − µ0)

σ

)2 ∼ χ2(1) (43)

so χ∗ is a chi-squared random variable with 1 degree of freedom. Note that

χ∗ :=
(√n(X − µ0)

σ

)2
=

n

σ2
(X − µ0)

2 (44)

so the numerator of our statistic t(X) from (39) can be written as

(X − µ0)
2 =

σ2

n
χ∗ (45)

Also, from Proposition 3.7, we know that

χ# :=
(n− 1)S2

X

σ2
∼ χ2(n− 1) (46)

so the denominator of our statistic t(X) from (39) can be written as

S2
X =

σ2

n− 1
χ# (47)

Combining (45) and (47), we can rewrite our entire statistic t(X) from (39) as

t(X) =
(X − µ0)

2

S2
X

=
σ2

n χ
∗

σ2

n−1χ
#

=
1

n

χ∗

1
χ#

n−1

(48)

Also, from Proposition 3.7, we know that X and SX are independent, so we know χ∗ and χ# are
independent. By definition, for two independent chi-squared random variables Y and Z with p and q

degrees of freedom, respectively,
Y
p
Z
q

is a Snedecor’s f-distributed random variable with p and q degrees

of freedom. Since χ∗ is a chi-squared random variable with 1 degree of freedom and χ# is a chi-squared
random variable, we know

t(X) =
1

n

χ∗

1
χ#

n−1

is 1
n multiplied by a Snedecor’s f-distributed random variable with 1 and n− 1 degrees of freedom for

all (µ0, σ
2) ∈ Θ0. That is,

fnt(X)(t) =
t−

1
2 ( 1
n−1 )

1
2Γ(n2 )

Γ( 12 )Γ(
n−1
2 )

(
1 +

t

n− 1

)−n
2 ∀t > 0 (49)

Multiplying both sides of the inequality in (39) by n yields

p(x) = sup
(µ0,σ2)∈Θ0

P(µ0,σ2)(
χ∗

1
χ#

n−1

≥ n(x− µ0)
2

S2
x

) (50)
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Since
χ∗
1

χ#

n−1

is a Snedecor’s f-distributed random variable with 1 and n − 1 degrees of freedom for all

(µ0, σ
2) ∈ Θ0, we can let F :=

χ∗
1

χ#

n−1

= nt(X) and F has PDF

fF (t) = fnt(X)(t) (51)

as defined in (49). This is true for all (µ0, σ
2) ∈ Θ0, regardless of the value of σ2 ∈ (0,∞), so we can

rewrite (50) as

p(x) = sup
(µ0,σ2)∈Θ0

P(µ0,σ2)(
χ∗

1
χ#

n−1

≥ n(x− µ0)
2

S2
x

) = P1,n−1(F ≥ n(x− µ0)
2

S2
x

) (52)

where P1,n−1 refers to taking the probability law over Snedecor’s f-distribution with 1 and n−1 degrees

of freedom. Note that n(x−µ0)
2

S2
x

is a constant for a fixed x ∈ Rn. By definition of the probability density

function, for any continuous random variable F with PDF fF , the probability that F is at least a
constant c is

P(F ≥ c) =

∫ ∞

c

fF (t)dt (53)

Plugging the result from (53) and (51) into (52) yields

p(x) = P1,n−1(F ≥ n(x− µ0)
2

S2
x

) =

∫ ∞

n(x−µ0)2

S2
x

fF (t)dt =

∫ ∞

n(x−µ0)2

S2
x

fnt(X)dt (54)

Plugging the definition of fnt(X) (the PDF of a Snedecor’s f-distributed random variable with 1 and
n− 1 degrees of freedom) from (49) into (54), we find

p(x) =

∫ ∞

n(x−µ0)2

S2
x

t−
1
2 ( 1
n−1 )

1
2Γ(n2 )

Γ( 12 )Γ(
n−1
2 )

(
1 +

t

n− 1

)−n
2 dt (55)

By definition of the p-value, since (55) holds for all x ∈ Rn, the p-value for this hypothesis test is
defined to be the statistic

p(X) =

∫ ∞

n(X−µ0)2

S2
X

t−
1
2 ( 1
n−1 )

1
2Γ(n2 )

Γ( 12 )Γ(
n−1
2 )

(
1 +

t

n− 1

)−n
2 dt (56)

The expression on the RHS of (56) is the explicit integral formula for the p-value of this hypothesis
test, which completes part (b).

Exercise 22. Write down the generalized likelihood ratio estimate for the following alpha particle data, as
we did in class for a slightly different data set. The corresponding test treats individual counts of alpha
particles as independent Poisson random variables, versus the alternative that the probability of a count
appearing in each box of data is a sequence of nonnegative numbers that sum to one. (In doing so, you
should need to compute a maximum likelihood estimate using a computer.)

m 0, 1 or 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ≥ 17
# of Intervals 16 26 58 102 125 146 163 164 120 100 72 54 20 12 10 4

Plot the MLE for the Poisson statistic (i.e. plot the denominator of the generalized likelihood ratio test

statistic
supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X) ) as a function of λ.

Finally, compute the value s of Pearson’s chi-squared statistic S, and compute the probability that S ≥ s
(assuming H0 holds). Does the probability P(S ≥ s) give you confidence that the null hypothesis is true?
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Solution.
First, we will write down the generalized likelihood ratio estimate for the alpha particle data. By definition,
the generalized likelihood ratio estimate is

supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)

(57)

so we need to find explicit expressions for Θ and Θ0. Note that the sum of the frequencies in the table is

16 + 26 + 58 + 102 + 125 + 146 + 163 + 164 + 120 + 100 + 72 + 54 + 20 + 12 + 10 + 4 = 1192 (58)

so there are 1192 time intervals with alpha particle counts split into 16 categories (columns) in the data set.
Denote the alpha particle emission count over a randomly selected interval to be k. Then we can let pi =
the probability that k falls in the ith column of the table, for all 1 ≤ i ≤ 16. Since the columns of the table
include all possible particle emission counts (i.e. all non-negative integers), for all θ ∈ Θ, we must have

16∑
i=1

pi = 1 (59)

Also, since each pi is a probability, the axioms of probability guarantee that

p1, ..., p16 ≥ 0 (60)

The null hypothesis H0 asserts that the counts of alpha particles in each time interval are 1192 i.i.d. Poisson
random variables with some unknown parameter λ > 0. Thus, if H0 is true, then we know the probability
that k = i is

qi(λ) := P(k = i) = e−λ
λi

i!
(61)

for some unknown λ > 0. Since the first column includes all particle emission counts k ∈ {0, 1, 2}, if H0 is
true, we have

p1 = q0 + q1 + q2 = e−λ(1 + λ+
λ2

2
) (62)

For all 2 ≤ i ≤ 15, each column includes only those intervals with exactly k = i+1 alpha particle emissions.
Thus, if H0 is true, we have

pi = qi+1 = e−λ
λi+1

(i+ 1)!
(63)

for all i ∈ {2, ..., 15}. Finally, since the 16th column includes all intervals with particle emission counts
k ∈ {17, 18, ....}, if H0 is true, we have

p16 =

∞∑
i=17

e−λ
λi

i!
(64)

Since (62), (63), and (64) are both necessary and sufficient for the null hypothesis to be true, we can write
the null hypothesis explicitly:

H0 : θ ∈ Θ0 = {p1, ..., p16 : p1 = q0 + q1 + q2, p2 = q3, ..., p15 = q16, p16 =

∞∑
i=17

e−λ
λi

i!
} (65)

If we do not assume H0 is true, the axioms of probability and the structure of the data set still guarantee
that (59) and (60) hold, so we can also define the parameter space Θ explicitly:

Θ = {p1, ..., p16 : p1, ..., p16 ≥ 0,

16∑
i=1

pi = 1} (66)
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Thus, without assuming H0 is true, the 1192 alpha particle emission counts represent 1192 independent rolls
of the same 16 sided die, where the probability of rolling an i is pi for all i ∈ {1, ..., 16} and 0 for all other i.
Define X1, ..., X16 such that Xi = the number of alpha particle emission counts in the ith column of the table
from 1192 randomly selected time intervals. For each time interval, there is independently a pi probability
that the corresponding alpha particle count k falls in the ith column of the table (and a 1 − pi probability
that it does not). Thus, X1, ..., Xn are Binomial random variables such that Xi has parameters n = 1192
and p = pi. The joint distribution of X1, ..., X16, which describes our data set, can then be modeled as a
multinomial distribution whose joint PDF satisfies

fθ(x) = fp1,...,p16(x1, ..., x16) = 1192!

16∏
i=1

pxi
i

xi!
(67)

for all x = (x1, ..., x16) such that x1, ..., x16 ≥ 0 and
∑16
i=1 xi = 1192. Since (67) holds for all θ ∈ Θ, it holds

for all θ ∈ Θ0 ⊆ Θ. Thus, if H0 is true, we have

fθ(x) = fp1,...,p16(x1, ..., x16) = 1192!

16∏
i=1

pxi
i

xi!

= 1192!
(q0 + q1 + q2)

x1

x1!

( 15∏
i=2

qxi
i+1

xi!

) (∑∞
i=17 qi)

x16

x16!

= 1192!
(e−λ(1 + λ+ λ2

2 ))x1

x1!

( 15∏
i=2

(e−λ λi+1

(i+1)! )
xi

xi!

) (e−λ∑∞
i=17

λi

i! )
x16

x16!
(68)

Note that

e−λ
∞∑
i=17

λi

i!
= e−λ(

∞∑
i=0

λi

i!
−

16∑
i=0

λi

i!
) = e−λ(eλ −

16∑
i=1

λi

i!
) = 1− e−λ

16∑
i=1

λi

i!
(69)

Plugging the result from (69) into (68), we find that, if H0 is true,

fθ(x) = 1192!
(e−λ(1 + λ+ λ2

2 ))x1

x1!

( 15∏
i=2

(e−λ λi+1

(i+1)! )
xi

xi!

) (1− e−λ
∑16
i=1

λi

i! )
x16

x16!
(70)

for all x = (x1, ..., x16) such that x1, ..., x16 ≥ 0,∈ Z,
∑16
i=1 xi = 1192, and fθ(x) = 0 otherwise. Now that we

have explicitly described fθ(x) for all θ ∈ Θ0 (in (70)) and all θ ∈ Θ (in (67)), we can simplify the generalized
likelihood ratio from (57). We will start with the numerator. To compute

sup
θ∈Θ

fθ(x) = sup
(p1,...,p16)∈Θ

f(p1,...,p16)(x1, ..., x16)

we need to maximize a function in 16 variables, subject to the constraints
∑16
i=1 pi = 1 and p1, ..., p16 ≥ 0.

We use Lagrange Multipliers. Define

g(p1, ..., p16) =

16∑
i=1

pi − 1 = 0 (71)

Then, if ∃p1, ..., p16 ∈ Θ such that p1, ..., p16 maximizes f over all θ ∈ Θ, this p1, ..., p16 must satisfy

∇p1,...,p16f = δ∇p1,...,p16g (72)

That is, at any critical point for f , we must have

∂fθ(x)

∂pi
= δ

∂g

∂pi
(73)
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for all i{1, ..., 16} and for some δ ̸= 0. We can easily compute that

∂g

∂pi
=

∂g

∂pi
(pi) +

∂g

∂pi
(−1 +

∑
j ̸=i,j∈{1,...,16}

pi) = 1 + 0 = 1 (74)

and

∂fθ(x)

∂pi
=

∂

∂pi
1192!

16∏
j=1

p
xj

j

xj !
= 1192!xi

pxi−1
i

xi!

∏
j ̸=i,j∈{1,...,16}

p
xj

j

xj !
=
xi
pi
1192!

16∏
j=1

p
xj

j

xj !
=
xi
pi
fθ(x) (75)

Plugging the results from (74) and (75) into (73), we find

xi
pi
fθ(x) = δ =⇒ pi =

xi
δ
fθ(x) (76)

Plugging the result from (76) into (71), we find

1 =

16∑
i=1

pi =

16∑
i=1

xi
δ
fθ(x) =⇒ δ

fθ(x)
=

16∑
i=1

xi = 1192 =⇒ fθ(x)

δ
=

1

1192
(77)

Plugging the result from (77) into (76) yields

pi =
xi

1192
(78)

This holds for all i ∈ {1, ..., 16}, so we know that the only critical point for f on the interior of Θ is

(p1, ..., p16) = (
x1
1192

, ...,
x16
1192

) (79)

Note: Since

fθ(x) = fp1,...,p16(x1, ..., xn) = 1192!

16∏
i=1

pxi
i

xi!
= 0 (80)

for all p1, ..., p16 where ∃i ∈ {1, ..., 16} such that pi = 0. That is, fθ(x) = 0 for all points on the boundary of
Θ. Since fθ(x) ≥ 0 by the definition of a joint probability mass function, this implies the critical point from
(79) is indeed the θ ∈ Θ at which fθ(x) is uniquely maximized. That is

sup
θ∈Θ

fθ(x) = sup
p1,...,p16∈Θ

fθ(x) = 1192!

16∏
i=1

( xi

1192 )
xi

xi!
(81)

Now, we can deal with the denominator from (57). Plugging our definition of fθ(x), given that H0 is true,
into the denominator from (57) yields

sup
θ∈Θ0

fθ(x) = sup
θ∈Θ0

1192!
(e−λ(1 + λ+ λ2

2 ))x1

x1!

( 15∏
i=2

(e−λ λi+1

(i+1)! )
xi

xi!

) (1− e−λ
∑16
i=1

λi

i! )
x16

x16!
(82)

We use a computer and the data from the table to estimate the λ > 0 which maximizes (82). We find

λ ≈ 8.351 (83)

Plugging the approximate result for λ from (83) into (82), we find

sup
θ∈Θ0

fθ(x) ≈ 1192!
(e−8.351(1 + 8.351 + 8.3512

2 ))x1

x1!

( 15∏
i=2

(e−8.351 8.351i+1

(i+1)! )xi

xi!

) (1− e−8.351
∑16
i=1

8.351i

i! )x16

x16!
(84)
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Combining (84) with (81), we arrive at a final approximation for the generalized likelihood ratio statistic
initially presented in (57):

supθ∈Θ fθ(X)

supθ∈Θ0
fθ(X)

≈
1192!

∏16
i=1

(
xi

1192 )
xi

xi!

1192!
(e−8.351(1+8.351+ 8.3512

2 ))x1

x1!

(∏15
i=2

(e−8.351 8.351i+1

(i+1)!
)xi

xi!

) (1−e−8.351
∑16

i=1
8.351i

i! )x16

x16!

=
( x1

1192

e−8.351(1 + 8.351 + 8.3512

2

)x1
( 15∏
i=2

( xi

1192

e−8.351 8.351i+1

(i+1)!

)xi
)( x16

1192

(1− e−8.351
∑16
i=1

8.351i

i! )

)x16
(85)

We also plot the denominator of the generalized likelihood ratio test statistic as a function of λ to demonstrate
how the computed estimate of λ ≈ 8.351 aligns with the distribution of fθ(X) = fλ(X):

Note that the y − axis of this plot (i.e. the values of fθ(X)) are scaled upwards significantly to avoid
computational errors arising from large factorials (which evaluate to ∞, or 0 if in the denominator). Both
to compute the maximum likelihood estimate of λ ≈ 8.351 and to plot the above figure, we use the following
MATLAB code:

cols = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16];

freqs = [16, 26, 58, 102, 125, 146, 163, 164, 120, 100, 72, 54, 20, 12, 10, 4];

count = sum(freqs);

x = zeros(16000);

y = zeros(16000);

lambda = 0.0;

blambda = lambda;

max = -1;

for i = 1: 16000

temp = (((exp(-lambda)*(1+lambda + (lambda^2)/2))^(freqs(1)/200)));

for j = 2: 15

temp = temp * (exp(-lambda)*lambda^(j+1))^(freqs(j)/200);

end
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s = 0;

for k = 1: 16

s = s + (lambda^k)/factorial(k);

end

temp = temp * (1- (exp(-lambda)*s))^(freqs(16)/200);

if temp > max

max = temp;

blambda = lambda;

end

lambda = lambda + 0.001;

y(i) = temp;

x(i) = lambda;

end

plot(x,y, ’o’);

hold on;

xline(blambda, ’Color’, ’red’);

title({’MLE for Supremum over $\lambda > 0$ of $f_{\theta}(X) = f_{\lambda}(X)$

with Fixed Data Set’}, ’Interpreter’, ’latex’);

xlabel({’$\lambda$’}, ’Interpreter’, ’latex’);

ylabel({’$f_{\theta}(X) = f_{\lambda}(X)$’}, ’Interpreter’, ’latex’);

legend({ ’$f_{\theta}(X) = f_{\lambda}(X)$’,’Computed MLE for $\lambda$’},

’Interpreter’, ’latex’);

hold off;

Now, we will compute the value s of the Pearson’s chi-squared statistic S to determine whether we have
confidence that the H0 is true. From lecture, the Pearson’s chi-squared statistic is defined to be

S :=

16∑
i=1

(
Xj − Eλ[Xj ]

)2
Eλ[Xj ]

(86)

and we know that S has a chi-squared distribution with 16 − 1 − 1 = 14 degrees of freedom. That is,
S ∼ χ2(14), so S has PDF

fS(x) =
1

27Γ(7)
x6e−

x
2 (87)

Assuming the data set yields a value s of the chi-squared statistic equal to

s =

16∑
i=1

(
xj − Eλ[Xj ]

)2
Eλ[Xj ]

=

16∑
i=1

(
xj − 1192pi

)2
1192pi

(88)

where p1, ..., p16 are defined as in (61), (62), (63) and (64). The last equality follows sinceXi ∼ Binomial(1192, pi),
so Eλ[Xi] = 1192pi for all i ∈ {1, ..., 16}. We use a computer to approximate the value of (88) with λ = 8.351,
and we find:

s ≈ 10.9932 (89)

Using the PDF from (87), we can directly compute that

p = PH0(S ≥ 10.9932) =
1

27Γ(7)

∫ ∞

10.9932

x6e−
x
2 dx ≈ 0.6866 (90)

The following MATLAB code produced both s and p:

s = (freqs(1) - 1192 * exp(-8.351)*(1+8.351+8.351^2/2))^2

/(1192 * exp(-8.351)*(1+8.351+8.351^2/2));

Page 147



for i = 2:15

s= s+ (freqs(i) - 1192*exp(-8.351)*(8.351^(i+1))/(factorial(i+1)))^2

/(1192*exp(-8.351)*(8.351^(i+1))/factorial(i+1));

end

t = 0;

for i = 1: 16

t = t + (8.351^i)/factorial(i);

end

t = t * exp(-8.351);

s = s+(freqs(16) - 1192*(1-t))^2 / (1192 *(1-t));

p = 1- chi2cdf(10.9932, 14);

Note that p is a p-value corresponding to tests of H0 of the form

C := {x ∈ Rn : S ≥ c} (91)

Essentially p ≈ 0.6866 indicates that, if H0 is true, there is approximately a 68.66% chance to observe a value
s of Pearson’s chi-squared statistic S as extreme (large) as s ≈ 10.9932. Since this probability is so high
(p >> 0.05, p > 0.5), p ≈ 0.6866 does provide confidence that H0 is true. That is, the p-value associated
with the test described in (91) does indicate that the individual counts of alpha particle emissions can be
modelled accurately with i.i.d Poisson random variables.
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MATH 447: Mathematics of Machine Learning

All assignments in this section were written by Stanislav Minsker, Associate Professor of Mathematics, USC.
Solutions to assignments 1 through 5 are provided.

Assignment 1

Read chapter 2, chapter 3 section 1, chapter 4 section 2, chapter 5 section 1 of the textbook “Understanding
Machine Learning.” Then solve the following problems:

1.

(a) Prove the additive law of probability: for any events A and B,

P(A ∪B) = P(A) + P(B)− P(A ∩B)

(b) Prove the “union bound” by induction: for any k ≥ 2 and any events A1, ..., Ak,

P(A1 ∪A2 ∪ ... ∪Ak) ≤ P (A1) + P (A2) + ...+ P (Ak)

Solution.
First, we will recall the Axioms of Probability, as they will be essential for both proofs. Define Ω to be the
sample space of all possible events:

1. For any event A ⊆ Ω, the probability of A is non-negative:

P(A) ≥ 0

2. The probability of the entire sample space is 1.

P(Ω) = 1

3. For any events A1, A2, ... ⊆ Ω s.t. Ai ∩ Aj = ∅ for all 1 ≤ i, j ∈ Z where i ̸= j, the probability of
the union of A1, A2, ... equals the sum of the probabilities of A1, A2, .... That is, for mutually disjoint
events A1, A2, ..., we have

P(
∞⋃
i=1

Ai) =

∞∑
i=1

P(Ai)

(a) To prove that
P(A ∪B) = P(A) + P(B)− P(A ∩B)

we want to apply the third axiom of probability. In order to do so, we need to split (A ∪ B) into disjoint
events. Note that (A ∪B) includes exactly those events in A but not B, in B but not A, and in both A and
B. Thus,

(A ∪B) = ((A∖B) ∪ (B ∖A) ∪ (A ∩B))

so
P(A ∪B) = P((A∖B) ∪ (B ∖A) ∪ (A ∩B)) (1)

Any event in A but not B cannot possibly be in B but not A, nor both A and B. Similarly, any event in
B but not A cannot possibly be in A but not B, nor both A and B. Similarly, any event in both A and B
cannot possibly be in A but not B, nor B but not A. Thus, we can conclude

(A∖B) ∩ (B ∖A) = (A∖B) ∩ (A ∩B) = (B ∖A) ∩ (A ∩B) = ∅
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Since (A∖B), (B ∖A), and (A ∩B) are all mutually disjoint, we can apply the third axiom of probability
to (1) to find

P(A ∪B) = P(A∖B) + P(B ∖A) + P(A ∩B) (2)

We can now compute P(A∖B) and P(B ∖A) to complete the proof.
Note that, for all a ∈ A s.t. a /∈ (A∖B), a ∈ B, so

(A∖B) ∪ (A ∩B) = A (3)

Since (A∖B) ∩ (A ∩B) = ∅, we can apply the third axiom of probability to (3) to find

P(A) = P(A∖B) + P(A ∩B) =⇒ P(A∖B) = P(A)− P(A ∩B) (4)

Similarly, for all b ∈ B s.t. b /∈ (B ∖A), b ∈ A, we know

(A ∩B) ∪ (B ∖A) = B (5)

Since (B ∖A) ∪ (A ∩B) = ∅, we can again apply the third axiom of probability to (5) to find

P(B) = P(A ∩B) + P(B ∖A) =⇒ P(B ∖A) = P(B)− P(A ∩B) (6)

Plugging our results from (4) and (6) into (2) yields

P(A ∪B) = P(A)− P(A ∩B) + P(B)− P(A ∩B) + P(A ∩B) (7)

Simplifying (7) yields

P(A ∪B) = P(A) + P(B)− 2P(A ∩B) + P(A ∩B) = P(A) + P(B)− P(A ∩B)

which completes the proof that

P(A ∪B) = P(A) + P(B)− P(A ∩B)

(b) We will prove that for any k ≥ 2 and any events A1, ..., Ak,

P(A1 ∪A2 ∪ ... ∪Ak) ≤ P (A1) + P (A2) + ...+ P (Ak)

by mathematical induction on k.
Base Case: k = 2. We want to show P(A1 ∪ A2) ≤ P(A1) + P(A2). We could use the additive law of
probability in combination with the first axiom of probability. Instead, note that A1 ∪ A2 consists of all
events in A1 and all events in (A2 ∖A1). Thus, we can write

P(A1 ∪A2) = P(A1) ∪ P(A2 ∖A1)

By definition of A2 ∖ A1, for all a ∈ A1, a /∈ A2, so we know A1 ∩ (A2 ∖ A1) = ∅. Thus, we can apply the
third axiom of probability to find that

P(A1 ∪A2) = P(A1) + P(A2 ∖A1) (8)

For all a ∈ (A2 ∖A1), we know a ∈ A2, so (A2 ∖A1) ⊆ A2, so

P(A2 ∖A1) ≤ P(A2) (9)

Plugging (9) into (8) yields

P(A1 ∪A2) = P(A1) + P(A2 ∖A1) ≤ P(A1) + P(A2)

which completes the proof of the base case.
Inductive Hypothesis: Assume that

P(A1 ∪ ... ∪Ak) ≤ P(A1) + · · ·+ P(Ak)
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for all 2 ≤ k ≤ n.
Inductive Step: Consider k = n+ 1. We want to show that

P(A1 ∪ ... ∪An+1) ≤ P(A1) + · · ·+ P(An+1) (10)

Similar to the base case, note that (A1 ∪ ...∪An+1) consists of all events in (A1 ∪ ...∪An) and all events in
(An+1 ∖ (A1 ∪ ... ∪An), so we can write

P(A1 ∪ ... ∪An+1) = P((A1 ∪ ... ∪An) ∪ (An+1 ∖ (A1 ∪ ... ∪An))) (11)

By definition, for all a ∈ (A1 ∪ ... ∪An), a /∈ (An+1 ∖ (A1 ∪ ... ∪An)), so we know

((An+1 ∖ (A1 ∪ ... ∪An)) ∩ (A1 ∪ ... ∪An)) = ∅

Thus, we can apply the third axiom of probability to (11) to find

P(A1 ∪ ... ∪An+1) = P(An+1 ∖ (A1 ∪ ... ∪An)) + P(A1 ∪ ... ∪An) (12)

For all a ∈ (An+1 ∖ (A1 ∪ ... ∪An)), a ∈ An+1, so we know (An+1 ∖ (A1 ∪ ... ∪An)) ⊆ An+1, so we have

P(An+1 ∖ (A1 ∪ ... ∪An)) ≤ P(An+1) (13)

Also, by the Inductive Hypothesis, we have

P(A1 ∪ ... ∪An) ≤ P(A1) + · · ·+ P(An) (14)

Plugging the inequalities from (13) and (14) into (12) yields

P(A1 ∪ ... ∪An+1) = P(An+1 ∖ (A1 ∪ ... ∪An)) + P(A1 ∪ ... ∪An) ≤ P(A1) + · · ·+ P(An) + P(An+1)

The conclusion that
P(A1 ∪ ... ∪Ak) ≤ P(A1) + · · ·+ P(Ak)

follows by induction for all 2 ≤ k ∈ Z.

2.

Probability review exercise: recall the notions of joint, marginal and conditional probability density functions
(pdf). Solve the following problem: let the joint probability density function of (X,Y ) be given by

f(y1, y2) =

{
3y1 if 0 ≤ y2 ≤ y1 ≤ 1,

0 otherwise.
.

(a) Find the marginal pdf of X.

(b) Find the conditional pdf of Y given that X = x.

(c) Find the conditional expectation of Y given that X = 1.

(d*) (bonus) Find the pdf of X + Y

Solution.
(a) By definition, to find the marginal PDF of X, we integrate the joint density function fX,Y (y1, y2) over
all possible values of y2:

fX(y1) =

∫ ∞

−∞
fX,Y (y1, y2)dy2 =

∫ y1

0

3y1dy2 = 3y1y2|y10 = 3y21
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This is true for all 0 ≤ y2 ≤ y1 ≤ 1, so the marginal PDF of X is

fX(y1) =

{
3y21 if 0 ≤ y1 ≤ 1

0 otherwise.

(b) By definition, the conditional PDF of Y given X = x is fY |X=x(y2|x) =
fX,Y (x,y2)
fX(x) . We know

fX(x) =

{
3x2 if 0 ≤ x ≤ 1

0 otherwise.

from part (a), and we are given fX,Y (x, y2), so we can easily compute that

fY |X=x(y2|x) =
3x

3x2
=

1

x

This is true for all 0 ≤ y2 ≤ x ≤ 1, so the conditional PDF of Y given X = x is

fY |X=x(y2|x) =

{
1
x if 0 ≤ y2 ≤ x ≤ 1

0 otherwise.

(c) By the definition of conditional expectation, the conditional expectation of Y given that X = 1 is

E[Y |X = 1] =

∫ ∞

−∞
y · fY |X=1(y, 1)dy

From part (b), we know that the conditional PDF of Y given X = 1 is

fY |X=1(y, 1) =

{
1
1 = 1 if 0 ≤ y ≤ 1

0 otherwise.

Thus, we can directly compute that

E[Y |X = 1] =

∫ 1

0

ydy =
y2

2
|10 =

1

2

So the conditional expectation of Y given X = 1 is

E[Y |X = 1] =
1

2

(d) We find the PDF of X + Y by considering the CDF FX+Y (t) and applying the fact that

fX+Y (t) =
d

dt
FX+Y (t)

Note that

FX+Y (t) = P(X + Y ≤ t) =

∫ ∫
A

fX,Y (x, y)dA

where A := {(x, y) ∈ R|0 ≤ y ≤ x ≤ 1, x + y ≤ t}. Due to this complicated region of integration A, we
need compute FX+Y (t) separately for when 0 < t ≤ 1 and when 1 < t ≤ 2. To help define these cases more
clearly, we include a sketch that details how A could look under various t:
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This sketch provides the motivation for the following computations. Note that, regardless of t, A ⊆ R, where
R is the entire region over which fX,Y (x, y) = 3x. Therefore, we can plug fX,Y (x, y) = 3x into the integrals
established in the sketch to directly compute FX+Y (t) for the two cases of 0 < 1 ≤ 1 and 1 < t ≤ 2. For all
0 < t ≤ 1, we have a singular triangular region over which to integrate. Therefore, we have

FX+Y (t) = P(X + Y ≤ t) =

∫ t
2

y=0

∫ t−y

x=y

3xdxdy =

∫ t
2

y=0

3x2

2
|t−yy dy =

∫ t
2

y=0

3

2
((t− y)2 − y2)dy

=
3

2

∫ t
2

y=0

t2 − 2ytdy =
3

2

(
t2y − y2t

)
|
t
2
0 =

3

2
(
t3

2
− t3

4
) =

3t3

8
(15)

for all 0 < t ≤ 1.
For all 1 < t ≤ 2, we have 2 triangular regions and 1 quadrilateral region over which we must integrate. To
compute FX+Y (t) for such t, we integrate over each of these mutually disjoint regions separately and sum
the results:

FX+Y (t) =

∫ 1
2

y=0

∫ 1−y

x=y

3xdxdy︸ ︷︷ ︸
1

+

∫ t
2

x= 1
2

∫ x

y=1−x
3xdydx︸ ︷︷ ︸

2

+

∫ 1

x= t
2

∫ t−x

y=1−x
3xdydx︸ ︷︷ ︸

3

(16)

Note that integral 1 is just the integral we computed for the 0 < t ≤ 1 case with t = 1. Thus, we can plug
t = 1 into (15) to find ∫ 1

2

y=0

∫ 1−y

x=y

3xdxdy =
3(1)3

8
=

3

8
(17)

We can directly compute the other two integrals from (16). For integral 2, we have∫ t
2

x= 1
2

∫ x

y=1−x
3xdydx =

∫ t
2

x= 1
2

3xy|x1−xdx =

∫ t
2

x= 1
2

(3x2 − 3x(1− x))dx =

∫ t
2

x= 1
2

(6x2 − 3x)dx

=
(
2x3 − 3x2

2

)
|
t
2
1
2

=
2t3

8
− 3

8
t2 − 2

8
+

3

8
=

2t3 − 3t2 + 1

8
=

1

8
(t− 1)2(2t+ 1) (18)
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and for integral 3, we have∫ 1

x= t
2

∫ t−x

y=1−x
3xdydx =

∫ 1

x= t
2

3xy|t−x1−xdx =

∫ 1

x= t
2

(3x(t− x)− 3x(1− x))dx =

∫ 1

x= t
2

(3xt− 3x2 − 3x+ 3x2)dx

=

∫ 1

x= t
2

(3xt− 3x)dx =

∫ 1

x= t
2

3x(t− 1)dx =
3

2
x2(t− 1)|1t

2
=

3

2
((t− 1)− t2(t− 1)

4
)

= − 3

8
(t− 1)(t2 − 4) (19)

Plugging the results from (17), (18), and (19) into (16), we find the probability that X + Y ≤ t, for all
1 < t ≤ 2, is

FX+Y (t) =
3

8
+

1

8
(t− 1)2(2t+ 1)− 3

8
(t− 1)(t2 − 4)

This allows us to fully define the cumulative distribution function of X + Y as

FX+Y (t) =


1 if x = t > 2
3
8 + 1

8 (t− 1)2(2t+ 1)− 3
8 (t− 1)(t2 − 4) if 1 < t ≤ 2

3t3

8 if 0 < t ≤ 1

0 otherwise.

Now, we can apply the fact that

fX+Y (t) =
d

dt
FX+Y (t)

to find, for all t > 2, < 0

fX+Y (t) =
d

dt
(0) =

d

dt
(1) = 0

for all 0 < t ≤ 1,

fX+Y (t) =
d

dt

3t3

8
=

9t2

8

and for all 1 < t ≤ 2,

fX+Y (t) =
d

dt

(3
8
+

1

8
(t− 1)2(2t+ 1)− 3

8
(t− 1)(t2 − 4)

)
=

1

4
(t− 1)(2t+ 1) +

1

4
(t− 1)2 − 3

8
(t2 − 4)− 3

4
t(t− 1)

=
1

4
(2t2 − t− 1 + t2 − 2t+ 1− 3t2 + 3t)− 3

8
(t2 − 4) = −3t2 − 12

8

Thus, we have found that the PDF of X + Y is

fX+Y (t) =


− 3t2−12

8 if 1 < t ≤ 2
9t2

8 if 0 < t ≤ 1

0 otherwise.

3.

Suppose that you are tasked with creating an algorithm that, given an image of a handwritten signature of
a specific person, decides whether the signature is authentic or whether it was forged by a criminal. Assume
that you know in advance that authenticity can be completely determined by the ratio of signature?s
height and width, measured anywhere from 0.4 to 0.8 with an increment of 0.01 (namely, the ratio for
the authentic signatures is either always higher or always lower compared to the forged ones). You have 50
signatures that were randomly taken from various documents that were supposedly signed by this person,
and analyzed by an expert who was able to tell originals from the forged ones. Answer the following questions:
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(a) What are the instances/observations and the labels in this case? What is the domain set that the
instances belong to?
(b) What are the training data in this specific problem, and what is the sample size?
(c) What is the base class that you are going to use, and what is its size/cardinality?
Be as specific as possible; your answer should be consistent with your answer to question (a).
(d) Is this an example of realisable or agnostic learning? Justify your answer.
(e) Assume that you want to find a classifier that makes a mistake in at most 5% of the cases. Estimate
the probability that the Empirical Risk Minimization algorithm based on the sample size you determined
will produce a classifier of such quality (hint: use the bound we proved in class when showing that finite
hypotheses classes are PAC learnable).
(f) What is the size of the training data you would need to construct a classifier that is 95% accurate on
the whole population with probability at least 99% (in other words, for 99% of the possible training samples)?

Solution.
(a) The instances/observations in this case are the height:width ratios X of signatures of the person in
question. The labels Y ∈ {±1} are the authenticity or forged status of the signatures, such that, for a given
instance (height:width ratio) X, it’s corresponding label Y satisfies

Y =

{
+1 if X denotes an authentic signature

−1 otherwise.

Since the height and width ratios are guaranteed to be between 0.4 and 0.8, measured in increments of 0.01,
we know that X must belong to the set

S := {0.40, 0.41, 0.42, ..., 0.78, 0.79, 0.80}

That is, for all X, X ∈ S, so S is our domain set. Note that there are exactly 41 numbers between 0.40 and
0.80 (inclusive), so |S| = 41.

(b) In this specific problem, the training data are

X = {(X1, Y1), (X2, Y2), ..., (X50, Y50)}

where Xi denotes the height:weight ratio of the ith randomly selected signature, and

Yi =

{
+1 if the ith signature is authentic

−1 otherwise.

Since we have 50 signatures, we have 50 pairs (X1, Y1), ..., (X50, Y50) of height:width ratios and authenticity
labels, so our sample size is n = 50.

(c) We know that the height:width ratio for authentic signatures is either always higher or always lower
than the forged ones. To figure out the direction of this inequality, we can define

Ymax := Yi s.t. Xi = max {X1, ..., X50}

and define our base class based on the value of Ymax. If Ymax = +1, we know the sample signature with the
largest height:width ratio is authentic, so we can assume that the authentic signatures always have larger
ratios than the forged ones. If Ymax = −1, we know the sample signature with the largest height:width ratio
is forged, so we can assume that the authentic signatures always have smaller ratios than the forged ones.
In either case, we have the base class

G := {gt : S → {±1}|t ∈ S}
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where

gt(x) :=



{
+1 if x ≥ t

−1 otherwise.
if Ymax = +1{

+1 if x ≤ t

−1 otherwise.
otherwise.

Regardless of the value of Ymax the cardinality of the base class is

|G| = |S| = 41

as, for each t ∈ S, ∃ exactly 1 gt ∈ G which maps instances to labels depending on that t. Thus, there is
a 1-to-1 ratio between the possible height:width ratios in S and the possible classifier functions in G. This
ensures the consistency of the size of the base class with the size of the domain of the instances.
Note: If we eliminate the Ymax variable to create a base class G that doesn’t depend on the training data,
we could define

G := {g′t, gt” : S → {±1}|t ∈ S}
where

g′t(x) :=

{
+1 if x ≥ t

−1 otherwise.
gt”(x) :=

{
+1 if x ≤ t

−1 otherwise.

In this case, regardless of the training data, we would have a base class G with cardinality |G| = 2|S| =
2 ∗ 41 = 82, as, for all t ∈ S, ∃g′t, gt” ∈ G. This 2:1 ratio between |G| and |S| demonstrates consistency
between the size of the base class and the size of the instance domain.

(d) This is an example of realizable learning. This follows from the assumption that “the ratio for the
authentic signatures is either always higher or always lower compared to the forged ones” and the restriction
of instance height:width ratios to the 41 increments of 0.01 between 0.4 and 0.8 that make up S. Since the
authentic ratios are always higher or lower than the forged ones, we know there exists an ideal threshold t∗

such that all ratios X < t∗ belong to one label and all ratios X ≥ t∗ belong to the other label. Moreover,
since this t∗ must be one of the 41 increments of 0.01 between 0.4 and 0.8 (inclusive), and S consists of all
of these increments, we know that t∗ ∈ S. Since ∃gt ∈ G for all t ∈ S, we know that ∃gt∗ ∈ G s.t.

P(gt∗(X) = Y ) = 1

where X is any height:width ratio in S and Y ∈ {±1} is its corresponding authenticity label. Since the ideal,
perfect classifier gt∗ is guaranteed to be a part of our base class G, we know this is an example of realizable
learning.
Note: In the case where we discard Ymax and have |G| = 82, the example is still realizable, as gt∗ ∈ G is
still guaranteed by the same line of reasoning.

(e) Let ĝ50 be a classifier function g ∈ G satisfying Empirical Risk Minimization. Let L(ĝ50) = the proba-
bility that ĝ50 incorrectly labels a randomly selected signature. Then the probability we want to estimate
is

P(L(ĝ50) ≤ 0.05) = 1− P(L(ĝ50) ≥ 0.05) (20)

From lecture, since |G| = 41 <∞, we know

P(L(ĝ50) ≥ ε) ≤ |G|e−εn

Since n = 50 for our training data and we want a mistake-rate of no more than ε = 0.05, we can estimate
that

P(L(ĝ50) ≥ 0.05) ≤ 41 · e−0.05·50 = 41 · e−2.5 ≈ 3.365

Since this upper bound for P(L(ĝ50) ≥ 0.05) is significantly greater than 1, and we know no event has
probability > 1, we can estimate that

P(L(ĝ50) ≥ 0.05) ≈ 1 (21)
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Plugging (21) into (20) yields
P(L(ĝ50) ≤ 0.05) ≈ 1− 1 = 0

Thus, with training data of size n = 50, the probability that the Empirical Risk Minimization algorithm will
produce a classifier that makes a mistake in at most 5% of cases is ≈ 0%. This suggests we need a significantly
larger sample size in order to use Empirical Risk Minimization to consistently produce classifiers that rarely
make mistakes.
Note: In the case where we discard Ymax for a base class G of size |G| = 82, we can still apply the same
upper bound estimate on P(L(ĝ50) ≥ 0.05) since |G| = 82 <∞. Doing so yields

P(L(ĝ50) ≤ 0.05) = 81e−2.5 ≈ 6.731

Once again, since this probability is significantly larger than 1, we can estimate that

P(L(ĝ50) ≤ 0.05) ≈ 1

which implies that
P(L(ĝ50) ≤ 0.05) ≈ 1− 1 = 0

Once again, with a sample size of only n = 50, it is very unlikely that the Empirical Risk Minimization
algorithm will produce a classifier that makes mistakes at most 5% of the time.

(f) We want to find an n such that
P(L(ĝ50) ≥ 0.05) ≤ 0.01

Since |G| = 41 <∞, we know from lecture that

P(L(ĝ50) ≥ ε) ≤ |G|e−εn ≤ δ ⇐⇒ n ≥ 1

ε
ln(

|G|
δ

)

Thus, setting δ = 1− 0.99 = 0.01 and ε = 0.05, we find

n ≥ 1

0.05
ln(

41

0.01
) = 20ln(4100) ≈ 166.375

This means, for our base class G of size |G| = 41, we must have training data of sample size n ≥ 167
to guarantee that the Empirical Risk Minimization algorithm will produce a classifier that is at least 95%
accurate on at least 99% of possible training samples.
Note: If we discard Ymax and consider the base class G of size |G| = 82, we can still apply the same lower
bound on n with the same epsilon and δ since |G| = 82 <∞. In this case, we can guarantee

P(L(ĝ50) ≥ 0.05) ≤ 0.01

for
n ≥ 20ln(8200) ≈ 180.238

Thus, for a base class of size |G| = 82, we would need to have a sample of size at least n ≥ 181 to
guarantee that the Empirical Risk Minimization algorithm will produce a classifier that is 95% accurate on
the population with probability at least 99%. Note that, since there are more possible classifiers for our
algorithm to choose from with a bigger G, and still only one ideal classifier gt∗ ∈ G, we require a larger
sample to guarantee the algorithm finds an equally accurate classifier on the same percentage of possible
training samples.

Assignment 2

Read chapters 3, 4 and 5 of the textbook “Understanding Machine Learning.” Then do the following prob-
lems:
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1.

Let (X,Y ) be a pair of random variables and η(x) = E[Y |X = x] is the conditional expectation. Prove that
for any function g(X),

E(Y − η(X))g(X) = 0

You may use a hint given in the class notes.

Solution.
We substitute X for W and Y for Z, then apply the hint from the class notes that the minimum of the
function

F (t) = E[(Y − (η(X) + t · g(X)))2] (1)

is attained at t = 0 for any function g. Since F (t) is a concave-up quadratic in t, we know

f ′(t) = 0 ⇐⇒ F (t) is minimized.

Applying the hint that F (t) is minimized at t = 0, we find

f ′(0) = 0 (2)

Using the chain rule, we can directly compute that

f ′(t) =
d

dt
F (t) =

d

dt
E[Y − (η(X) + t · g(X))]2

= 2 · E[
(
Y − (η(X) + t · g(X))

)
· d
dt

(t · g(X))]

= 2E[
(
Y − (η(X) + t · g(X))

)
g(X)] (3)

Plugging t = 0 into (3) yields

f ′(0) = 2E[
(
Y − (η(X) + 0 · g(X))

)
g(X)] = 2E[

(
Y − η(X)

)
g(X)] (4)

Comparing (4) with (2), we find

0 = f ′(0) = 2E[
(
Y − η(X)

)
g(X)] (5)

Since 2 ̸= 0, (5) directly implies that
E[
(
Y − η(X)

)
g(X)] = 0

Since the hint we used to derive this conclusion holds for all functions g, this completes the proof that

E[(Y − η(X))g(X)] = 0

for any function g(X).

2.

Assume that you draw 2 cards at random from a deck of 36 cards. Let X take values 1,2,3 if a pair contains
no numbered cards (meaning 6,7,8,9,10), 1 numbered card, or 2 numbered cards respectively. Assume that
Y ∈ {+1,−1} is such that

P(Y = 1|X = x) =


1
3 if x = 1
2
5 if x = 2
3
4 if x = 3
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(a) Find the generalization error of a classifier h(x) =

{
−1 if x = 2

1 otherwise

(b) Find the Bayes classifier.

Solution.

(a) By definition, the generalization error of a classifier h(x) is

L(h) = P(Y ̸= h(X)) (6)

Note that (X = 1), (X = 2), and (X = 3) are three mutually disjoint events whose union is

(X = 1) ∪ (X = 2) ∪ (X = 3) = Ω

where Ω is the sample space for X. Thus, we can apply the Law of Total Probability to (6) to find

L(h) = P(Y ̸= h(X), X = 1) + P(Y ̸= h(X), X = 2) + P(Y ̸= h(X), X = 3) (7)

Applying the definition of conditional probability to (7) yields

L(h) = P(Y ̸= h(X)|X = 1)P(X = 1)+P(Y ̸= h(X)|X = 2)P(X = 2)+P(Y ̸= h(X)|X = 3)P(X = 3) (8)

Now, we just have to individually calculate the probabilities in (8) for the given h(x).
Note that

P(Y ̸= h(X)|X = 1) = P(Y = −1, h(X) = 1|X = 1) + P(Y = 1, h(X) = −1|X = 1) (9)

We know that X = 1 =⇒ h(X) = 1, so P(Y = 1, h(X) = −1|X = 1) = 0 and P(Y = −1, h(X) =
−1|X = 1) = P(Y = −1|X = 1). The latter equality follows from the fact that h(X) = 1 is always
true when X = 1, so Y ̸= h(X)|X = 1 can only happen when Y = −1. This knowledge allows us to
rewrite (9) as

P(Y ̸= h(X)|X = 1) = P(Y = −1|X = 1) + 0 = P(Y = −1|X = 1) (10)

We are given P(Y = 1|X = 1), so we can easily compute that

P(Y = −1|X = 1) = 1− P(Y = 1|X = 1) = 1− 1

3
=

2

3
(11)

Plugging (11) into (10) yields

P(Y ̸= h(X)|X = 1) =
2

3
(12)

Similarly,

P(Y ̸= h(X)|X = 2) = P(Y = 1, h(X) = −1|X = 2) + P(Y = −1, h(X) = 1|X = 2) (13)

We know that X = 2 =⇒ h(X) = −1, so P(Y = −1, h(X) = 1|X = 2) = 0 and P(Y = 1, h(X) =
−1|X = 2) = P(Y = 1|X = 2) with the latter equality again following from the fact that h(X) = −1
is always true for X = 2, so Y ̸= h(X)|X = 2 can only happen when Y = 1. This allows us to rewrite
(13) as

P(Y ̸= h(X)|X = 2) = P(Y = 1|X = 2) + 0 = P(Y = 1|X = 2) (14)

Plugging the given value for P(Y = 1|X = 2) into (14) yields

P(Y ̸= h(X)|X = 2) =
2

5
(15)

Page 159



Similarly,

P(Y ̸= h(X)|X = 3) = P(Y = −1, h(X) = 1|X = 3) + P(Y = 1, h(X) = −1|X = 3) (16)

We know that X = 3 =⇒ h(X) = 1, so P(Y = 1, h(X) = −1|X = 3) = 0 and P(Y = −1, h(X) =
1|X = 3) = P(Y = −1|X = 3), with the latter equality again following from the fact that h(X) = 1 is
always true for X = 3, so Y ̸= h(X)|X = 3 can only happen when Y = −1. We can now rewrite (16)
as

P(Y ̸= h(X)|X = 3) = P(Y = −1|X = 3) + 0 = P(Y = −1|X = 3) (17)

Since we are given P(Y = 1|X = 3), we can easily compute that

P(Y = −1|X = 3) = 1− P(Y = 1|X = 3) = 1− 3

4
=

1

4
(18)

Plugging (18) into (17) yields

P(Y ̸= h(X)|X = 3) =
1

4
(19)

Now, we just need to compute P(X = x) for x ∈ {1, 2, 3}. Since we assume the pair of cards is drawn
at random from a deck of 36 cards, we know all pairs of cards are equally likely. For any sample space
Ω in which P(a) = P(b) for all a, b ∈ Ω, we know that for any X ⊆ Ω, we have

P(X) =
|X|
|Ω|

(20)

Our sample space Ω consists of all 2-card pairs from a deck of 36 cards. There are exactly
(
36
2

)
ways

to choose such a pair. Thus, we have

|Ω| =
(
36

2

)
(21)

Note that, in a deck of 36 cards containing all 4 suits of cards (6,7,8,9,10,J,Q,K,A), exactly 5 · 4 = 20
of the cards are numbered cards while the remaining 4 · 4 = 16 are not numbered cards. For X = 1,
we need to select 0 numbered cards. Thus, we must select 2 cards from the 16 non-numbered cards in
the deck. There are exactly

(
16
2

)
ways to do this, so

|X = 1| =
(
16

2

)
(22)

Plugging (22) and (21) into (20) yields

P(X = 1) =

(
16
2

)(
36
2

) ≈ 0.1905 (23)

Similarly, for X = 2, we need to select 1 of the 20 numbered cards and one of the 16 non-numbered
cards. There are exactly

(
20
1

)(
16
1

)
= 20 · 16 = 320 ways to do this, so

|X = 2| = 320 (24)

Plugging (24) and (21) into (20) yields

P(X = 2) =
320(
36
2

) ≈ 0.5079 (25)

Similarly, for X = 3, we need to select 2 numbered cards from the 20 numbered cards in the deck.
There are exactly

(
20
2

)
ways to do this, so

|X = 3| =
(
20

2

)
(26)
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Plugging (26) and (21) into (20) yields

P(X = 3) =

(
20
2

)(
36
2

) ≈ 0.3016 (27)

Now, we simply plug (27), (25), (23), (19), (15), and (12) into (8) to find

L(h) =
2

3

(
16
2

)(
36
2

) + 2

5

320(
36
2

) + 1

4

(
20
2

)(
36
2

) ≈ 0.4056

Thus, the generalization error of h(x) is

L(h) = P(Y ̸= h(x)) ≈ 0.4056

so there is approximately a 40.56% chance that h(x) will misclassify a given instance X.

(b) Now, we will find the Bayes classifier. Define η(x) := E[Y |X = x]. By definition, the Bayes classifier is

g∗(x) =

{
+1 if η(x) ≥ 0

−1 if η(x) < 0
(28)

Applying the definition of conditional expectation, we find

η(x) = E[Y |X = x] =
∑

y∈{−1,+1}

yP(Y = y|X = x) = −P(Y = −1|X = x)+P(Y = 1|X = x) (29)

Plugging x = 1 into (29) yields

η(1) = −(1− P(Y = 1|X = 1)) + P(Y = 1|X = 1) = −(1− 1

3
) +

1

3
=

−2

3
+

1

3
= −1

3
(30)

Since η(1) = − 1
3 < 0, we know from (28) that

g∗(1) = −1 (31)

Plugging x = 2 into (29) yields

η(2) = −(1− P(Y = 1|X = 2)) + P(Y = 1|X = 2) = −(1− 2

5
) +

2

5
= −3

5
+

2

5
= −1

5
(32)

Since η(2) = − 1
5 < 0, we know from (28) that

g∗(2) = −1 (33)

Plugging x = 3 into (29) yields

η(3) = −(1− P(Y = 1|X = 3)) + P(Y = 1|X = 3) = −(1− 3

4
) +

3

4
= −1

4
+

3

4
=

1

2
(34)

Since η(3) = 1
2 ≥ 0, we know from (28) that

g∗(3) = 1 (35)

Combining (31), (33), and (35) yields

g∗(x) =

{
+1 if x = 3

−1 if x ∈ {1, 2}
(36)

By definition, (36) is the Bayes classifier for this problem.
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3.

Let S be a discrete but possibly infinite subset of R, and consider the infinite family of binary classifiers G

that consists of all functions gz(x) =

{
1 if x = z

−1 if x ̸= z
indexed by z ∈ S, and also includes the classifier g−(x)

that is identically equal to -1. Assume the realizable learning scenario and let (X1, Y1), ..., (Xn, Yn) be the
training data.

(a) Describe the ERM algorithm adapted to this specific case

(b) Show that the class G is PAC learnable despite being infinite.

Hint for part (2): let ĝ be the output of the ERM algorithm. We want to estimate P(L(ĝ) > ε) for some
ε > 0. Consider 3 possibilities: (a) the perfect classifier is g−; (b) the perfect classifier is gzfor some z ∈ S
and the distribution of X is such that P(X = z) ≤ ε; (c) the perfect classifier is gz for some z ∈ S and the
distribution of X is such that P(X = z) > ε.

Solution.

(a) By the definition of Empirical Risk Minimization, and since we assume the realizable learning scenario,
we know that the ERM algorithm will pick a ĝ ∈ G s.t. ĝ(Xi) = Yi for all i ∈ {1, ..., n}.

Note: Since we assumed the realizable learning scenario, we know ∃g∗ ∈ G s.t. P(Y = g∗(X)) = 1 (i.e.
the perfect/ideal classifier). If this classifier is some gzi where zi ∈ S, then we know P(Y = gzj (zi)) = 0
for all zj ∈ S s.t. zj ̸= zi and P(Y = g−(zi)) = 0 since we know gzi(zi) = 1 is the correct classification
of zi while gzj (zi) = g−(zi) = −1 is the incorrect classification of zi. Similarly, if the ideal classifier
g∗ = g−, then we know P(gz(z) = Y ) = 0 for all z ∈ S as g−(z) = 0 is the correct classification of each
z ∈ S while gz(z) = 1 is the incorrect classification. Thus, regardless of the true value of g∗, we know
that only 1 perfect classifier exists.

Since we know there exists only 1 perfect classifier g∗, and no classifier is perfect if Yi = Yj = 1,
Xi ̸= Xj , we know that

|{i ∈ {1, ..., n}|Yi = 1}| ∈ {0, 1}

If |{i ∈ {1, ..., n}|Yi = 1}| = 1, we know there exists a unique i ∈ {1, ..., n} s.t. g∗(Xi) = 1. Since
g−(Xi) = −1 and gz(Xi) = −1 for all z ∈ S s.t. z ̸= Xi, gXi

is the only g ∈ G s.t. g(Xi) = Yi for all
i ∈ {1, ..., n}. Thus, if ∃i ∈ {1, ..., n} s.t. g∗(Xi) = Yi = 1, the ERM algorithm will output ĝ = gXi , as
this is the only classifier consistent with the training data.
Note: This explanation assumes that Xi ̸= Xj for all i ̸= j ∈ {1, ..., n}. However, if we are given dupli-
cate training instances, since we assume all training data is labeled correctly, we know these duplicates
will have the same label. If (Xi, Yi) = (Xj , Yj) for some j ̸= i, then (Xj , Yj) gives us no additional
information about the true distribution of X. Thus, we can simply ignore these duplicates to ensure
|{i ∈ {1, ..., n}|Yi = 1}| ∈ {0, 1} and apply the same logic. If we have duplicates (Xi, 1) and (Xj , 1),
then gXi = gXj , so the ERM algorithm can still always output ĝ = gXi in this case. In general, if
|{i ∈ {1, ..., n}|Yi = 1}| > 1, for all i, j ∈ {i ∈ {1, ..., n}|Yi = 1}, gXi

= gXj
, so ignoring duplicates does

not change the output of the ERM algorithm.

If |{i ∈ {1, ..., n}|Yi = 1}| = 0, the only other possible case, then we know Yi = −1 for all i ∈
{1, ..., n}. Since g−(x) = −1 for all x ∈ R, we know g−(Xi) = −1 = Yi for all i ∈ {1, ..., n}, so g− is
consistent with the training data. Also, by definition, for all gz s.t. z ∈ S, z /∈ {X1, ..., Xn}, we know
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gz(Xi) = −1 = Yi for all i ∈ {1, ..., n}, so all such gz are consistent with the training data. Thus, if
|{i ∈ {1, ..., n}|Yi = 1}| = 0, we know the ERM algorithm will output some

ĝ = g ∈ {g−, gz|z /∈ {X1, ..., Xn}} ⊆ G

as {g−, gz|z /∈ {X1, ..., Xn}} consists of all classifiers in G that are consistent with the training data.

Since ignoring duplicate instances doesn’t change the output of the ERM algorithm, we can assume
|{i ∈ {1, ..., n}|Yi = 1}| ∈ {0, 1}, allowing us to describe all possibilities for the output of the ERM
algorithm with

ĝ =

{
gXi

if |{i ∈ {1, ..., n}|Yi = 1}| = 1

g ∈ {g−, gz|z /∈ {X1, ..., Xn}} if |{i ∈ {1, ..., n}|Yi = 1}| = 0

which completes our description of the ERM algorithm adapted to this case.

(b) First, we will slightly modify the ERM algorithm described in part (a) to make it more deterministic.
This will drastically simplify the following probability calculations. We can do this since, to prove PAC
learnability of a class G, we just need to present one algorithm under which G is PAC learnable.
Once again, since ignoring duplicate instances doesn’t change the output of the ERM algorithm, we can
assume |{i ∈ {1, ..., n}|Yi = 1}| ∈ {0, 1}. We only change the case when |{i ∈ {1, ..., n}|Yi = 1}| = 0.
In such a case, we know that Yi = −1 for all i ∈ {1, .., n}, so we know g−(Xi) = Yi for all i ∈ {1, ..., n}
since g−(x) := −1 for all x ∈ R. Thus, when |{i ∈ {1, ..., n}|Yi = 1}| = 0, we have

P(g−(Xi) ̸= Yi) = 0 (37)

So g− has empirical risk of Ln(g
−) = 0. Since 0 is the minimum possible empirical risk, we know

Ln(g) ≥ Ln(g
−) for all g ∈ G. This allows us to always choose ĝ = g− when |{i ∈ {1, ..., n}|Yi = 1}| = 0

while still minimizing the empirical risk of ĝ across all g ∈ G. Thus, we can describe all possible outputs
of our modified ERM algorithm with

ĝm :=

{
gXi

if |{i ∈ {1, ..., n}|Yi = 1}| = 1

g− if |{i ∈ {1, ..., n}|Yi = 1}| = 0
(38)

where ĝm is the classifier from G which our modified algorithm outputs. Now, given any training data
(X1, Y1), ..., (Xn, Yn), we can determine the modified ERM algorithm’s output with certainty.

To prove PAC learnability, we need to

(i) Present an algorithm A with output ĝ

(ii) Find a sample complexity function n(ε, δ) s.t.

P(L(ĝ) > ε) < δ ∀(ε, δ) ∈ (0, 1)2

for any sample of size n ≥ n(ε, δ), n ∈ Z.

We already completed part (i) by presenting the modified ERM algorithm with output ĝm. Now, we
will complete part (ii) by applying the given hint and splitting the scenario into 3 cases. Let A1 =
the event that the perfect classifier is g−. Let A2 = the event that the perfect classifier is gz for some
z ∈ S and the distribution of X is s.t. P(X = z) ≤ ε. Let A3 = the event that the perfect classifier is
gz for some z ∈ S and the distribution of X is s.t. P(X = z) > ε. Then we have

P(L(ĝm) > ε) = P(L(ĝm) > ε|A1)P(A1) + P(L(ĝm) > ε|A2)P(A2) + P(L(ĝm) > ε|A3)P(A3) (39)

Case 1: The perfect classifier is g−. By the definition of a perfect classifier, we have P(Y ̸= g−(X)|A1) =
0, and we know P(Yi ̸= g−(Xi)) = 1 for all Yi = 1 since g−(x) := −1 for all x ∈ R, so a perfect classifier
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of g− implies that |{i ∈ {1, ..., n}|Yi = 1}| = 0. In this case, the output of our modified ERM algorithm
is ĝm := g−. Thus, if g− is the perfect classifier, our modified ERM algorithm will always output the
perfect classifier. We can easily verify that

L(ĝm|A1) = P(ĝm(X) ̸= Y |A1) = P(g−(X) ̸= Y |A1) = 0

=⇒ P(L(ĝm) > ε|A1) = P(0 > ε) = 0 < δ (40)

for all (ε, δ) ∈ (0, 1)2. Thus, part (ii) is trivially true when the perfect classifier is g−.

Case 2: The perfect classifier is gz for some z ∈ S and the distribution of X is s.t. P(X = z) ≤ ε. Let
A21 = the event that z ∈ {X1, ..., Xn}. Then

P(L(ĝm) > ε|A2) = P(L(ĝm) > ε|A2, A21)P(A21|A2) + P(L(ĝm) > ε|A2, A
c
21)P(Ac21|A2) (41)

(i) Consider the case where z ∈ {X1, ..., Xn}. Then we know z = Xi for some i ∈ {1, ..., n} and
gz(Xi) = Yi = 1 since gz is the perfect classifier and we assume all instances from the training
data are labeled correctly. Since |{i ∈ {1, ..., n}|Yi = 1}| ∈ {0, 1} by assumption, and we know
Yi = 1, we know we have |{i ∈ {1, ..., n}|Yi = 1}| = 1. By definition, the output of our modified
ERM algorithm will be ĝm := gXi = gz. Thus, if gz is the perfect classifier, z ∈ {X1, ..., Xn},
and P(X = z) ≤ ε, our modified ERM algorithm will always output the perfect classifier. We can
easily verify that

L(ĝm|A2, A21) = P(ĝm(X) ̸= Y |A2, A21) = P(gz(x) ̸= Y |A2, A21) = 0

=⇒ P(L(ĝm) > ε|A2, A21) = P(0 > ε) = 0 < δ (42)

for all (ε, δ) ∈ (0, 1)2. Thus, part (ii) of the proof of PAC learnability is trivially true when the
perfect classifier is gz, z ∈ {X1, ..., Xn)}, and P(X = z) ≤ ε.

(ii) Consider now z /∈ {X1, ..., Xn}. Then, assuming all instances from the training data are properly
labeled, we have |{i ∈ {1, ..., n}|Yi = 1}| = 0. This follows from the fact that P(gz(X) = Y ) = 1
and gz(Xi) = −1 for all i ∈ {1, ..., n}. By definition, our modified ERM algorithm will output
ĝm := g−. Note that gz(X) = g−(X) for all X ̸= z. This implies that

L(g−|A2, A
c
21) = P(g−(X) ̸= Y |A2, A

c
21) = P(X = z|A2, A

c
21)

We are given that P(X = z) ≤ ε, so we find

L(g−|A2, A
c
21) ≤ ε

for all ε ∈ (0, 1). Thus,

P(L(g−) > ε|A2, A
c
21) = 1− P(L(g−) ≤ ε|A2, A

c
21) = 1− 1 = 0

We can easily verify that

P(L(ĝm) > ε|A2, A
c
21) = P(L(g−) > ε|A2, A

c
21) = 0 < δ (43)

for all (ε, δ) ∈ (0, 1)2. Thus, part (ii) of the proof of PAC learnability is trivially true when the
perfect classifier is gz, z /∈ {X1, ..., Xn}, and P(X = z) ≤ ε.

Parts (i) and (ii) of Case 2 combine to prove part (ii) of the proof of PAC learnability is trivially true
when the perfect classifier is gz and P(X = z) ≤ ε. Plugging (42) and (43) into (41) yields

P(L(ĝm) > ε|A2) = 0 + 0 = 0 (44)

Case 3: The perfect classifier is gz for some z ∈ S and the distribution of X is s.t. P(X = z) > ε. Let
A31 = the event that z ∈ {X1, ..., Xn}. Note that

P(L(ĝm) > ε|A3) = P(L(ĝm) > ε|A3, A31)P(A31|A3)

+ P(L(ĝm) > ε|A3, A
c
31)P(Ac31|A3) (45)
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(i) Consider z ∈ {X1, .., Xn}. From Case 2, part (i), we know |{i ∈ {1, ..., n}|Yi = 1}| = 1 and z = Xi

for some i ∈ {1, ..., n}. By definition, our modified ERM algorithm will output ĝm := gXi = gz.
Thus, if gz is the perfect classifier, z ∈ {1, ..., n}, and P(X = z) > ε, our modified ERM algorithm
will always output the perfect classifier. We can easily verify that

L(ĝm|A3, A31) = P(ĝm(X) ̸= Y |A3, A31) = P(gz(x) ̸= Y |A3, A31) = 0

=⇒ P(L(ĝm) > ε|A3, A31) = P(0 > ε) = 0 < δ (46)

for all (ε, δ) ∈ (0, 1)2. Thus, part (ii) of the proof of PAC learnability is trivially true when the
perfect classifier is gz, z ∈ {X1, .., Xn}, and P(X = z) > ε.

(ii) Consider z ∈ {X1, ..., Xn}. From Case 2, part (ii), we know |{i ∈ {1, ..., n}|Yi = 1}| = 0. By
definition, our modified ERM algorithm will output ĝm := g−. Note that gz(X) = g−(X) for all
X ̸= z. This implies that

L(g−|A3, A
c
31) = P(g−(X) ̸= Y |A3, A

c
31) = P(X = z|A3, A

c
31)

We are given that P(X = z) > ε, so we find

L(g−|A3, A
c
31) > ε

for all ε ∈ (0, 1). Thus, we know

P(L(ĝm) > ε|A3, A
c
31) = P(L(g−) > ε|A3, A

c
31) = 1 (47)

Plugging (47) and (46) into (45) yields

P(L(ĝm) > ε|A3) = 0 + P(Ac31|A3) (48)

Since we are given (via A3) that P(X = z) > ε, we know P(X ̸= z|A3) = 1 − P(X = z|A3) < 1 − ε.
Since X1, ..., Xn are independent and identically distributed, we know

P(Ac31|A3) = P(z /∈ {X1, ..., Xn}|A3) = P(X1 ̸= z, ...., Xn ̸= z|A3) = P(X1 ̸= z|A3)
n < (1− ε)n (49)

Plugging (49) into (48) yields

P(L(ĝm) > ε|A3) < (1− ε)n (50)

Plugging (50), (44), and (40) into (39) yields

P(L(ĝm) > ε) = P(L(ĝm) > ε|A3)P(A3) (51)

Applying the fact that P(A3) ≤ 1 by the axioms of probability, along with the bound from (50), we
have

P(L(ĝm) > ε) ≤ P(L(ĝm) > ε|A3) < (1− ε)n

Note that

(1− ε)n < δ ⇐⇒ nln(1− ε) < ln(δ) ⇐⇒ n >
ln(δ)

ln(1− ε)

with the last inequality following from the fact that ln(1− ε) < 0 for all ε ∈ (0, 1). Thus, to guarantee
that

P (L(ĝm) > ε) < (1− ε)n < δ

for any (ε, δ) ∈ (0, 1)2, we just need to ensure

n >
ln(δ)

ln(1− ε)

This completes the proof that G is PAC learnable under the modified ERM algorithm with output ĝm
and sample complexity

n > n(ε, δ) =
ln(δ)

ln(1− ε)

for all (ε, δ) ∈ (0, 1)2 where n ∈ N.
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4.

The goal of this exercise is to prove Hoeffding’s inequality. Do as many parts as you can, and feel free to
skip the steps you are uncertain about (you may just assume that they are true and move on to the next
steps). Let X1, ..., Xn be i.i.d. random variables such that E[X1] = 0 and a ≤ X1 ≤ b with probability 1.

(a) Demonstrate that a ≤ 0 and b ≥ 0.

(b) For the rest of the problem, we will assume that b-a =1 (if not, replace Xj by
Xj

b−a for all j). Let λ > 0

be any positive number. Then the function f(x) = eλx is convex, meaning that

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

for any x,y and α ∈ [0, 1]. (You don’t need to prove it). Write

X = (b−X)︸ ︷︷ ︸
=α

·a+ (X − a)︸ ︷︷ ︸
=1−α

·b

and demonstrate that

E[eλX ] ≤ e−λ(−a)b+ eλb(−a) = e−λ(1−b)b+ eλb(1− b) = eλb(1− b+ be−λ)

(c) Let
F (λ) = ln(eλb(1− b+ be−λ))

(log with base e). Show that F ′(0) = 0 and that F”(0) ≤ 1
4 for any b ∈ [0, 1]. Conclude from this and

the Taylor’s expansion that

F (λ) ≤ λ2

8

(d) So far, we’ve shown that E[eλx] ≤ e
λ2

8 . Now recall Markov’s inequality: For any positive random

variable Z, P(Z ≥ t) ≤ E[Z]
t . Use it to show that

P(X1 + · · ·+Xn ≥ t) = P(eλ(X1+...+Xn) ≥ eλt) ≤ E[eλ(X1+...+Xn)]e−λt

Note that this bound is valid for any λ > 0.

(e) Show, using independence, that E[eλ(X1+···+Xn)] ≤ e
nλ2

8 .

(f) Finally, combine parts (d) and (e) and choose the value of λ that minimizes E[eλ(X1+···+Xn)]e−λt, and
write the resulting bound for

P(X1 + · · ·+Xn ≥ t)

Congratulations, you have just proven Hoeffding’s inequality.

Solution.

(a) First, we will prove a ≤ 0. Assume to the contrary that a > 0. Then

P(a ≤ X ≤ b) = 1 =⇒ P(X < a) = 0 =⇒ P(X < 0 < a) = 0

since (X < 0) ⊆ (X < a) =⇒ P(X < 0) ≤ P(X < a) = 0 and P(X < 0) ≥ 0 by the axioms
of probability. Let D+ be the set of values which X can take with nonzero probability under the
assumption a > 0. Then ∀d ∈ D+, we know d > 0. If X is discrete, we have

E[X] =
∑
d∈D+

dP(X = d) >
∑
d∈D+

0 = 0
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since P(X = d) ≥ 0 by the axioms of probability, but we are given

E[X] = 0 ̸> 0

so we have derived a contradiction. This completes the proof that a ≤ 0 for discrete X. If X is a
continuous random variable, we know D+ = [a, b], so

E[X] =

∫ b

a

xfX(x)dx >

∫ b

a

0dx = 0

since x > 0 for all 0 < a ≤ x ≤ b and fX(x) ≥ 0 by definition of the probability density function. One
again, since we are given

E[X] = 0 ̸> 0

we have derived a contradiction. This completes the proof that a ≤ 0 for continuous X, and combines
with the previous proof for discrete X to prove that a ≤ 0 for all random variables X.
Now, we will prove b ≥ 0. Similarly, assume to the contrary that b < 0. Then

P(a ≤ X ≤ b) = 1 =⇒ P(X > b) = 0 =⇒ P(X > 0 > b) = 0

since (X > 0) ⊆ (X > b) =⇒ P(X > 0) ≤ P(X > b) = 0 and P(X > 0) ≥ 0 by the axioms of
probability. Now, define D− to be the set of values which X can take with nonzero probability under
the assumption b < 0. Then ∀d ∈ D−, we know d < 0. If X is discrete, we have

E[X] =
∑
d∈D−

xP(X = x) <
∑
d∈D−

0 = 0

since P(X = x) ≥ 0 by the axioms of probability. Since we are given

E[X] = 0 ̸> 0

we have derived a contradiction. This completes the proof that b ≥ 0 for all discrete X. If X is
continuous, then D− = [a, b], so we have

E[X] =

∫ b

a

xfX(X)dx <

∫ b

a

0dx = 0

since x < 0 for all a ≤ x ≤ b < 0 and fX(x) ≥ 0 by the definition of the probability mass function.
Again, since we are given

E[X] = 0 ̸> 0

we have derived a contradiction, which completes the proof that b ≥ 0 for all continuous X, and
combines with the previous proof to complete the proof that b ≥ 0 for all random variables X.

(b) Note that a ≤ X ≤ b with probability 1 combines with our assumption that b− a = 1 to imply

b− b = 0 ≤ b−X ≤ b− a = 1 a− a = 0 ≤ X − a ≤ b− a = 1

Thus, we can write
f(x) = f((b−X)︸ ︷︷ ︸

=α

·a+ (X − a)︸ ︷︷ ︸
=1−α

·b)

and apply the fact that f(x) is a convex function and

X = αx+ (1− α)y

with α = b−X, x = a, and y = b to find

f(X) = eλX = f(αx+ (1− α)y) = f((b−X)a+ (X − a)b)

≤ αf(x) + (1− α)f(y) = (b−X)eλa + (X − a)eλb = beλa −Xeλa +Xeλb − aeλb (52)
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Taking the expectation of (52) yields

E[f(X)] = E[eλX ] ≤ E[beλa −Xeλa +Xeλb − aeλb] (53)

Applying Linearity of Expectation and the fact that E[X] = 0 to (53) yields

E[eλX ] ≤ beλa − eλaE[X] + eλbE[X]− aeλb = beλa − aeλb = eλab+ eλb(−a) (54)

Noting that λa = −λ(−a), −a = 1− b, and simplifying (54) yields

E[eλX ] ≤ e−λ(−a)b+ eλb(−a) = e−λ(1−b)b+ eλb(1− b) = eλb(1− b+ be−λ)

which completes the proof for part (b).

(c) First, we will show that F ′(0) = 0. First, note that, since ln(ab) = ln(a) + ln(b), for nonnegative
numbers a, b ∈ R, and eλb ≥ 0 for all b ∈ [0, 1], λ and (1− b+ be−λ) ≥ 0 for all b ∈ [0, 1], λ, we have

F (λ) = ln(eλb(1− b+ be−λ) = ln(eλb) + ln(1 + b+ be−λ) = λb+ ln(1 + b+ be−λ) (55)

Differentiating (55) with respect to λ yields

F ′(λ) =
d

dλ
(λb) +

d

dλ
(ln(1− b+ be−λ)) = b+

−be−λ

1− b+ be−λ
(56)

Evaluating (56) at λ = 0 yields

F ′(0) = b+
−b · 1

1− b+ b · 1
= b+

−b
1− b+ b

= b+
−b
1

= b− b = 0

which completes the proof that F ′(0) = 0.
Now, we will show that F”(0) ≤ 1

4 for all b ∈ [0, 1]. Differentiating (56) with respect to λ yields

F”(λ) =
d

dλ
(b+

−be−λ

1− b+ be−λ
) =

d

dλ
(

−be−λ

1− b+ be−λ
) =

be−λ(1− b+ be−λ)− (−be−λ)(−be−λ)
(1− b+ be−λ)2

(57)

Simplifying the numerator of (57) yields

be−λ(1−b+be−λ)−(−be−λ)(−be−λ) = be−λ−b2e−λ+b2e−2λ−b2e−2λ = be−λ−b2e−λ = (1−b)be−λ (58)

Plugging (58) into (57) yields

F”(λ) =
(1− b)be−λ

(1− b+ be−λ)2
(59)

Evaluating (59) at λ = 0 yields

F”(0) =
(1− b)b · 1

(1− b+ b · 1)2
=

(1− b)b

1− b+ b
= (1− b)b (60)

Note that
(1− b)b = −b2 + b

is a quadratic in b opening down with global maximum found when d
db (−b

2 + b) = 0. We can easily
compute

d

db
(−b2 + b) = −2b+ 1 = 0 =⇒ −2b = −1 =⇒ b =

1

2

so we know

F”(0) = −b2 + b ≤ −(
1

2
)2 +

1

2
= −1

4
+

1

2
=

1

4
(61)
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This completes the proof that F”(0) ≤ 1
4 for all b ∈ [0, 1]. Applying the Taylor expansion of F (λ) at

a = 0 yields

F (λ) = F (0) + λF ′(0) +
λ2

2
F”(c) (62)

where c ∈ R s.t. 0 ≤ c ≤ λ. Thus, to get an upper bound for F (λ), we need to find an upper bound
for F”(λ) for all λ ∈ R. By the AMGM inequality, we know

x+ y

2
≥ √

xy (63)

for all x, y ∈ R. Setting x = (1− b), y = be−λ and applying (63), we find√
(1− b)be−λ ≤ (1− b) + be−λ

2

=⇒ (1− b)be−λ ≤ (1− b+ be−λ)2

4

=⇒ F”(λ) =
(1− b)be−λ

(1− b+ be−λ)2
≤ 1

4
(64)

for all λ ∈ R. Noting that F (0) = ln(1 · (1)) = 0 and plugging (64) and F ′(0) = 0 into (62) yields

F (λ) = F (0) + λF ′(0) +
λ2

2
F”(c) =

λ2

2
F”(c) ≤ λ2

2

1

4
=
λ2

8
(65)

This completes the proof that F (λ) ≤ λ2

8 for all λ ∈ R.

(d) Note that
X1 + · · ·+Xn ≥ t ⇐⇒ eλ(X1+···+Xn) ≥ eλt

so we can write
P(X1 + · · ·+Xn ≥ t) = P(eλ(X1+···+Xn) ≥ eλt) (66)

Since ex ≥ 0 for all x ∈ R, we can apply Markov’s inequality with t = eλt to (66) to find

P(X1 + · · ·+Xn ≥ t) ≤ E[eλ(X1+···+Xn)]

eλt
= E[eλ(X1+···+Xn)]e−λt (67)

This completes the proof that

P(X1 + · · ·+Xn ≥ t) = P(eλ(X1+···+Xn) ≥ eλt) ≤ E[eλ(X1+···+Xn)]e−λt

for all λ > 0.

(e) First, note that
eλ(X1+···+Xn) = eλX1+···+λXn = eλX1 · · · eλXn (68)

Since X1, ...., Xn are independent, and eλXi depends only on Xi and is independent of Xj for i ̸= j ∈
{1, ..., n}, we know eλX1 , ..., eλXn are independent. For all independent random variables X1, ..., Xn,
we know

E[X1 · · ·Xn] = E[X1] · · ·E[Xn] (69)

Applying (69) to (68) yields

E[eλ(X1+···+Xn)] = E[eλX1 ] · · ·E[eλXn ] (70)

Since X1, ..., Xn are identically distributed, we know

E[eλX1 ] = · · · = E[eλXn ] (71)
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Plugging (71) into (70) yields

E[eλ(X1+···+Xn)] = (E[eλX1 ])n (72)

We know from part (c) that E[eλX ] ≤ eF (λ) ≤ e
λ2

8 . Plugging this into (72) yields

E[eλ(X1+···+Xn)] ≤ (e
λ2

8 )n = e
nλ2

8

which completes the proof for (e).

(f) From part (d), we know

P(X1 + · · ·+Xn ≥ t) ≤ E[eλ(X1+···+Xn)]e−λt (73)

for all λ > 0, which means (73) holds for

λ∗ := λ ∈ R s.t. E[eλ(X1+···+Xn)]e−λt is minimized over all λ > 0.

Plugging λ∗ for λ in (73) yields

P(X1 + · · ·+Xn ≥ t) ≤ E[eλ
∗(X1+···+Xn)]e−λ

∗t (74)

By the definition of λ∗, we know

E[eλ
∗(X1+···+Xn)]e−λ

∗t ≤ E[eλ(X1+···+Xn)]e−λt (75)

for all λ > 0. Thus, we can let λ = 4t
n > 0 for all t, n > 0 and apply (75) and the result from part (e)

to (74) to find

P(X1 + · · ·+Xn ≥ t) ≤ E[eλ(X1+···+Xn)]e−λt ≤ e
nλ2

8 −λt = e
16nt2

8n2 − 4t2

n = e
2t2

n − 4t2

n = e
−2t2

n (76)

By symmetry, we have

P(−(X1 + · · ·+Xn) ≥ t) = P(X1 + · · ·+Xn) ≤ −t) ≤ e
−2t2

n (77)

so we know

P(|X1 + · · ·+Xn| ≥ t) = P(X1 + · · ·+Xn) ≤ −t) + P(X1 + · · ·+Xn) ≥ t) ≤ 2e
−2t2

n (78)

Note that

P(|X1 + · · ·+Xn| ≥ t) = P(|X1 + · · ·+Xn

n
| ≥ t

n
) (79)

Hoeffding’s inequality follows from letting t = nt1 to find

P(|X1 + · · ·+Xn

n
| ≥ t1) ≤ 2e

−2(nt1)2

n = 2e
−2n2t21

n = 2e−2nt21 (80)

Noting that

2e−2nt21 = 2e
−2nt21
(b−a)2

since we assume b− a = 1 completes the proof of Hoeffding’s inequality.
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Assignment 3

MATH 447: Homework 3

Read chapter 6 of the textbook “Understanding Machine Learning.” Then do the following problems:

1. Let G be a base class such that |G| < ∞, that is, G has finitely many elements. Does G have finite
Vapnik-Chervonenkis (VC) dimension? If so, give an upper bound for VC(G). If not, provide an
example.

Solution.
Claim: G does have finite VC dimension, and V C(G) ≤ log2(|G|) <∞.
Proof. For any collection of instances C = {x1, ..., xn} of size |C| = n, G shatters C ⇐⇒

|GC | = |{(g(x1), ..., g(xn)) : g ∈ G}| = 2n

That is, G only shatters C if for all C1 ⊆ C, ∃g ∈ G such that g(x) = +1 for all c ∈ C1 and g(x) = −1
for all c ∈ C ∖ C1. For any fixed C, the subsets A ⊆ C and C ∖ A such that g(x) = +1 for all
c ∈ A and g(x) = −1 for all c ∈ C ∖ A are fixed. Thus, each g ∈ G will correspond to exactly
one sequence (g(x1), ..., g(xn)) (A consists of the xi’s mapped to +1 by g, while C ∖ A consists of
all other xi ∈ C). There are exactly 2n subsets A ⊆ C, |C| = n, so there are 2n possible sequences
(s1, ..., sn) ∈ {−1,+1}n, and each g corresponds to exactly one such sequence, so to produce all 2n

sequences using only g ∈ G (and thus to have |GC | = 2n), we must have at least 2n unique classifiers
g ∈ G. That is, we must have

|G| ≥ 2n

By the definition of VC dimension,

V C(G) := max{n ∈ N : τG(n) = 2n}

and by the definition of the growth function τG(n), we know

τG(n) = 2n ⇐⇒ ∃ a collection of instances C s.t. |C| = n and |GC | = 2n

Consider the maximum size collection C such that |C| = n, |GC | = 2n. By definition, the VC dimension
of G is the size of this collection C, so n = V C(G). We just showed that for any such C where |C| = n
and |GC | = 2n, |G| ≥ 2n. Thus,

|G| ≥ 2V C(G)

Taking log2 of both sides yields

log2(|G|) ≥ log2(2
V C(G)) = V C(G)

We are given |G| <∞, so we know log2(|G|) <∞, so we can provide a finite upper bound for the VC
dimension of G with

V C(G) ≤ log2(|G|) <∞

This completes the proof that if |G| < ∞, then G has finite VC dimension, upper bounded by
log2(|G|) <∞.

2. (a) Let S be an infinite discrete set, and consider the family of binary classifiers G that consists of all

functions gz(x) =

{
1, x = z,

−1, x ̸= z,
indexed by z ∈ S, and also includes the classifier g−(x) that is

identically equal to −1. In the previous homework, you showed that this class is PAC learnable.
Find the VC dimension of the class G using the definition of VC dimension.
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(b) Let k > 1 be a fixed integer, and consider the set G of all binary classifiers g such that g takes
value +1 in exactly k points. What is the VC dimension of G?

Solution.

(a) Claim: The VC dimension of G is V C(G) = 1.
Proof. By definition of the VC dimension,

V C(G) := max{n ∈ N : τG(n) = 2n}

where τG is the growth function of the family G. Thus, to prove that V C(G) = 1, we just need
to:
i) Find a set of instances C such that |C| = 1 and |GC | = 21 = 2 (find a set of size 1 such that G
shatters C).
ii) Prove that for all sets C such that |C| = 1 + 1 = 2, |GC | < 22 = 4 (show all sets of size 1+1
are not shattered by G.
First, consider a set C = {x} such that x ∈ S. Then gx ∈ G and (gx(x1), ..., gx(xn)) = gx(x) = +1.
Also, g− ∈ G and (g−(x1), ..., g

−(xn)) = g−(x) = −1. Thus, we have

GC = {(g(x1), ..., g(xn))|g ∈ G} = {(+1), (−1)}

so
|GC | = 2 = 21

so G shatters C. This completes the first part of the proof.
Now, consider an arbitrary set C = {x1, x2}. Since

|GC | = 22 = 4

⇐⇒ GC = {(g(x1), ..., g(xn))|g ∈ G} = {(+1,+1), (−1,−1), (+1,−1), (−1,+1)}

it suffices to show that (g(x1), ..., g(xn)) = (g(x1), g(x2)) ̸= (+1,+1) for all g ∈ G.
If x1 /∈ S, then gx1

/∈ G, so for all g ∈ G, g(x1) = −1 ̸= +1, so (g(x1), g(x2)) ̸= (+1,+1) for all
g ∈ G.
If x2 /∈ S, then gx2 /∈ G, so for all g ∈ G, g(x1) = −1 ̸= +1, so (g(x1), g(x2)) ̸= (+1,+1) for all
g ∈ G.
If both x1, x2 ∈ S, then gx1

, gx2
∈ G, but gx1

(x2) := −1 ̸= +1 and gx2
(x1) = −1 ̸= +1, and for

all other g ∈ G, g(x1) = g(x2) = −1 ̸= +1, so for all g ∈ G, (g(x1), g(x2)) ̸= (+1,+1).
Thus, regardless of the composition of S, we know (g(x1), g(x2)) ̸= (+1,+1) for all g ∈ G, so we
know |GC | < 4 for all C = {x1, x2} (i.e. all C such that |C| = 2). This completes the proof that
G cannot shatter any collection C of size |C| = 2.
We already found a set C of size |C| = 1 such that G shatters C, so this completes the proof that
the VC dimension of G is

V C(G) = 1

(b) Claim: The VC dimension of G is V C(G) = k.
Proof. Once again, by the definition of the VC dimension, to prove

V C(G) := max{n ∈ N : τG(n) = 2n} = k

we must:
i) Find a collection C = {x1, ..., xk} of size k such that G shatters C (i.e. |GC = 2k)
ii) Show that all collections C = {x1, ..., xk+1} of size k + 1 are not shattered by G (i.e. |GC | <
2k+1).
First, we will show part (i). Consider any arbitrary collection of points C = {x1, ..., xk} of size k.
Pick another arbitrary collection of points D = {y1, ..., yk} of size k such that

C ∩D = ∅
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Note that, since G is defined to consist of all binary classifiers g taking value +1 in exactly k
points, we know ∃gC ∈ G such that

gC(x) =

{
+1 for all x ∈ C

−1 otherwise

and ∃gD ∈ G such that

gD(x) =

{
+1 for all x ∈ D

−1 otherwise

Consider any arbitrary subset A ⊆ C where |A| = i for some i ∈ {0, ..., k} (i.e. all subsets of C
including ∅ and C itself). Arbitrary pick B ⊆ D such that |B| = k− i. Then |A∪B| = k because
A ⊆ C, B ⊆ D, and C ∩D = ∅. By the definition of G, we know ∃gA∪B ∈ G such that

gA∪B(x) =

{
+1 for all x ∈ A ∪B
−1 otherwise

Since B ∩ C = ∅, for all x ∈ C, we have

gA∪B(x) =

{
+1 for all x ∈ A

−1 for all x ∈ C ∖A

Since this holds for arbitrary A ⊆ C of size |A| = i ∈ {0, ..., k}, we know it holds for all 2k subsets
A ⊆ C. Since

(gA1∪B1(x1), ..., gA1∪B1(xk)) ̸= (gA2∪B2(x1), ..., gA2∪B2(xk))

for all A1 ̸= A2, and there are 2k distinct subsets A ⊆ C, we know we can produce 2k distinct
sequences (g(x1), ..., g(xk)) using only g ∈ G. Thus, we know

|GC | := |{(g(x1), ..., g(xk)|g ∈ G}| = 2k

which completes the proof that G shatters all C of size |C| = k.
Now, consider an arbitrary C of size |C| = k + 1. Since there are exactly 2k+1 sequences of signs
of the form (s1, ..., sk+1) ∈ {−1,+1}k+1, to prove

|GC | := |{(g(x1), ..., g(xk+1))|g ∈ G}| < 2k+1

it suffices to show that (g(x1), ..., g(xk+1)) ̸= (+1, ...,+1) = (s1, ..., sk+1) for all g ∈ G (i.e. no
g ∈ G can map all k+1 x ∈ C to +1). By definition of G, for all g ∈ G, we know g(x) = +1 only
for all x ∈ A where A is a set of size k. Thus, regardless of the specific points in C, for all g ∈ G,
we have

|{g(x)|g(x) = +1 x ∈ C}| = |{s|s ∈ (g(x1), ..., g(xk+1)) s = +1}| =≤ k

However, by definition, in the sequence of k + 1 +1’s (s1, ..., sk+1) = (+1, ...,+1),

|{s|s ∈ (s1, ..., sk+1) s = +1}| = k + 1

Thus,
|{g(x)|g(x) = +1 x ∈ C}| ≠ |{s|s ∈ (s1, ..., sk+1) s = +1}|

for all g ∈ G (fixing (s1, ..., sk+1) = (+1, ...,+1)), so

(g(x1), ..., g(xk)) ̸= (+1, ...,+1) = (s1, ..., sk+1) ∈ {−1,+1}k+1

for all g ∈ G. This implies
|GC | < 2k+1
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for all C of size |C| = 2k+1, which completes the proof that all C of size k + 1 are not shattered
by G.
Since we already proved G shatters all sets C of size |C| = k, this completes the proof that the
VC dimension of G is

V C(G) = k

3. Let G = {gr, r ≥ 0} be the set of binary classifiers where gr : R
2 → R is defined as

gr(x) =

{
1, ∥x∥2 ≤ r,

−1, ∥x∥2 > r.

In other words, gr(x) = 1 inside a circle of radius r. Show that VC(G) = 1.

Solution.
By the definition of VC dimension, to show

V C(G) := max{n ∈ N : τG(n) = 2n} = 1

we just need to:
i) Find a set C = {x1} of size |C| = 1 such that G shatters C (i.e. |GC | = 21 = 2).
ii) Show that all sets C = {x1, x2} of size |C| = 2 are not shattered by G (i.e. |GC | < 22 = 4).
First, we will find a set C = {x1} of size |C| = 1 such that |GC | = 2. Consider C = {x1} = {(0, 2)}
and let r1 = 1, r2 = 4. Then gr1(x1) = −1 because ||x1||2 =

√
02 + 22 = 2 > r1 = 1 and gr2(x1) = 1

because ||x1||2 = 2 ≤ r2 = 4. So (−1) ∈ GC and (+1) ∈ GC , so

GC := {(g(x1), ...., g(xn))|g ∈ G} = {(g(x1))|g ∈ G} = {(−1), (+1)}

so |GC | = 2, which completes the proof that G shatters C.
Now, we will show all sets C = {x1, x2} of size |C| = 2 are not shattered by G. Consider an arbitrary
such C = {x1, x2}. It suffices to find a sequence (s1, s2) ∈ {−1,+1}2 such that (g(x1), g(x2)) ̸= (s1, s2)
for all g ∈ G.
If ||x1||2 = ||x2||2, then gr(x1) = gr(x2) for all r ≥ 0 (i.e. for all g ∈ G), so (gr(x1), gr(x2)) ∈
{(+1,+1), (−1,−1)}. Thus, for all g ∈ G (all r ≥ 0), we have

(gr(x1), gr(x2)) ̸= (−1,+1) = (s1, s2) ∈ {−1,+1}2

If ||x1||2 < ||x2||2, then gr(x2) = +1 =⇒ r ≥ ||x2||2 > ||x1||2 =⇒ gr(x1) = +1. So gr(x1) =
−1, gr(x2) = +1 is impossible. Thus, for all g ∈ G (all r ≥ 0), we have

(gr(x1), gr(x2)) ̸= (−1,+1) = (s1, s2) ∈ {−1,+1}2

Similarly, if ||x2||2 < ||x1||2, then gr(x1) = +1 =⇒ r ≥ ||x1||2 > ||x2||2 =⇒ gr(x2) = +1 for all
g ∈ G ( r ≥ 0). So gr(x1) = +1, gr(x2) = −1 is impossible. Thus, for all g ∈ G, we have

(gr(x1), gr(x2)) ̸= (+1,−1) = (s1, s2) ∈ {−1,+1}2

Regardless of the relative values of ||x1||2 and ||x2||2, we can always find a sequence (s1, s2) ∈ {−1,+1}2
such that (g(x1), g(x2)) ̸= (s1, s2) for all g ∈ G. Thus, regardless of the composition of C = {x1, x2},
we always have

|GC | < 4

which completes the proof that all sets C of size |C| = 2 are not shattered by G.
Since we already found a set C of size |C| = 1 that G does shatter, this completes the proof that
V C(G) = 1.

4. Consider the set of all circles on the plane (not only the ones centered at the origin), and a set of
binary classifiers that take value +1 inside the circles and -1 outside. We want to show that this class
G of binary classifiers has VC dimension 3:
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(a) First, consider the class G1 of binary classifiers that take values +1 and -1 on half-planes corre-
sponding to all lines of the form {(x, y) : ax+ by+ c = 0, a, b, c ∈ R, either a or b ̸= 0} (namely,
half-planes are the regions above and below the lines). Show that VC dimension of G can not be
larger than the VC dimension of G1.
(hint: assume that a collection of points M = {x1, . . . , xk} is shattered by the circles. It means that for any subset

M1 of M , there exists a circle that contains only M1 and another circle that contains only M ∖M1. Note that if

these two circles intersect, there can not be any points from M in the intersection. Now try to find two half-planes

with the same property - one that contains only M1 and another - only M ∖M1. Drawing a picture will help!)

(b) Show, using the theorem we proved in class, that VC dimension of G1 is 3 and deduce that
VC(G) ≤ 3.

(c) Find a set of 3 points shattered by G. State your conclusion.

(d) (*bonus) Now try to follow a similar approach to find the VC dimension of the class of binary
classifiers that take value +1 inside the sphere in 3-dimensional space.

Solution.
First, define

L := {f : R2 → R|f(x, y) = ax+ by + c, a, b, c ∈ R}

This definition will hold for parts (a), (b), and (c).

(a) We want to show that V C(G) ≤ V C(G1). Note that

G := {gC |C ∈ R2}

where C is a circle in R2 of the form

{(x, y) ∈ R2|(x− a)2 + (y − b)2 ≤ r2 a, b, r ∈ R}

and

gC(x, y) :=

{
+1 if (x, y) ∈ C

−1 otherwise

Consider any set of points M ⊆ R2, M := {m1, ...,mn} = {(x1, y1), ..., (xn, yn)} such that G
shatters M . This is true if and only if for all M1 ⊆ M , ∃ a circle C1 such that gC1

(m) = +1 for
all m ∈ M1, gC1

(m) = −1 for all m ∈ M ∖M1 and a circle C2 such that gC2
(m) = +1 for all

m ∈ M ∖M1, gC2
(m) = −1 for all m ∈ M1. Since gC(m) = +1 only when m ∈ C by definition,

we know G shatters M ⇐⇒ ∃C1, C2 ⊆ R2 s.t. M1 ⊆ C1, (M ∖M1) ⊆ C2, and C1 ∩C2 ∩M = ∅
for all M1 ⊆M .
Claim: If ∃C1, C2 ⊆ R2 s.t. M1 ⊆ C1, (M ∖M1) ⊆ C2, and C1 ∩ C2 ∩M = ∅ for all M1 ⊆ M ,
then ∃f(x, y) ∈ L such that M1 ⊆ {(x, y)|f(x, y) > 0}, M ∖M1 ⊆ {(x, y)| − f(x, y) > 0}, and
M ∩ {(x, y)|f(x, y) > 0} ∩ {(x, y)| − f(x, y) > 0} = ∅.
Proof. First, we note that

M ∩ {(x, y)|f(x, y) > 0} ∩ {(x, y)| − f(x, y) > 0}
⊆ {(x, y)|f(x, y) > 0} ∩ {(x, y)| − f(x, y) > 0}
= {(x, y)|f(x, y) > 0} ∩ {(x, y)|f(x, y) < 0} = ∅

so M ∩ {(x, y)|f(x, y) > 0} ∩ {(x, y)| − f(x, y) > 0} = ∅ is trivially true for all f and all M since,
for all (x, y) ∈ R2, f(x, y) > 0 =⇒ f(x, y) ̸< 0. Thus, it suffices to show, If ∃C1, C2 ⊆ R2

s.t. M1 ⊆ C1, (M ∖M1) ⊆ C2, and C1 ∩ C2 ∩M = ∅ for all M1 ⊆ M , then ∃f ∈ L such that
M1 ⊆ {(x, y)|f(x, y) > 0}, and M ∖M1 ⊆ {(x, y)| − f(x, y) > 0}. We will break this into three
cases:

Case 1: |C1 ∩ C2| = 0. Let (X1, Y1) be the center of C1 and (X2, Y2) be the center of C2.
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Let r1 = the radius of C1 and r2 = the radius of C2. Consider the line through (X1, Y1) and
(X2, Y2). If we write the line as

{(x, y) ∈ R2|y = mx+ e}

then we know m = Y2−Y1

X2−X1
, so we can quickly compute that

Y1 =
Y2 − Y1
X2 −X1

X1 + e =⇒ e = Y1 −
Y2 − Y1
X2 −X1

X1

so the line that passes through (X1, Y1) and (X2, Y2) (the centers of both circles) is

L1 := {(x, y) ∈ R2|y =
Y2 − Y1
X2 −X1

x+ Y1 −
Y2 − Y1
X2 −X1

X1}

Let A = (X1, Y1) and B = (X2, Y2). Consider the line segment AB.

Claim: |AB| > r1 + r2.
Proof: Assume to the contrary that |AB| ≤ r1 + r2. Note that

|AB| =
√
(X2 −X1)2 + (Y2 − Y1)2

. Fix a point D = (X,Y ) such that |AC| =
√

(X −X1)2 + (Y − Y1)2 = r1. Since |AB| =
|AC|+ |CB|, we have√

(X2 −X1)2 + (Y2 − Y1)2 =
√
(X −X1)2 + (Y − Y1)2 +

√
(X2 −X)2 + (Y2 − Y )2

= r1 +
√
(X2 −X)2 + (Y2 − Y )2

which directly implies that√
(X2 −X)2 + (Y2 − Y )2 =

√
(X2 −X1)2 + (Y2 − Y1)2 − r1 ≤ r1 + r2 − r1 = r2

with the last equality following by assumption.
For all (x, y) ∈ R2 such that

√
(x−X1)2 + (y − Y1)2 ≤ r1, we know (x, y) ∈ C1. Similarly, for

all (x, y) ∈ R2 such that
√
(x−X2)2 + (y − Y2)2 ≤ r2, we know (x, y) ∈ C2. Thus, we have

(X,Y ) ∈ C1 and (X,Y ) ∈ C2, so (X,Y ) ∈ C1 ∩ C2. But, by the definition of Case 1, we know
C1 ∩ C2 = ∅ =⇒ ∀(x, y) ∈ R2(x, y) ̸∈ C1 ∩ C2, so we have a contradiction. This completes the
proof that |AB| > r1 + r2.

Since |AB| > r1 + r2, we can split AB into three segments, AD1, D1D2, D2B, such that
|AD1| = r1, D2B = r2, and |D1D2| > 0. Thus, for all points (x, y) on D2D1, we know (x, y) is
more than r1 from the center of C1 and more than r2 from the center of C2, so (x, y) /∈ C1 ∪ C2.
Arbitrarily pick such an (x∗, y∗) on D1D2 and consider the line orthogonal to AB that passes
through (x∗, y∗). Call this line

L2 := {(x, y) ∈ R2|y = m2x+ e2 m2, e2 ∈ R}

Then m2 = − 1
m = −X2−X1

Y2−Y1
so we can easily compute

e2 = y∗ −m2x
∗ = y∗ +

X2 −X1

Y2 − Y1
x∗

so

L2 := {(x, y) ∈ R2|y = −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}
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Since L2 and L1 are orthogonal, the closest point on L2 to C1 is the closest point on L2 to C2

which is (x∗, y∗), the point of intersection of L2 and L1. Since (x∗, y∗) /∈ C1 ∪ C2, we know that
for all (x, y) ∈ L2, (x, y) /∈ C1 ∪ C2, so

C1 ∪ C2 ⊆ {(x, y)|y ̸= −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

= {(x, y)|y < −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

∪ {(x, y)|y > −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

Since L2 intersects AB, which passes between the center of C1 and the center of C2, we know

C1 ⊆ {(x, y)|y < −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

and

C2 ⊆ {(x, y)|y > −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

or

C2 ⊆ {(x, y)|y < −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

and

C1 ⊆ {(x, y)|y > −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

. Assume without loss of generality that

C1 ⊆ {(x, y)|y < −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

and

C2 ⊆ {(x, y)|y > −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

Then M1 ⊆ C1 =⇒

M1 ⊆ {(x, y)|y < −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

and M ∖M1 ⊆ C2 =⇒

M ∖M1 ⊆ {(x, y)|y > −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

which completes the proof for Case 1.

Case 2: |C1 ∩ C2| = 1. Define L1, (X1, Y1), (X2, Y2), AB, r1 and r2 as in Case 1. Then rede-
fine (x∗, y∗) such that {(x∗, y∗)} = C1 ∩ C2, and the line orthogonal to L1 that passes through
(x∗, y∗) is L2 as defined before (now in terms of the redefined (x∗, y∗)). Once again, since L2 is
orthogonal to L1, we know the closest point on L2 to C1 is the closest point on L2 to C2 which
is (x∗, y∗) (the intersection of L1 and L2). Since {(x∗, y∗)} = C1 ∩ C2, we know (x∗, y∗) is on
the boundary of both C1 and C2 (otherwise |C1 ∩ C2| > 1 =⇒ {(x∗, y∗)} ≠ C1 ∩ C2). Thus,√

(X1 − x∗)2 + (Y1 − y∗)2 = r1 and
√
(X2 − x∗)2 − (Y2 − y∗)2 = r2, so for all (x, y) ∈ L2 such

that (x, y) ̸= (x∗, y∗), we have
√
(X1 − x)2 + (Y1 − y)2 > r1 and

√
(X2 − x)2 + (Y2 − y)2 > r2,

so (x, y) /∈ C1 ∪ C2. Since L2 only intersects C1 at {(x∗, y∗)} = C1 ∩ C2 and L2 only intersects
C2 at {(x∗, y∗)} = C1 ∩ C2, and L2 intersects AB we know either

C1 ∩ Cc2 ⊆ {(x, y)|y < −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}
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and

C2 ∩ Cc1 ⊆ {(x, y)|y > −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

or

C2 ∩ Cc1 ⊆ {(x, y)|y < −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

and

C1 ∩ Cc2 ⊆ {(x, y)|y > −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

. Assume without loss of generality that

C1 ∩ Cc2 ⊆ {(x, y)|y < −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

and

C2 ∩ Cc1 ⊆ {(x, y)|y > −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

Then M1 ⊆ C1, M ∩ C1 ∩ C2 = ∅, M1 ⊆M =⇒ M1 ⊆ C1 ∩ Cc2, which implies

M1 ⊆ {(x, y)|y < −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

and M ∖M1 ⊆ C2, M ∩ C1 ∩ C2 = ∅, M ∖M1 ⊆M =⇒ M ∖M1 ⊆ C2 ∩ Cc1

M ∖M1 ⊆ {(x, y)|y > −xX2 −X1

Y2 − Y1
+ y∗ +

X2 −X1

Y2 − Y1
x∗}

which completes the proof for Case 2.

Case 3: |C1 ∩ C2| > 1. Define (X1, Y1), (X2, Y2), L1, AB, r1, and r2 as before. When two
circles intersect at more than one point, their borders intersect at exactly 2 points. Call these
two points (xa, ya) and (xb, yb). Then we can redefine L2 to be the line that passes through these
two points, and L2 will still be orthogonal to L1. We can apply the same computations we used
in Case 1 to find L1, this time with (xa, ya) and (xb, yb) instead of (X1, Y1) and (X2, Y2) to find

L2 = {(x, y)|y =
yb − ya
xb − xa

x+ ya −
yb − ya
xb − xa

xa}

Since L2 passes through both points in the intersection of the borders of C1 and C2, all points in
C1 but not C2 must be on one side of L2. That is, either

C1 ∩ Cc2 ⊆ {(x, y)|y < yb − ya
xb − xa

x+ ya −
yb − ya
xb − xa

xa}

and

C2 ∩ Cc1 ⊆ {(x, y)|y > yb − ya
xb − xa

x+ ya −
yb − ya
xb − xa

xa}

or

C2 ∩ Cc1 ⊆ {(x, y)|y < yb − ya
xb − xa

x+ ya −
yb − ya
xb − xa

xa}

and

C1 ∩ Cc2 ⊆ {(x, y)|y > yb − ya
xb − xa

x+ ya −
yb − ya
xb − xa

xa}

. Assume without loss of generality that

C1 ∩ Cc2 ⊆ {(x, y)|y < yb − ya
xb − xa

x+ ya −
yb − ya
xb − xa

xa}
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and

C2 ∩ Cc1 ⊆ {(x, y)|y > yb − ya
xb − xa

x+ ya −
yb − ya
xb − xa

xa}

Then by the exact same logic as in Case 2, we have

M1 ⊆ {(x, y)|y < yb − ya
xb − xa

x+ ya −
yb − ya
xb − xa

xa}

and

M ∖M1 ⊆ {(x, y)|y > yb − ya
xb − xa

x+ ya −
yb − ya
xb − xa

xa}

which completes the proof for Case 3.

Thus, regardless of the size of the intersection of C1 and C2, we can always find two half planes
A and B of the form {(x, y)|y < mx+ e} and {(x, y)|y > mx+ e} respectively such that

M1 ⊆ A, M ∖M1 ⊆ B, M ∩A ∩B = ∅

for all M1 ⊆M .
If we choose f1, f2 ∈ L s.t.

f1(x, y) := mx+ e− y = mx− y + e f2(x, y) := y −mx− e = −mx+ y − e

then f1(x, y) > 0 ⇐⇒ y < mx+ e and f2(x, y) > 0 ⇐⇒ y > mx+ e, so

{(x, y)|f1(x, y) > 0} = {(x, y)|y < mx+ e} = A

and
{(x, y)|f2(x, y) > 0} = {(x, y)|y > mx+ e} = B

By definition, the corresponding classifiers gf1 , gf2 ∈ G1 satisfy

gf1(m) = +1, for all m ∈M1 gf2(m) = +1 for all m ∈M ∖M1

for all M1 ⊆M . Note that

M ∩ {(x, y)|f1(x, y) > 0} ∩ {(x, y)|f2(x, y) > 0}
⊆ {(x, y)|f1(x, y) > 0} ∩ {(x, y)|f2(x, y) > 0}
= {(x, y)|f1(x, y) > 0} ∩ {(x, y)| − f1(x, y) > 0}
= {(x, y)|f1(x, y) > 0} ∩ {(x, y)|f1(x, y) < 0} = ∅

implies
M ∩ {(x, y)|f1(x, y) > 0} ∩ {(x, y)|f2(x, y) > 0} = ∅

which implies

gf1(m) = −1, for all m ∈M ∖M1 gf2(m) = +1 for all m ∈M1

for all M1 ⊆M . Thus, for any of the 2n subsets M1 ⊆M , we can find a gf ∈ G1 s.t. gf (m) = +1
for all m ∈ M1 and gf (m) = −1 for all m ∈ M ∖M1. This holds for all M under our initial
assumption that G shattersM . Thus, for any collection of pointsM of size n such that G shatters
M , we can produce all 2n sequences of signs (s1, ..., sn) ∈ {−1,+1}n with sequences of the form
(g(m1), ..., g(mn)), where g ∈ G1. Thus, τG1

(n) = 2n for any such M , so any M shattered by G
is also shattered by G1.
From here, it is simple to show V C(G) ≤ V C(G1). Assume to the contrary that V C(G) >
V C(G1). Then, by the definition of VC dimension, we have

max{n ∈ N|τG(n) = 2n} > max{n ∈ N|τG1(n) = 2n}
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so if we let M := the biggest collection of points such that G shatters M and M1 := the biggest
collection of points such that G1 shatters M1, then we have

|M | > |M1|

But G shattersM implies G1 shattersM , so G1 shatters a setM larger thanM1. By the definition
of M1, we have a contradiction. Thus, our initial assumption that V C(G) > V C(G1) must be
incorrect, which completes the proof that

V C(G) ≤ V C(G1)

(b) We want to show that V C(G1) = 3. First, recall

L := {f : R2 → R|f(x, y) = ax+ by + c, a, b, c ∈ R}

and consider the set
G∗ := {gf |f ∈ L}

where

gf (x, y) :=

{
+1 if f(x, y) > 0

−1 otherwise

First, note that, for all f ∈ L such that f(x, y) = 0x+0y+c = c, gf /∈ G1. However, for all such f
where c > 0, we have gf identically equal to 1, as f(x, y) = c > 0 over all of R2. Similarly, for all
such f where c ≤ 0, we have gf identically equal to -1, as f(x, y) = c ≤ 0 over all of R2. From the
problem statement’s definition of G1, we know that for f(x, y) = lima,b→0,c→∞ ax+by+c, gf ∈ G1.
By setting a and b to be arbitrarily small while c is arbitrarily large and positive, we guarantee that
f(x, y) ≈ c > 0 for all (x, y) ∈ R2. Similarly, we know that for f(x, y) = lima,b→0,c→−∞ ax+by+c,
gf ∈ G1. Here, since c is arbitrarily large and negative while a and b approach 0, we have
f(x, y) ≈ c ≤ 0, so gf is identically −1 over all of R2. Thus, although ∃f ∈ L such that
gf /∈ G1, for all collections of points M = {x1, ..., xn} ⊆ R2, no such gf produces a sequence
(gf (x1), ..., gf (xn)) which cannot be produced g where g ∈ G1. Therefore, all elements of

G∗
M := {(g(x1), ..., g(xn))|g ∈ G∗}

produced by gf /∈ G1 can also be produced by different gf ∈ G1. This implies that

|G∗
M | ≤ |(G1)M |

for all collections M , so τG∗(n) ≤ τG1
(n) for all n ∈ N. By the definition of VC dimension, we

have

V C(G1) = max{n ∈ N : τG1
(n) = 2n} ≥ max{n ∈ N : τG∗(n) = 2n} := V C(G∗)

But, as it is defined in the problem statement,

G1 = {gf |f ∈ {f : R2 → R|f(x, y) = ax+ by + c, either a or b ̸= 0}}
⊆ {gf |f ∈ L} := G∗

because

{f : R2 → R|f(x, y) = ax+ by + c, either a or b ̸= 0}
⊆ {f : R2 → R|f(x, y) = ax+ by + c, a, b, c ∈ R} := L

Since G1 ⊆ G∗, we know that for all collections M = {x1, ..., xn}, if g ∈ G1, g ∈ G∗, so
(g(x1), ..., g(xn)) ∈ G∗

M for all (g(x1), ..., g(xn)) ∈ (G1)M . This implies that

(G1)M ⊆ G∗
M =⇒ |(G1)M | ≤ |G∗

M |
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for all collections M = {x1, ..., xn} which implies

τG1
(n) ≤ τG∗(n)

for all n ∈ N. By the definition of VC dimension, we have

V C(G1) := max{n ∈ N : τG1(n) = 2n} ≤ max{n ∈ N : τG∗(n) = 2n} := V C(G∗)

Since V C(G1) ≤ V C(G∗) and V C(G1) ≥ V C(G∗), we know

V C(G1) = V C(G∗)

Now, to show V C(G1) = 3, it suffices to show V C(G∗) = 3.
Consider two arbitrary functions f1, f2 ∈ L and pick a1, a2, b1, b2, c1, c2 ∈ R such that

f1(x, y) = a1x+ b1y + c1 f2(x, y) = a2x+ b2y + c2

Note that f1, f2 ∈ L. Consider two arbitrary constants u, v ∈ R. Then

uf1(x, y) + vf2(x, y) = u(a1x+ b1y + c1) + v(a2x+ b2y + c2)

= ua1x+ ub1y + uc1 + va2x+ vb2y + vc2

= (ua1 + va2)x+ (ub1 + vb2)y + (uc1 + vc2)

Since u, v, a1, a2, b1, b2, c1, c2 ∈ R, we have (ua1 + va2), (ub1 + vb2), (uc1 + vc2) ∈ R. Thus, we can
let a = ua1 + va2, b = ub1 + vb2, and c = uc1 + vc2, and we find

uf1(x, y) + vf2(x, y) = ax+ by + c = f3(x, y) ∈ L

Thus, L is closed under both addition and scalar multiplication, so L is a linear space.
The R. Dudley Theorem from lecture tells us that for any linear space L of functions f : S → R
with finite dimension dim(L) = d, the family of classifiers G := {gf |f ∈ L} where

gf (x) :=

{
+1 if f(x) > 0

−1 if f(x) ≤ 0

for all x ∈ S has VC dimension
V C(G) = dim(L) = d

Here S = R2, G∗ := {gf |f ∈ L}, L is a linear space, and

gf (x, y) :=

{
+1 if f(x, y) > 0

−1 if f(x, y) ≤ 0

so we can apply the R. Dudley Theorem to find V C(G∗). All we have to do is prove that L has
finite dimension and compute dim(L). From here, we can conclude

V C(G∗) = dim(L)

By definition, the dimension of a linear space L is the size of any of its bases. Since

L := {f : R2 → R|f(x, y) = ax+ by + c, a, b, c ∈ R}

we can construct every function in L with linear combinations of the vectors (x), (y), and (1) (i.e.
{x, y, 1} spans L). Furthermore, none of these vectors can be written as a linear combination of
the other two

x ̸= uy + v(1) for all u, v ∈ R
y ̸= ux+ v(1) for all u, v ∈ R
1 ̸= ux+ vy for all u, v ∈ R
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By definition of the basis of a linear space, as a linearly independent spanning set of L, {x, y, 1}
is a basis for L. Thus, by the definition of the dimension of a linear space, we have

dim(L) = |{x, y, 1}| = 3

Thus, by the R. Dudley Theorem from lecture, we have

V C(G∗) = dim(L) = 3

We already proved V C(G∗) = V C(G1), so this completes the proof that

V C(G1) = 3

Since we proved in part (a) that V C(G) ≤ V C(G1), we can conclude

V C(G) ≤ 3

which completes part (b).

(c) Claim: M = {x1, x2, x3}{(0, 0), (2, 0), (2, 2)} is a set of 3 points shattered by G.
Proof. It suffices to show that |GM | = 8, so we need to find 8 distinct g ∈ G to produce all 8
distinct (s1, s2, s3) ∈ {−1,+1}3. For any circle C := {(x, y)|(x− a)2 + (y − b)2 ≤ r2, a, b, r ∈ R},
we can write the corresponding classifier gC ∈ G as

gC(x, y) :=

{
+1 if (x, y) ∈ C

−1 if (x, y) /∈ C

Then let

C1 := {(x, y)|x2 + y2 ≤ 16}
C2 := {(x, y)|(x+ 2)2 + y2 ≤ 1}
C3 := {(x, y)|x2 + y2 ≤ 1}
C4 := {(x, y)|(x− 2)2 + y2 ≤ 1}
C5 := {(x, y)|(x− 2)2 + (y − 2)2 ≤ 1}
C6 := {(x, y)|(x− 1)2 + (y + 1)2 ≤ 5}
C7 := {(x, y)|(x− 3)2 + (y − 1)2 ≤ 5}
C8 := {(x, y)|x2 + (y − 2)2 ≤ 5}

and consider the corresponding classifiers gC1
, ..., gC8

∈ G. We find

(gC1(x1), gC1(x2), gC1(x3)) = (+1,+1,+1)

since02 + 02 = 0 ≤ 16, 22 + 02 = 4 ≤ 16, 22 + 22 = 8 ≤ 16,

(gC2
(x1), gC2

(x2), gC2
(x3)) = (−1,−1,−1)

since(0 + 2)2 + 02 = 4 ̸≤ 1, (2 + 2)2 + 02 = 16 ̸≤ 1, (2 + 2)2 + 22 = 20 ̸≤ 1,

(gC3
(x1), gC3

(x2), gC3
(x3)) = (+1,−1,−1)

since 02 + 02 = 0 ≤ 1, 22 + 02 = 4 ̸≤ 1, 22 + 22 = 8 ̸≤ 1,

(gC4
(x1), gC4

(x2), gC4
(x3)) = (−1,+1,−1)

since (0− 2)2 + 02 = 4 ̸≤ 1, (2− 2)2 + 02 = 0 ≤ 1, (2− 2)2 + 22 = 4 ̸≤ 1,

(gC5
(x1), gC5

(x2), gC5
(x3)) = (−1,−1,+1)
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since (0− 2)2 + (0− 2)2 = 8 ̸≤ 1, (2− 2)2 + (0− 2)2 = 4 ̸≤ 1, (2− 2)2 + (2− 2)2 = 0 ≤ 1,

(gC6
(x1), gC6

(x2), gC6
(x3)) = (+1,+1,−1)

since (0− 1)2 + (0 + 1)2 = 2 ≤ 5, (2− 1)2 + (0 + 1)2 = 2 ≤ 5, (2− 1)2 + (2 + 1)2 = 10 ̸≤ 5,

(gC7
(x1), gC7

(x2), gC7
(x3)) = (−1,+1,+1)

since (0− 3)2 + (0− 1)2 = 10 ̸≤ 5, (2− 3)2 + (0− 1)2 = 2 ≤ 5, (2− 3)2 + (2− 1)2 = 2 ≤ 5,

(gC8(x1), gC8(x2), gC8(x3)) = (+1,−1,+1)

since 02 + (0− 2)2 = 4 ≤ 5, 22 + (0− 2)2 = 8 ̸≤ 5, 22 + (2− 2)2 = 4 ≤ 5. Thus, gC1
, ..., gC8

are 8
distinct g ∈ G that combine to produce all 8 distinct (s1, s2, s3) ∈ {−1,+1}3, so we have

|GM | := |{(g(x1), g(x2), g(x3))|g ∈ G}| = 8

so τG(3) = 23 = 8, so G shatters M . By definition, the VC dimension of G is

V C(G) := max{n ∈ N : τG(n) = 2n}

Since τG(3) = 23, we know 3 ∈ {n ∈ N : τG(n) = 2n, so we know

V C(G) ≥ 3

However, we already showed in parts (a) and (b) that V C(G) ≤ V C(G1) = V C(G∗) = 3, so we
can conclude

V C(G) = 3

This completes the proof that the VC dimension of G is 3.

(d) (*bonus) Now, let G be the class of binary classifiers that take value +1 inside the sphere in
3-dimensional space. We want to find V C(G).
Claim: The VC dimension of G is V C(G) = 4.
Proof. We will follow a very similar proof to that from parts (a), (b), and (c).
First, define

L := {f : R3 → R|f(x, y, z) = ax+ by + cz + d}

where a, b, c, d ∈ R are scalars. Arbitrarily pick two functions f1, f2 ∈ L and eight scalars
a1, a2, b1, b2, c1, c2, d1, d2 ∈ R such that

f1(x, y, z) := a1x+ b1y + c1z + d1 f2(x, y, z) := a2x+ b2y + c2z + d2

Then choose two more arbitrary scalars u, v ∈ R, and we find

uf1(x, y, z) + vf2(x, y, z) := u(a1x+ b1y + c1z + d1) + v(a2x+ b2y + c2z + d2)

= ua1x+ ub1y + uc1z + ud1 + va2x+ vb2y + vc2z + vd2

= (ua1 + va2)x+ (ub1 + vb2)y + (uc1 + vc2)z + (ud1 + vd2)

Since a1, a2, b1, b2, c1, c2, d1, d2, u, v ∈ R, we know (ua1+va2), (ub1+vb2), (uc1+vc2), (ud1+vd2) ∈
R, so we can let a = (ua1 + va2), b = (ub1 + vb2), c = (uc1 + vc2), d = (ud1 + vd2) and we have

uf1(x, y, z) + vf2(x, y, z) = ax+ by + cz + d = f3(x, y, z) ∈ L

Thus, L is closed under addition and scalar multiplication, so we know L is a linear space. Define

G1 := {gf |f ∈ L}
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where

gf (x, y, z) :=

{
+1 if f(x, y, z) > 0

−1 if f(x, y, z) ≤ 0

By the R. Dudley Theorem from lecture, if the dimension of L is finite (i.e. dim(L) < ∞), then
we have

V C(G1) = dim(L)

By definition of the dimension of a linear space, we know the dimension of L is equal to the size of
any of its bases. Note that for all ax+by+cz+d = f(x, y, z) ∈ L, f(x, y, z) is a linear combination
of the vectors (1), (x), (y), and (z), so {1, x, y, z} spans L. Also, none of these vectors can be
produced by linear combinations of the others, i.e.

1 ̸= ax+ by + cd ∀a, b, c ∈ R
x ̸= ay + bd+ c(1) ∀a, b, c ∈ R
y ̸= ax+ bd+ c(1) ∀a, b, c ∈ R
z ̸= ax+ by + c(1) ∀a, b, c ∈ R

Thus, {1, x, y, z} is a linearly independent spanning set for L, so by the definition of a basis of a
linear space, {1, x, y, z} is a basis for L. Thus, by the definition of the dimension of a linear space,
we have

dim(L) = |{1, x, y, z}| = 4

Thus, by the R. Dudley Theorem from lecture, since dim(L) = 4 <∞, we have

V C(G1) = dim(L) = 4

Next, we want to show that V C(G) ≤ V C(G1).
Note that any 3-dimensional plane takes the form

P = {(x, y, z)|ax+ by + cz + d = 0, either a, b or c ̸= 0}

so any 3 dimensional half-plane (the region above or below a 3 dimensional plane) takes the form

Hbelow = {(x, y, z)|ax+ by + cz + d < 0, either a, b or c ̸= 0}

or
Habove = {(x, y, z)|ax+ by + cz + d > 0, either a, b or c ̸= 0}

Since
{f : R3 → R|f(x, y, z) = ax+ by + cz + d either a, b or c ̸= 0} ⊆ L

for all classifiers g whose sets of positivity include only a 3-dimensional half plane, which takes
the form

{(x, y, z) ∈ R3|f(x, y, z) > 0} or {(x, y, z) ∈ R3| − f(x, y, z) > 0}

we have g ∈ G1.
Also, for any set M := {x1, ..., xn} ⊆ R3 of points in 3 dimensional space, G shatters M ⇐⇒ we
have g ∈ G such that

g(x) =

{
+1 for all x ∈M1

−1 for all x ∈M ∖M1

for any arbitrary subsetM1 ⊆M (soM1 could be the empty set orM itself). Since all g ∈ G take
value +1 only inside a sphere in 3-dimensional space, we know that we must have two spheres

S1 := {(x, y, z)|(x− a1)
2 + (y − b1)

2 + (z − c1)
2 ≤ r21}

S2 := {(x, y, z)|(x− a2)
2 + (y − b2)

2 + (z − c2)
2 ≤ r22}
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such thatM1 ⊆ S1, M∖M1 ⊆ S2, andM ∩S1∩S2 = ∅. We showed that all classifiers g that take
value +1 only on a 3 dimensional half-plane are all of the form gf ∈ G1. Thus, to prove that G1

shatters any collection of points M shattered by G, we just need to show that, for any collection
of points M and any of its subsets M1 ⊆ M , if ∃S1, S2 ⊆ R3 such that M1 ⊆ S1, M ∖M1 ⊆ S2,
andM ∩S1∩S2 = ∅, then ∃ 3 dimensional half-planes H1, H2 such thatM1 ⊆ H1, M∖M1 ⊆ H2,
and M ∩H1 ∩H2 = ∅. We will do so by considering the different sizes of |S1 ∩ S2|, just like in
part (a).

Case 1: |S1 ∩ S2| = 0. Then by the same logic as in part (a), we know there is a point
C = (x, y, z) ∈ R3 such that (x, y, z) /∈ S1 ∪ S2, but (x, y, z) ∈ AB, where A = (a1, b1, c1) is
the center of S1 and B = (a2, b2, c2) is the center of S2. Now, consider the 3 dimensional plane P
drawn through C such that P is orthogonal to AB. Since P is orthogonal to AB, we know the
closest point on P to AB is its point of intersection with AB, which is defined to be C. Since
C /∈ S1 ∪ S2, we know |AC| > r1 and |CB| > r2, so we know P ∩ (S1 ∪ S2) = ∅. Since P passes
through AB, which connects the centers of S1 and S2, but P doesn’t pass through S1 or S2, we
know all of S1 is above P and all of S2 is below P or all of S1 is below P and all of S2 is above
P . Assume without loss of generality that all of S1 is above P and all of S2 is below P . If we let
H1 be the half plane above P and H2 be the half plane below P , then

S1 ⊆ H1 S2 ⊆ H2

Since M1 ⊆ S1 ⊆ H1 and M ∖M1 ⊆ S2 ⊆ H2, we have found two 3 dimensional half planes
H1, H2 such that M1 ⊆ H1 and M ∖M1 ⊆ H2. Also, since H1 and H2 are defined to be re-
gions on opposite sides of P , we know that H1 ∩ H2 = ∅, which combines with the fact that
M ∩H1 ∩H2 ⊆ H1 ∩H2 to imply that M ∩H1 ∩H2 = ∅. This completes the proof for Case 1.

Case 2: |S1 ∩ S2| = 1. Just like in part (a), let C = (x, y, z) be the point of intersection
between S1 and S2, and define A, B as before. Once again, consider the plane P that passes
through the point C and is orthogonal to AB. Since P is orthogonal to AB, which connects the
centers of S1 and S2, we know the closest point on P to S1 and S2 is P ’s intersection with AB,
which is C. Since {C} = S1 ∩ S2 by definition, we know C ∈ S1 and C ∈ S2. Also, we know C is
on the boundary of both S1 and S2 (S1∩S2 ̸= ∅ implies the existence of at least one point d on the
boundary of both S1 and S2. If this point d ̸= C, then d,C ∈ S1∩S2 =⇒ |S1∩S2| > 1, which is a
contradiction by the definition of the case). Thus, |AC| = r1 and |BC| = r2. Thus, since all points
e ∈ P such that e ̸= C are further from both S1 and S2 than C, we know P ∩ (S1 ∪ S2) = {C}.
Since P intersects AB, which connects the centers of S1 and S2, and P doesn’t intersect S1 or
S2 anywhere but C, where {C} = S1 ∩ S2, we know all of S1 ∩ Sc2 is on one side of P and all of
S2 ∩ Sc1 is on the other side of P . That is, if we let H1 be the 3 dimensional half-plane above P
and H2 be the 3-dimensional half-plane below P , then either S1 ∩ Sc2 ⊆ H1 and S2 ∩ Sc1 ⊆ H2,
or S1 ∩ Sc2 ⊆ H2 and S2 ∩ Sc1 ⊆ H1. Assume without loss of generality that S1 ∩ Sc2 ⊆ H1 and
S2 ∩ Sc1 ⊆ H2. Then M1 ⊆ S1 ⊆ H1 and M ∖M1 ⊆ S2 ⊆ H2 implies

M1 ⊆ H1 M ∖M1 ⊆ H2

Also, since H1 and H2 are defined to be 3 dimensional half planes on opposite sides of the same
plane P , we know H1 ∩H2 = ∅, so we know M ∩H1 ∩H2 = ∅ since M ∩H1 ∩H2 ⊆ H1 ∩H2. So
we have found two 3 dimensional half planes H1 and H2 such that M1 ⊆ H1, M ∖M1 ⊆ H2, and
M ∩H1 ∩H2 = ∅. This completes the proof for Case 2.

Case 3: |S1 ∩ S2| > 1. Note that whenever two spheres intersect at more than one point,
the intersection of their boundaries forms the boundary of a circle. Define C to be the circle
whose boundary is formed by the intersections of the boundaries of S1 and S2. Note that, as a
2 dimensional surface, C is contained entirely within a plane P , which is still orthogonal to AB,
defining A, B as before. Also, all of the points on C’s boundary are on the boundaries of S1 and
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S2, so all such points Ci are such that |CiA| = r1 and |CiB = r2| All points on P that are closer
to AB than any Ci on the boundary of C are also closer to both S1 and S2 since AB connects the
centers of S1 and S2. Thus, all points on the interior of C are in S1 ∩ S2. Conversely, all points
on P that are further from AB than any Ci on the boundary of C are also further from both S1

and S2 since P is orthogonal to AB, so we know all points in P that are in S1 or S2 are also in
both S1 and S2. That is,

P ∩ (S1 ∪ S2) = P ∩ S1 ∩ S2 P ∩ (S1 ∩ Sc2) = ∅ P ∩ (S2 ∩ Sc1) = ∅

Since P orthogonally intersects the line segments AB that connects the centers of S1 and S2, we
know all of S1 ∩ Sc2 is contained entirely one side of P and S2 ∩ Sc1 is contained entirely on the
other side of P . That is, if we let H1 := the 3 dimensional half plane above P and H2 := the 3
dimensional half plane below P , then either S1 ∩Sc2 ⊆ H1 and S2 ∩Sc1 ⊆ H2 or S1 ∩Sc2 ⊆ H2 and
S2 ∩ Sc1 ⊆ H1. Assume, without loss of generality, that S1 ∩ Sc2 ⊆ H1 and S2 ∩ Sc1 ⊆ H2. Then
M1 ⊆ S1 ⊆ H1 and M ∖M1 ⊆ S2 ⊆ H2 implies

M1 ⊆ H1 and M ∖M1 ⊆ H2

Also, since H1 and H2 are defined to be 3 dimensional half planes on opposite sides of the same
plane P , we know H1 ∩H2 = ∅, so M ∩H1 ∩H2 ⊆ H1 ∩H2 implies that

M ∩H1 ∩H2 = ∅

Thus, we have found two 3 dimensional half-planes H1 and H2 such thatM1 ⊆ H1,M∖M1 ⊆ H2,
and M ∩H1 ∩H2 = ∅, which completes the proof for Case 3.

Thus, for any collection of points M = {x1, ..., xk} that is shattered by G, we can find H1,
H2 such that M1 ⊆ H1, M ∖M1 ⊆ H2, M ∩ H1 ∩ H2 = ∅. Since all classifiers whose sets of
positivity correspond to 3 dimensional half planes H1, H2 are in G1, and we know that for all
such collections of points M and all subsets M1 ⊆ M we can find a classifier gf ∈ G1 such that
gf (x) = +1 for all x ∈M1 and gf (x) = −1 for all x ∈M ∖M1. Note that for each unique subset
M1 ⊆M , such a gf will produce a unique sequences (g(x1), ..., g(xn)) ∈ {−1,+1}n. There are 2n

unique subsets M1 ⊆M , so for any M shattered by G, we know

|(G1)M | := |{(g(x1), ..., g(xn))|g ∈ G1}| = 2n

for allM shattered by G. So G1 shatters all collectionsM shattered by G. By the definition of the
growth function τ , we know τG(n) = 2n =⇒ τG1(n) = 2n. By the definition of VC dimension,
we have

V C(G) := max{n ∈ N : τG(n) = 2n} ≤ max{n ∈ N : τG1(n) = 2n} := V C(G1)

This completes our proof that V C(G) ≤ V C(G1). Since we already showed V C(G1) = 4, we
know

V C(G) ≤ 4

Claim: G shatters the set of points M = {x1, x2, x3, x4} = {(0, 0, 0), (0, 3, 0), (3, 0, 3), (3, 0,−3)}.
Proof: It suffices to show that |GM | = 2|M | = 24 = 16. Consider spheres of the form

S = {(x, y, z)|(x− a)2 + (y − b)2 + (z − c)2 ≤ r2}

so we can write the classifiers gS ∈ G as

gS(x, y, z) :=

{
+1 if (x, y, z) ∈ S

−1 if (x, y, z) /∈ S
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Consider the spheres

S1 := {(x, y, z)|x2 + (y + 2)2 + z2 ≤ 1}
S2 := {(x, y, z)|x2 + y2 + z2 ≤ 30}
S3 := {(x, y, z)|x2 + y2 + z2 ≤ 1}
S4 := {(x, y, z)|x2 + (y − 3)2 + z2 ≤ 1}
S5 := {(x, y, z)|(x− 3)2 + y2 + (z − 3)2 ≤ 1}
S6 := {(x, y, z)|(x− 3)2 + y2 + (z + 3)2 ≤ 1}
S7 := {(x, y, z)|x2 + y2 + z2 ≤ 10}
S8 := {(x, y, z)|x2 + y2 + (z + 3)2 ≤ 10}
S9 := {(x, y, z)|(x− 10)2 + y2 + z2 ≤ 70}
S10 := {(x, y, z)|x2 + y2 + (z − 3)2 ≤ 10}
S11 := {(x, y, z)|(x− 7)2 + (y − 5)2 + (z + 3)2 ≤ 70}
S12 := {(x, y, z)|(x− 7)2 + (y − 5)2 + (z − 3)2 ≤ 70}
S13 := {(x, y, z)|x2 + (y + 3)2 + z2 ≤ 33}
S14 := {(x, y, z)|(x− 5)2 + (y − 5)2 + z2 ≤ 40}
S15 := {(x, y, z)|x2 + y2 + (z − 3)2 ≤ 20}
S16 := {(x, y, z)|x2 + y2 + (z + 3)2 ≤ 20}

and the corresponding classifiers gS1
, ..., gS16

. We can directly compute that

(gS1
(x1), gS1

(x2), gS1
(x3), gS1

(x4)) = (−1,−1,−1,−1)

since

02 + (0 + 2)2 + 02 = 4 ̸≤ 1, 02 + (3 + 2)2 + 02 = 25 ̸≤ 1,

32 + (0 + 2)2 + 32 = 22 ̸≤ 1, 32 + (0 + 2)2 + (−3)2 = 22 ̸≤ 1

and
(gS2(x1), gS2(x2), gS2(x3), gS2(x4)) = (+1,+1,+1,+1)

since

02 + 02 + 02 = 0 ≤ 30, 02 + (3)2 + 02 = 9 ≤ 30,

32 + 02 + 32 = 18 ≤ 30, 32 + 02 + (−3)2 = 18 ≤ 30

and
(gS3

(x1), gS3
(x2), gS3

(x3), gS3
(x4)) = (+1,−1,−1,−1)

since

02 + 02 + 02 = 0 ≤ 1, 02 + (3)2 + 02 = 9 ̸≤ 1,

32 + 02 + 32 = 18 ̸≤ 1, 32 + 02 + (−3)2 = 18 ̸≤ 1

and
(gS4

(x1), gS4
(x2), gS4

(x3), gS4
(x4)) = (−1,+1,−1,−1)

since

02 + (0− 3)2 + 02 = 9 ̸≤ 1, 02 + (3− 3)2 + 02 = 0 ≤ 1,

32 + (0− 3)2 + 32 = 27 ̸≤ 1, 32 + (0− 3)2 + (−3)2 = 27 ̸≤ 1
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and
(gS5(x1), gS5(x2), gS5(x3), gS5(x4)) = (−1,−1,+1,−1)

since

(0− 3)2 + 02 + (0− 3)2 = 18 ̸≤ 1, (0− 3)2 + (3)2 + (0− 3)2 = 27 ̸≤ 1,

(3− 3)2 + 02 + (3− 3)2 = 0 ≤ 1, (3− 3)2 + 02 + (−3− 3)2 = 36 ̸≤ 1

and
(gS6

(x1), gS6
(x2), gS6

(x3), gS6
(x4)) = (−1,−1,−1,+1)

since

(0− 3)2 + 02 + (0 + 3)2 = 18 ̸≤ 1, (0− 3)2 + (3)2 + (0 + 3)2 = 27 ̸≤ 1,

(3− 3)2 + 02 + (3 + 3)2 = 36 ̸≤ 1, (3− 3)2 + 02 + (−3 + 3)2 = 0 ≤ 1

and
(gS7

(x1), gS7
(x2), gS7

(x3), gS7
(x4)) = (+1,+1,−1,−1)

since

02 + 02 + 02 = 0 ≤ 10, 02 + (3)2 + 02 = 9 ≤ 10,

32 + 02 + 32 = 18 ̸≤ 10, 32 + 02 + (−3)2 = 18 ̸≤ 10

and
(gS8

(x1), gS8
(x2), gS8

(x3), gS8
(x4)) = (+1,−1,−1,+1)

since

02 + 02 + (0 + 3)2 = 9 ≤ 10, 02 + (3)2 + (0 + 3)2 = 18 ̸≤ 10,

32 + 02 + (3 + 3)2 = 45 ̸≤ 10, 32 + 02 + (−3 + 3)2 = 9 ≤ 10

and
(gS9(x1), gS9(x2), gS9(x3), gS9(x4)) = (−1,−1,+1,+1)

since

(0− 10)2 + 02 + 02 = 100 ̸≤ 70, (0− 10)2 + (3)2 + 02 = 109 ̸≤ 70,

(3− 10)2 + 02 + 32 = 58 ≤ 70, (3− 10)2 + 02 + (−3)2 = 58 ≤ 1

and
(gS10

(x1), gS10
(x2), gS10

(x3), gS10
(x4)) = (+1,−1,+1,−1)

since

02 + 02 + (0− 3)2 = 9 ≤ 10, 02 + (3)2 + (0− 3)2 = 18 ̸≤ 10,

32 + 02 + (3− 3)2 = 9 ≤ 10, 32 + 02 + (−3− 3)2 = 45 ̸≤ 10

and
(gS11

(x1), gS11
(x2), gS11

(x3), gS11
(x4)) = (−1,+1,−1,+1)

since

(0− 7)2 + (0− 5)2 + (0 + 3)2 = 83 ̸≤ 70, (0− 7)2 + (3− 5)2 + (0 + 3)2 = 62 ≤ 70,

(3− 7)2 + (0− 5)2 + (3 + 3)2 = 77 ̸≤ 70, (3− 7)2 + (0− 5)2 + (−3 + 3)2 = 41 ≤ 70

and
(gS12

(x1), gS12
(x2), gS12

(x3), gS12
(x4)) = (−1,+1,+1,−1)
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since

(0− 7)2 + (0− 5)2 + (0− 3)2 = 83 ̸≤ 70, (0− 7)2 + (3− 5)2 + (0− 3)2 = 62 ≤ 70,

(3− 7)2 + (0− 5)2 + (3− 3)2 = 41 ≤ 70, (3− 7)2 + (0− 5)2 + (−3− 3)2 = 77 ̸≤ 70

and
(gS13

(x1), gS13
(x2), gS13

(x3), gS13
(x4)) = (+1,−1,+1,+1)

since

02 + (0 + 3)2 + 02 = 9 ≤ 33, 02 + (3 + 3)2 + 02 = 36 ̸≤ 33,

32 + (0 + 3)2 + 32 = 27 ≤ 33, 32 + (0 + 3)2 + (−3)2 = 27 ≤ 33

and
(gS14

(x1), gS14
(x2), gS14

(x3), gS14
(x4)) = (−1,+1,+1,+1)

since

(0− 5)2 + (0− 5)2 + 02 = 50 ̸≤ 40, (0− 5)2 + (3− 5)2 + 02 = 29 ≤ 40,

(3− 5)2 + (0− 5)2 + 32 = 38 ≤ 40, (3− 5)2 + (0− 5)2 + (−3)2 = 38 ≤ 40

and
(gS15

(x1), gS15
(x2), gS15

(x3), gS15
(x4)) = (+1,+1,+1,−1)

since

02 + 02 + (0− 3)2 = 9 ≤ 20, 02 + (3)2 + (0− 3)2 = 18 ≤ 20,

32 + 02 + (3− 3)2 = 9 ≤ 20, 32 + 02 + (−3− 3)2 = 45 ̸≤ 20

and
(gS16

(x1), gS16
(x2), gS16

(x3), gS16
(x4)) = (+1,+1,−1,+1)

since

02 + 02 + (0 + 3)2 = 9 ≤ 10, 02 + (3)2 + (0 + 3)2 = 18 ≤ 20,

32 + 02 + (3 + 3)2 = 45 ̸≤ 20, 32 + 02 + (−3 + 3)2 = 9 ≤ 20

Thus,
(gi(x1), gi(x2), gi(x3), gi(x4)) ̸= (gj(x1), gj(x2), gj(x3), gj(x4))

for all i, j ∈ {1, ..., 16} such that i ̸= j. Since there are 16 such distinct sequences (gi(x1), gi(x2), gi(x3), gi(x4)),
we know

|GM | := |{(g(x1), g(x2), g(x3), g(x4))|g ∈ G}| = 16 = 24 = 2|M |

This completes the proof that G shatters M . Since |M | = 4, we know τG(4) = 24 = 16. By the
definition of VC dimension, we have

V C(G) := max{n ∈ N : τG(n) = 2n} ≥ 4

since 4 ∈ {n ∈ N : τG(n) = 2n}. However, we already proved that

V C(G) ≤ V C(G1) = 4

so we can conclude that
V C(G) = 4

This completes the proof that the VC dimension of the class of classifiers that take value +1 inside
spheres in 3 dimensional space is V C(G) = 4, which completes part (d).
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5. Let F be the set of all polynomials of degree at most 3 in 2 variables x and y, that is, f(x, y) =∑
αjx

ajybj where aj and bj are non-negative integers such that aj+ bj ≤ 3. Let G be the set of binary
classifiers such that every g ∈ G takes value +1 on a set f(x, y) > 0 for some f ∈ F . Find the VC
dimension of G.

Solution.
Claim: The VC dimension of G is V C(G) = 10.
Proof: Note that the combinations of exponents aj , bj such that aj , bj ≥ 0, aj + bj ≤ 3 are fixed with

(aj , bj) ∈ {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)}

Since |{(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)}| = 10, we can let

{(aj , bj)|aj , bj ≥ 0, aj + bj ≤ 3} = {(a1, b1), (a2, b2), (a3, b3), (a4, b4), (a5, b5),
(a6, b6), (a7, b7), (a8, b8), (a9, b9), (a10, b10)}

= {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1),
(0, 2), (3, 0), (2, 1), (1, 2), (0, 3)}

Then we can write two arbitrary functions f1, f2 ∈ F as

f1(x, y) :=

10∑
j=1

cjx
ajybj f2(x, y) :=

10∑
j=1

djx
ajybj

where c1, ..., c10, d1, ..., d10 ∈ R are scalars. Then for all scalars u, v ∈ R, we have

uf1(x, y) + vf2(x, y) = u

10∑
j=1

cjx
ajybj + v

10∑
j=1

djx
ajybj

=

10∑
j=1

ucjx
ajybj +

10∑
j=1

vdjx
ajybj

=

10∑
j=1

(ucj + vdj)x
ajybj

Note that u, v, c1, ..., c10, d1, ..., d10 ∈ R implies ucJ + vdj ∈ R for all j ∈ {1, ..., 10}, so we can let
αj = ucj + vdj for all j ∈ {1, ..., 10} to find

uf1(x, y) + vf2(x, y) =
10∑
j=1

αjx
ajybj =

∑
αjx

ajybj = f3(x, y) ∈ F

Thus, F is closed under addition and scalar multiplication, so we know F is a linear space. Since the
problem statement defines G to be

G := {gf |f ∈ F}

where

gf (x, y) =

{
+1 if f(x, y) > 0

−1 if f(x, y) < 0

the R. Dudley Theorem from lecture guarantees that if F has finite dimension dim(F ) < ∞, then
V C(G) = dim(F ). Thus, we just need to prove that F has finite dimension and compute dim(F ).
Note that, for all f ∈ F , f takes the form

f(x, y) = α1(1) + α2x+ α3y + α4x
2 + α5xy + α6y

2 + α7x
3 + α8x

2y + α9xy
2 + α10y

3
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Thus, all f ∈ F can be written as a linear combination of the vectors in

B := {(1), (x), (y), (x2), (xy), (y2), (x3), (x2y), (xy2), (y3)}

so B spans F . Furthermore, none of the vectors in B can be expressed as a linear combination of each
other. That is,

1 ̸= α2x+ α3y + α4x
2 + α5xy + α6y

2 + α7x
3 + α8x

2y + α9xy
2 + α10y

3

∀α2, ..., α10 ∈ R
x ̸= α1(1) + α3y + α4x

2 + α5xy + α6y
2 + α7x

3 + α8x
2y + α9xy

2 + α10y
3

∀α1, α3, ..., α10 ∈ R
y ̸= α1(1) + α2x+ α4x

2 + α5xy + α6y
2 + α7x

3 + α8x
2y + α9xy

2 + α10y
3

∀α1, α2, α4, ..., α10 ∈ R
x2 ̸= α1(1) + α2x+ α3y + α5xy + α6y

2 + α7x
3 + α8x

2y + α9xy
2 + α10y

3

∀α1, ..., α3, α5, ..., α10 ∈ R
xy ̸= α1(1) + α2x+ α3y + α4x

2 + α6y
2 + α7x

3 + α8x
2y + α9xy

2 + α10y
3

∀α1, ..., α4, α6, ..., α10 ∈ R
y2 ̸= α1(1) + α2x+ α3y + α4x

2 + α5xy + α7x
3 + α8x

2y + α9xy
2 + α10y

3

∀α1, ..., α5, α5, α7, ..., α10 ∈ R
x3 ̸= α1(1) + α2x+ α3y + α4x

2 + α5xy + α6y
2 + α8x

2y + α9xy
2 + α10y

3

∀α1, ..., α6, α8, ..., α10 ∈ R
x2y ̸= α1(1) + α2x+ α3y + α4x

2 + α5xy + α6y
2 + α7x

3 + α9xy
2 + α10y

3

∀α1, ..., α7, α9, α10 ∈ R
xy2 ̸= α1(1) + α2x+ α3y + α4x

2 + α5xy + α6y
2 + α7x

3 + α8x
2y + α10y

3

∀α1, ..., α8, α10 ∈ R
y3 ̸= α1(1) + α2x+ α3y + α4x

2 + α5xy + α6y
2 + α7x

3 + α8x
2y + α9xy

2

∀α1, ..., α9 ∈ R

Thus, B is a linearly independent spanning set for F . By the definition of the basis of a linear space,
we know B is a basis for F . By the definition of the dimension of linear space, we know

dim(L) = |B| = |{(1), (x), (y), (x2), (xy), (y2), (x3), (x2y), (xy2), (y3)}| = 10 <∞

Since dim(L) = 10 <∞ is finite, we can apply the R. Dudley Theorem from lecture to find

V C(G) = dim(L) = 10

This completes the proof that the VC dimension of the set G of binary classifiers that take value +1
only when some polynomial f(x, y) of degree at most 3 is positive is V C(G) = 10.

Assignment 4

Read Chapter 9 of the textbook ”Understanding Machine Learning.” Then do the following problems:

1. The Margin:

recall that in the Perceptron algorithm, we assume that the data (X1, Y1), ..., (Xn, Yn) are such that (Xj , Yj) ∈
Rd × {±1} and that there exists a vector w ∈ Rd of unit length such that (Yj < w,Xj >) > 0. The margin
of a hyperplane Hw = {x :< w, x >= 0} is the smallest among the distances from X1, ..., Xn to Hw.
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(a) Show that the margin equals minj∈{1,...,n}| < w,Xj > |.
(hint: recall that the vector w is orthogonal to the hyperplane Hw. Now draw a picture in 2d and
convince yourself, and then me, that | < w,Xj > | is the length of the projection of Xj onto w.)

(b) Given two hyperplanes Hw1
and Hw2

that both separate the classes labeled +1 and −1, which one
would be a better pick?

Solution.

(a) We want to show that the margin of a hyperplane Hw equals

minj∈{1,...,n}| < w,Xj > |

By definition, the margin of Hw is the smallest among the distances from X1, ..., Xn to Hw. Thus, we
are really trying to prove the statement

minj∈{1,...,n}(distance from Xj to Hw) = minj∈{1,...,n}| < w,Xj > | (1)

Note that

(distance from Xj to Hw) = | < w,Xj > | for all j ∈ {1, ..., n} (2)

implies (1), so it suffices to show that (2) holds for all j ∈ {1, ..., n}. To do so, we will show that the
length of the projection of Xj onto w equals

| < w,Xj > | for all j ∈ {1, ..., n} (3)

Note that the distance from Xj to Hw equals the length of the shortest segment connecting Xj to Hw

which equals the length of the segment B connecting the Xj to Hw that intersects Hw orthogonally.
This follows from the Pythagorean theorem, as any segment A from Xj to Hw that doesn’t intersect
Hw orthogonally is the hypotenuse of a right triangle with sides A, B and the segment C of Hw that
connects A and B. A visual depiction helps to shed light on this result:
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Thus, we need show |B| (the length of the segment connecting Xj to Hw that intersects Hw orthogo-
nally) equals

| < w,Xj > | for all j ∈ {1, ..., n} (4)

Since B intersects Hw orthogonally, and w also intersects Hw orthogonally, we know B ∥ w (B and w
are parallel). If we consider Xj and w as d dimensional vectors from the origin, then they intersect at
the origin. By the definition of B, Xj intersects B. Let a∗ be the angle between Xj and w and a2 be
the acute angle between Xj and B. Define

a1 :=

{
a∗ if 0 ≤ a∗ ≤ π

π − a∗ otherwise

Note that a1 and a2 are on opposite sides of the transversal Xj between w and B (if 0 ≤ a∗ ≤ π, then
a1 is above the vector Xj while a2 is below Xj , whereas if π < a∗ < 2π, then a1 is below the vector
Xj while a2 is above it). Thus, since w and B are parallel, we know a1 and a2 are alternate interior
angles between parallel lines, so

a1 = a2 = θ (5)

Also, since a2 is defined to be acute, (5) implies that both a1 and a2 are acute. Thus, a1 and a2 can
be viewed as the acute angles between Xj and w and Xj and B, respectively.
By definition, the projection projvu of u onto v is the vector parallel to v with magnitude equal to
the distance u covers in the direction of v. Thus, the length of the projection of u onto v is just the
distance u covers in the direction of v. By definition, this magnitude ||projvu|| is equal to |compvu|,
the absolute value of the component of u onto v. For Xj and w, this implies that |compwXj | (the
length of the projection of Xj onto w) is just the distance Xj covers in the direction of w. Since a1 = θ
is always acute, the definition of the cosine function yields

cos(a1) = cos(θ) =
||projwXj ||

||Xj ||
=

|compwXj |
||Xj ||

(6)

so for all a1 = θ, we have

|compwXj | = ||projwXj || = ||Xj ||cos(θ) = ||Xj ||cos(a1) (7)

Similarly, since the angle a2 is always acute, the definition of the cosine function yields

cos(a2) = cos(θ) =
|B|
||Xj ||

=⇒ |B| = ||Xj ||cos(θ) (8)

Comparing (7) and the right-most equation from (8), we see that for all acute angles θ < π between
Xj and w and Xj and B,

||projwXj || = |compwXj | = |B| (9)

We provide a visual depiction when a∗ is acute:
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and when a∗ is obtuse:

to clarify the preceding argument.
Combining (9) with (4), we see it suffices to show that the length of the projection of Xj onto w
satisfies

|compwXj | = ||projwXj || = | < w,Xj > | for all j ∈ {1, ..., n} (10)

Note that (10) is formalizing the sufficient condition we alluded to in (3). By definition of the dot
product, we have

< w,Xj >= ||w|| · ||Xj || · cos(a∗) (11)
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and the cosine function satisfies

cos(a∗) = −cos(π − a∗) (12)

Thus, if a∗ is obtuse, we have

| < w,Xj > | = ||w|| · ||Xj || · |cos(a∗)| = ||w|| · ||Xj || · | − cos(a1)| = ||w|| · ||Xj || · cos(a1) (13)

(since cos(a1) ≥ 0 for all acute a1), and if a∗ is acute, we have

| < w,Xj > | = ||w|| · ||Xj || · |cos(a∗)| = ||w|| · ||Xj || · |cos(a1)| = ||w|| · ||Xj || · cos(a1) (14)

Comparing (13) and (14) with (7), we see that regardless of whether a∗ is acute or obtuse, we have

| < w,Xj > | = ||w|| · |compwXj | = ||projwXj || for all j ∈ {1, ..., n} (15)

However, we are given that w has unit length in the problem statement, so we know

| < w,Xj > | = 1 · |compwXj | = |compwXj | = ||projwXj || for all j ∈ {1, ..., n} (16)

That is, the absolute value of the dot product of w and Xj equals the length of the projection of Xj

onto w for all j ∈ {1, ..., n}. Since |B| is the distance from Xj to Hw for all j ∈ {1, ..., n}, we know
from (9) that

( distance from Xj to Hw) = |B| = |compwXj | = ||projwXj || = | < w,Xj > | for all j ∈ {1, ..., n} (17)

Since (17) holds for all j ∈ {1, ..., n}, it implies

minj∈{1,...,n}( distance from Xj to Hw) = min
j∈{1,...,n}

| < w,Xj > | (18)

By the definition of the margin of a hyperplane Hw, (18) completes the proof that the margin equals
minj∈{1,...,n}| < w,Xj > |.

(b) Claim: If the margin of Hw1
does not equal the margin of Hw2

, we should choose the hyperplane with
the larger margin.
Proof. Denote

M1 := min
j∈{1,..n}

| < w1, Xj > | M2 := min
j∈{1,...,n}

| < w2, Xj > | (19)

By part (a), M1 is the margin of Hw1
and M2 is the margin of Hw2

. Since our claim only addresses
the situation when M1 ̸= M2, we can assume that M1 ̸= M2. Note that, since Hw1 and Hw2 both
separate the classes labeled +1 and −1, we know that

(Yj < w1, Xj >), (Yj < w2, Xj >) > 0 (20)

However, this does not rule out the possibility that ∃ an instance X ∈ Rd and a corresponding label
Y ∈ {±1} such that

(Y < w1, X >) ≤ 0 and/or (Y < w2, X >) ≤ 0 (21)

The left-most inequality from (21) would imply thatHw1
misclassifiesX while the right-most inequality

would imply that Hw2
misclassifies X. Since Hw1

and Hw2
could both still potentially misclassify

instances, the ‘better pick’ will be the hyperplane that minimizes the chances of misclassifying instances
X ∈ Rd (i.e. the most generalizable hyperplane). Note that, for any hyperplane Hw := {x ∈ Rd :<
w, x >= 0}, as an instance X ∈ Rd approaches Hw, i.e. as

| < w,X > | → 0
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then, for the corresponding label Y ∈ {±1}, we have

Y < w,X >→ 0 (22)

That is, as instances approach any hyperplane, that hyperplane gets closer to misclassifying them.
Although instances could potentially vary from training instances enough to cause Hw1

and/or Hw2
to

misclassify them, we still expect a given instance with label +1 to be closer to the training instances
labeled +1 than training instances labeled −1, and vice versa for a given instance with label −1. Thus,
to minimize the chance of misclassifying instances, we should pick the hyperplane that maximizes the
closest distance from some training instance X ∈ {X1, ..., Xn} to the hyperplane. Since the distance
from Xj to Hw is | < w,Xj > | for all j ∈ {1, ..., n}, this is equivalent to maximizing

minj∈{1,...,n}| < w,Xj > | (23)

Since we proved in part (a) that the margin Mw of a hyperplane Hw is

MW = min
j∈{1,...,n}

| < w,Xj > |

(23) implies that we can minimize the chance of misclassifying instances by choosing the hyperplane
with the larger margin. That is, if M1 > M2, we should choose Hw1

, and if M2 > M1, we should
choose Hw2 . This completes the proof that the ‘better pick’ would be the hyperplane with the larger
margin.

Note: If M1 = M2, then the margin provides no information about which hyperplane is a better
pick. In this case, we would need to examine different properties of Hw1

and Hw2
to determine

which hyperplane is more generalizable. However, as our sample size n increases, the probability that
M1 =M2 decreases (assuming w1 ̸= cw2 for any scalar c ∈ R), so the margin will be a useful indicator
of the ‘better pick’ in most cases. Also if w1 = cw2 for any c ∈ R, then Hw1 = Hw2 , so the choice of
hyperplane would make no difference in generalizability.

2. Perceptron Algorithm: an example.

Consider the following set of labeled points in R2:

{(1, 0),+1}, {(2, 0),+1}, {(0, 1),−1}, {(1, 1),−1}

(a) Can the points be labeled +1 and −1 be separated by the hyperplane?

(b) Perform as many iterations of the Perceptron algorithm as necessary to get a separating hyperplane;
write the updates explicitly.

(c) What is the margin of the resulting hyperplane?

(d) Based on the number of iterations you needed for convergence and the theorem studied in class on the
maximum number of iterations, find an upper bound for the maximum achievable margin.
(recall that we showed in class that the maximal number of iterations T satisfies T ≤ (Rγ )

2 where R is

the largest norm of Xj ’s and γ = minYj < w∗, Xj > where ∥w∗∥2 = 1)

Solution.

(a) After plotting the points with their corresponding labels, we easily see that they can be separated
by the hyperplane. To demonstrate this, we plot the labeled points and also plot the hyperplanes
H1 = {x ∈ R2 :< w1, x >= 0} and H2 = {x ∈ R2 :< w2, x >= 0}, where w1 = (− 1

4 , 1) and
w2 = (− 3

4 , 1):
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Clearly, both hyperplanes separate the points labeled −1 from those labeled +1. Thus, the points can
be separated by the hyperplane.

(b) Before the iterative loop starts, we have the training data

(X1, Y1), ..., (Xn, Yn) = {(1, 0),+1}, {(2, 0),+1}, {(0, 1),−1}, {(1, 1),−1} (24)

and the prediction vector
w(1) = (0, 0) (25)

We now begin iterating: Iteration 1: We have

Y1 < w(1), X1 >= 1 < (0, 0), (1, 0) >= 1(0(1) + 0(0)) = 0 ≤ 0

so we proceed to the second iteration with

w(2) = w(1) + Y1X1 = (0, 0) + 1(1, 0) = (1, 0)

Iteration 2: We have

Y1 < w(2), X1 > = 1 < (1, 0), (1, 0) >= 1(1(1) + 0(0)) = 1 ̸≤ 0

Y2 < w(2), X2 > = 1 < (1, 0), (2, 0) >= 1(1(2) + 0(0)) = 2 ̸≤ 0

Y3 < w(2), X3 > = − 1 < (1, 0), (0, 1) >= −1(1(0) + 0(1)) = 0 ≤ 0

so we proceed to the third iteration with

w(3) = w(2) + Y3X3 = (1, 0) +−1(0, 1) = (1,−1)

Iteration 3: We have

Y1 < w(3), X1 > = 1 < (1,−1), (1, 0) >= 1(1(1) +−1(0)) = 1 ̸≤ 0

Y2 < w(3), X2 > = 1 < (1,−1), (2, 0) >= 1(1(2) +−1(0)) = 2 ̸≤ 0

Y3 < w(3), X3 > = − 1 < (1,−1), (0, 1) >= −1(1(0) +−1(1)) = −(−1) = 1 ̸≤ 0

Y4 < w(3), X4 > = − 1 < (1,−1), (1, 1) >= −1(1(1) +−1(1)) = −1(0) = 0 ≤ 0

Page 197



so we proceed to the fourth iteration with

w(4) = w(3) + Y4X4 = (1,−1) +−1(1, 1) = (0,−2)

Iteration 4: We have

Y1 < w(4), X1 >= 1((0,−2), (1, 0)) = 1(0(1) +−2(0)) = 0 ≤ 0

so we proceed to the fifth iteration with

w(5) = w(4) + Y1X1 = (0,−2) + 1(1, 0) = (1,−2)

Iteration 5: Now, we find

Y1 < w(5), X1 > = 1 < (1,−2), (1, 0) >= 1(1(1) +−2(0)) = 1 ̸≤ 0

Y2 < w(5), X2 > = 1 < (1,−2), (2, 0) >= 1(1(2) +−2(0)) = 2 ̸≤ 0

Y3 < w(5), X3 > = − 1 < (1,−2), (0, 1) >= −1(1(0) +−2(1)) = −(−2) = 2 ̸≤ 0

Y4 < w(5), X4 > = − 1 < (1,−2), (1, 1) >= −1(1(1) +−2(1)) = −1(1− 2) = −(−1) = 1 ̸≤ 0

so the Perceptron Algorithm converges and outputs w(5) = (1,−2) as the prediction vector. From this
vector, we construct the hyperplane

Hw(5) = {x ∈ R2 :< w(5), x >= 0}

Note that Hw(5) includes all points (x, y) ∈ R2 such that

< (1,−2), (x, y) >= x− 2y = 0 ⇐⇒ y =
x

2

so the hyperplane returned by this execution of the Perceptron algorithm is just the line y = x
2 . Note

that the hyperplane Hw(5) classifies all points below y = x
2 with label +1 and all points above y = x

2
with label −1. By plotting Hw(5) alongside the labeled points from our training data, we can easily
verify that Hw(5) is a linearly separating hyperplane for the training data:

which completes part (b).

Page 198



(c) From part (a) of the first exercise, we know that the margin MHw of any hyperplane Hw := {x :<
w, x >= 0} for any vector w of magnitude ||w|| = 1 is

MHw
:= min

j∈{1,...,n}
( distance from Xj to Hw) = min

j∈{1,...,n}
| < w,Xj > | (26)

The vector returned by our execution of the Perceptron algorithm has magnitude

||w(5)|| =
√
12 + (−2)2 =

√
1 + 4 =

√
5 (27)

Fortunately, note that

{x :< w(5), x >= 0} = {x :< cw(5), x >= 0} (28)

for all scalars c ∈ R s.t. c ̸= 0. Thus, we can let c = 1
||w(5)|| and redefine the separating hyperplane

identified by our execution of the Perceptron algorithm as

Hw(5) = {x :< w(5), x >= 0} = {x :<
w(5)

||w(5)||
, x >= 0} = {x :< w, x >= 0} = Hw (29)

where

w = cw(5) =
w(5)

||w(5)||
=

1√
5
(1,−2) = (

1√
5
,− 2√

5
) (30)

and we note that

||w|| =
√

1
√
5
2 + (− 2√

5
)2 =

√
1

5
+

4

5
=

√
1 = 1 (31)

Thus, we can apply (26) to find that the margin MH
w(5)

of Hw(5) , which equals the margin MHw of
Hw, is

MH
w(5)

=MHw
= min
j∈{1,...,n}

| < w,Xj > | (32)

We can directly compute that

| < w,X1 > | = | < (
1√
5
,− 2√

5
), (1, 0) > | = | 1√

5
(1) +− 2√

5
(0)| = 1√

5

| < w,X2 > | = | < (
1√
5
,− 2√

5
), (2, 0) > | = | 1√

5
(2) +− 2√

5
(0)| = 2√

5

| < w,X3 > | = | < (
1√
5
,− 2√

5
), (0, 1) > | = | 1√

5
(0) +− 2√

5
(1)| = 2√

5

| < w,X4 > | = | < (
1√
5
,− 2√

5
), (1, 1) > | = | 1√

5
(1) +− 2√

5
(1)| = 1√

5

so we see that X1 and X4 are the closest training instances to the hyperplane Hw(5) = Hw, both at a
distance of 1√

5
. Plugging this result into (32) yields that the margin of Hw(5) = Hw is

MH
w(5)

=MHw
=

1√
5

(33)

Thus, the margin of the hyperplane Hw(5) = Hw returned by our execution of the Perceptron algorithm
is MHw

= 1√
5
, which completes part (c).

(d) From lecture, we know that, for any training data (X1, Y1), ..., (Xn, Yn) ∈ Rd × {±1} and any vector
w∗ such that ||w∗|| = 1 and (Yj < w∗, Xj >) > 0 for all j ∈ {1, ..., n}, the Perceptron algorithm is
guaranteed to terminate in at most

T ≤ R2

γ2
(34)
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iterations, where
R := max

j∈{1,...,n}
||Xj || (35)

and
γ := min

j∈{1,...,n}
Yj < w∗, Xj > (36)

We can directly compute that

||X1|| =
√
12 + 02 =

√
1 = 1

||X2|| =
√
22 + 02 =

√
4 = 2

||X3|| =
√
02 + 12 =

√
1 = 1

||X4|| =
√
12 + 12 =

√
2

so, for the given training data, we have

R = max
j∈{1,2,3,4}

||Xj || = ||X2|| = 2 (37)

Note that since (34) provides an upper bound on the maximum number of iterations for the Perceptron
algorithm to converge, we can let T := the maximum number of iterations needed for the Perceptron
algorithm to converge given the training data from (24). Then, since our execution of the Perceptron
algorithm with the training data from (24) took 5 iterations to converge, we know

T ≥ 5 (38)

Combining (38) and (34) yields

5 ≤ T ≤ R2

γ2
(39)

Rearranging (39) to get an upper bound for γ yields

γ2 ≤ R2

5
=⇒ γ ≤ R√

5
(40)

Plugging the result from (37) into (40) yields

γ ≤ 2√
5

(41)

Thus, for the given training data from (24), all vectors w∗ of magnitude ||w∗|| = 1 that satisfy
(Yj < w∗, Xj >) > 0 for all j ∈ {1, 2, 3, 4} also satisfy

γ := min
j∈{1,2,3,4}

Yj < w∗, Xj >≤
2√
5

(42)

Since Yj ∈ {±1} and (Yj < w∗, Xj >) > 0 for all j ∈ {1, 2, 3, 4}, we know

(Yj < w∗, Xj >) = | < w∗, Xj > | (43)

for all j ∈ {1, 2, 3, 4}. Combining (43) and (42) yields

min
j∈{1,2,3,4}

| < w∗, Xj > | ≤ 2√
5

(44)
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From (26), we know that since ||w∗|| = 1, the margin MHw∗ of the corresponding hyperplane Hw∗ =
{x :< w∗, x >= 0} is

MHw∗ = min
j∈{1,2,3,4}

( distance from Xj to Hw∗) = min
j∈{1,2,3,4}

| < w∗, Xj > | (45)

Combining (44) and (45), we find that for any hyperplane Hw∗ := {x :< w∗, x >= 0} corresponding to
a vector w∗ of magnitude ||w∗|| = 1 that satisfies Yj(< w∗, Xj >) > 0 for all j ∈ {1, ..., n}, the margin
MHw∗ of Hw∗ satisfies

MHw∗ = min
j∈{1,2,3,4}

( distance from Xj to Hw∗) ≤ 2√
5

(46)

From part (d), we find that

MH ≤ 2√
5

is an upper bound for the maximum achievable margin MH , which completes part (d).

3.

Exercise 5 in section 9.6 of the textbook.
(hint: does multiplying w by a positive constant t change the sign of the dot-proudct < w, x >?)
Suppose we modify the Perceptron algorithm as follows: In the update step, instead of performing w(t+1) =
w(t) + YiXi whenever we make a mistake, we perform w(t+1) = w(t) + ηYiXi for some η > 0. Prove that the
modified Perceptron will perform the same number of iterations as the vanilla Perceptron and will converge
to a vector that points to the same direction as the output of the vanilla Perceptron.

Solution. We want to show that the modified Perceptron algorithm both performs the same number of
iterations as the vanilla Perceptron algorithm and converges to a vector that points to the same direction as
the output of the vanilla algorithm.
Fix η > 0. Let (X1, Y1), ..., (Xn, Yn) ∈ Rd × {±1} be the training data, and consider any arbitrary w∗ ∈ Rd
such that ||w∗|| = 1 and (Yj < w∗, Xj >) > 0 for all j ∈ {1, ..., n}. Define

γ := min
j∈{1,...,n}

Yj < w∗, Xj >, R := max
j∈{1,...,n}

||Xj || (47)

Then from lecture (and the hint from exercise 2 part (d)), we know the maximum number of iterations T
for the vanilla Perceptron algorithm satisfies

T ≤ R2

γ2
(48)

Let Tm be the maximum number of iterations the modified Perceptron algorithm takes to converge for the
given training data. Note that the specific number of iterations both the modified and vanilla Perceptron
algorithms take to converge for the given training data depend on the order in which the training data are
read by the algorithm when checking if (Yj < w(t), Xj >) ≤ 0 for all j ∈ {1, ..., n} on the t’th iteration.
Thus, we can also define N and Nm to be the number of iterations the vanilla and modified Perceptron
algorithms, respectively, take to converge on the given training data permuted arbitrarily. Define w(t) to be

the vanilla Perceptron’s predicted vector at iteration t and w
(t)
m to be the modified Perceptron’s predicted

vector at iteration t. Then, to complete the exercise, it suffices to show

(i) w(t)
m = ηw(t) (ii) Tm ≤ R2

γ2
(iii) Nm = N (49)

for all 1 ≤ t ≤ T, Tm, any sufficient w∗, and any permutation of the training data.
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First, we will show w
(t)
m = ηw(t) for all 1 ≤ t ≤ T, Tm. We will do so by strong induction on t.

Base Case: t = 1, then w
(t)
m = (0, 0) = w(t), and η(0, 0) = (0, 0), so w

(t)
m = ηw(t) when t = 1.

Inductive Hypothesis: Assume that w
(t)
m = ηw(t) for all 1 ≤ t ≤ k < T, Tm.

Inductive Step: Consider t = k + 1.

Note: Since we go on to a t = k + 1’th iteration, we know there is some j ∈ {1, ..., n} such that

(Yj < w
(k)
m , Xj >) ≤ 0. Since η > 0, and w

(k)
m = ηw(k) by the Inductive Hypothesis, we have

Yj < w(k)
m , Xj >= Yj < ηw(k), Xj >= η(Yj < w(k), Xj >) ≤ 0 ⇐⇒ (Yj < w(k), Xj >) ≤ 0 (50)

The result from (50) will be instrumental for the remainder of the proof.

By the recursive definition of w
(k+1)
m for the modified Perceptron algorithm, we have

w(k+1)
m = w(k)

m + ηYjXj (51)

Applying the inductive hypothesis to (51) yields

w(k+1)
m = ηw(k) + ηYjXj = η(w(k) + YjXj) (52)

From (50), since (Yj < w
(k)
m , Xj >) ≤ 0, we know

(Yj < w(k), Xj >) ≤ 0 (53)

so by (52) and the recursive definition of w(k+1) for the vanilla Perceptron algorithm, assuming the training
data are read in the same order by both algorithms, we have

w(k+1)
m = η(w(k+1)) (54)

The conclusion that w
(t)
m = ηw(t) for all 1 ≤ t ≤ T, Tm follows by induction.

Now, we will show that Tm ≤ R2

γ2 . By definition, for all θ ∈ R, we have

cos(θ) ≤ 1 (55)

Using the result from (55) in combination with the definition of the dot product, we find that for any two
vectors u and v (of nonzero magnitude)

< u, v >= ||u|| · ||v|| · cos(θ) =⇒ < u, v >

||u|| · ||v||
= cos(θ) ≤ 1 (56)

where θ is the angle between u and v.
Define w‘ = w∗

γ , so we have

(Yj < w‘, Xj >) ≥ 1 for all j ∈ {1, ..., n} (57)

by the definition of γ. Then right hand side of (56) implies

1 ≥ < w‘, w
(t+1)
m >

||w‘|| · ||w(t+1)
m ||

(58)

Claim: (< w‘, w
(t+1)
m >) ≥ ηt for all 0 ≤ t ≤ Tm.

Proof. We apply strong induction on t.

Base Case: t = 0, and w
(t+1)
m = (0, 0), so

(< w‘, w(t+1)
m ) = 0 ≥ 0 = ηt
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so the claim holds for the base case.
Inductive Hypothesis: Assume (< w‘, w

(t+1)
m >) ≥ ηt for all 0 ≤ t ≤ k − 1 < Tm.

Inductive Step: Consider t = k. Note that

(< w‘, w(k+1)
m >) = (< w‘, w(k+1)

m >)− (< w‘, w(k)
m >) + (< w‘, w(k)

m >) (59)

and

(< w‘, w(k+1)
m >)−(< w‘, w(k)

m >) = (< w‘, w(k+1)
m −w(k)

m >) = (< w‘, ηYjXj >) = ηYj(< w‘, Xj >) (60)

From (57), we know that (Yj < w‘, Xj >) ≥ 1 for all j ∈ {1, ..., n}, so we have

(< w‘, w(k+1)
m >)− (< w‘, w(k)

m >) ≥ η (61)

Combining (59) with (61) yields

(< w‘, w(k+1)
m >) ≥ η + (< w‘, w(k)

m >) (62)

Applying the Inductive Hypothesis to (62) yields

(< w‘, w(k+1)
m >) ≥ η + η(k − 1) = ηk (63)

The conclusion that (< w‘, w
(t+1)
m >) ≥ ηt for all 0 ≤ t ≤ Tm follows from (63) by induction.

Claim: ||w(t+1)
m ||2 ≤ tη2R2 for all 0 ≤ t ≤ Tm.

Proof: We apply strong induction on t.

Base Case: t = 0, we have w
(t+1)
m = w

(1)
m = (0, 0), so

||w(t+1)
m ||2 = 0 ≤ 0 = 0η2R2

so the claim holds for the base case.
Inductive Hypothesis: Assume ||w(t+1)

m ||2 ≤ tη2R2 for all 0 ≤ t ≤ k − 1 < Tm.

Inductive Step: Consider t = k. Then w
(t+1)
m = w

(k+1)
m , and

||w(k+1)
m ||2 = ||w(k)

m + ηYjXj ||2 = ||w(k)
m ||2 + η2Y 2

j ||Xj ||2 + 2ηYj(< w(k)
m , Xj >) (64)

By assumption, we have Yj(< w
(k)
m , Xj >) ≤ 0 =⇒ 2ηYj(< w

(k)
m , Xj >) ≤ 0, since η > 0. Also, we have

Y 2
j = 1 since Yj ∈ {±1} and ||Xj ||2 ≤ R2 by the definition of R. Thus, we can rewrite (64) as

||w(k+1)
m ||2 ≤ ||w(k)

m ||2 + η2R2 (65)

Applying the inductive hypothesis to (65) yields

||w(k+1)
m ||2 ≤ (k − 1)η2R2 + η2R2 = kη2R2 (66)

The conclusion that ||w(t+1)
m ||2 ≤ tη2R2 for all 0 ≤ t ≤ Tm follows from (66) by induction.

Also, since w‘ := w∗

γ , we know

||w‘|| = 1

γ
||w∗|| = 1

γ
(67)

with the last equality following since ||w∗|| = 1 by definition.

Plugging the results from (63), (66), and (67) into (58), we see

1 ≥ < w‘, w
(t+1)
m >

||w‘|| · ||w(t+1)
m ||

≥ ηt√
tη2R2

γ

=

√
tγ

R
(68)
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Since (68) holds for all 0 ≤ t ≤ Tm, we know

1 ≥
√
Tmγ

R
=⇒ R

γ
≥
√
Tm =⇒ Tm ≤ R2

γ2
(69)

The result from (69) implies that the number of iterations it takes the modified Perceptron algorithm to
converge is always upper bounded by the exact same upper bound as for the vanilla Perceptron algorithm.

Now, we will show that Nm = N for any given permutation of the training data. Assume to the con-
trary that Nm ̸= N for some permutation of the training data. Then either Nm < N or Nm > n. If

Nm < N , then at iteration t = Nm, we must have Yj(< w
(Nm)
m , Xj >) > 0 for all j ∈ {1, ..., n} but there

must be some i ∈ {1, ..., n} such that Yi(< w(Nm), Xi >) ≤ 0 so the vanilla Perceptron algorithm can update
w(Nm+1) for the next iteration. However, from (50), we know that for any permutation of the training data,
we have

Yj(< w(Nm)
m , Xj >) ≤ 0 ⇐⇒ Yj(< w(Nm), Xj >) ≤ 0

so we have a contradiction.
Similarly, if Nm > N , then at iteration t = N , we must have Yj(< w(N), Xj >) > 0 for all j ∈ {1, ...n} but

there must be some i ∈ {1, ..., n} such that Yj(< w
(N)
m , Xj >) ≤ 0 so that the modified Perceptron algorithm

can update w(N+1) for the next iteration. Once again, this produces a contradiction with (50).
Thus, if Nm ̸= N , we can always derive a contradiction, so we know Nm = N . That is, for any given
ordering of the training data, the modified Perceptron algorithm will always converge in the same number
of iterations as the vanilla Perceptron algorithm. This combines with (54) to imply that

w(Nm)
m = w(N)

m = ηw(Nm) = ηw(N) (70)

for any possible number of iterations N = Nm required by both the vanilla and modified Perceptron algo-

rithms to converge. Since the modified Perceptron algorithm will return w
(Nm)
m by the definition of Nm and

the vanilla Perceptron algorithm will return w(N) by the definition of N , (70) combines with the fact that
η > 0 to imply that the modified and vanilla Perceptron algorithms will always converge to vectors that
point in the same direction, for any given permutation of training data.
This completes the proof that the modified Perceptron algorithm will perform the same number of iterations
as the vanilla Perceptron and will converge to a vector that points in the same direction as the output of
the vanilla Perceptron.

Assignment 5

Read chapter 10 of the textbook ”Understanding Machine Learning.” Then do the following problems:

1. Logistic regression and the Bayes classifier.

Recall that the Logistic Regression solves the following problem:

1

n

n∑
j=1

(
ln(1 + e⟨w,Xj⟩)− Yj⟨w,Xj⟩

)
→ minimize over w ∈ Rd

where (X1, Y1), ..., (Xn, Yn) ∈ Rd × {0, 1} is the training data. Assume that we know the distribution of
(X,Y ) so that we can replace the average by the expectation:

E[ln(1 + e⟨w,X⟩)− Y ⟨w,X⟩] → minimize over w ∈ Rd

Let us replace the linear function ⟨w,X⟩ by an arbitrary, possibly non-linear function g(X), and let g∗ be
the function that minimizes

E[ln(1 + eg(X))− Y g(X)]
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over all functions g(X). In the course of this exercise, we will show that g∗(X) gives rise to the Bayes classifier.
In class, we followed the same pattern to justify the AdaBoost algorithm.

(a) If the labels take values {0, 1}, instead of {−1,+1}, show that the expression for the Bayes classifier
g∗ in terms of the conditional probability p(x) := P(Y = 1|X = x) is

g∗(x) =

{
1 if p(x) ≥ 1

2

0 if p(x) < 1
2

(b) Recall that in the logistic regression framework discussed above, the estimator of the probability p(x)

is constructed from the vector w as e⟨w,x⟩

1+e⟨w,x⟩ . Show that the optimal function g∗(x) (meaning the one

that minimizes E[ln(1 + eg(X))− Y g(X)] is such that

eg∗(x)

1 + eg∗(x)
= p(x)

and conclude that the associated binary classifier is the Bayes classifier.
You can assume that X takes values x1, ..., xk with probabilities p1, ..., pk, respectively, and follow the
steps of the proof of a similar result for AdaBoost from the class notes.

(c) How would you interpret the result established above?

Solution.

(a) By definition, the Bayes classifier is the function g : Rd → {0, 1} which minimizes P(Y ̸= g(X)) over
all possible training data. Note that, for any x ∈ Rd, either p(x) > 1

2 , p(x) <
1
2 , or p(x) =

1
2 . We will

show that, in each case, the classifier g∗, defined as

g∗(x) :=

{
1 if p(x) ≥ 1

2

0 if p(x) < 1
2

(1)

returns the value g∗(x) ∈ {0, 1} that minimizes P(Y ̸= g∗(X)|X = x). We will do so by showing, in
each case, that the output of g∗ as defined in (1) produces a lower probability of classification error
than the alternative output.
First, consider any x ∈ Rd such that p(x) > 1

2 . Then g∗(x) = 1 by definition. Thus,

P(Y ̸= g∗(X)|X = x) = P(Y = 0|X = x) = 1− P(Y = 1|X = x) = 1− p(x) < 1− 1

2
=

1

2
(2)

Since g∗ maps to {0, 1}, the only other possible outcome when p(x) > 1
2 is g∗(x) = 0. However, if

g∗(x) = 0, we can easily compute that

P(Y ̸= 0|X = x) = P(Y = 1|X = x) =: p(x) >
1

2
(3)

Comparing (2) and (3), we see that g∗(x) = 1 minimizes P(Y ̸= g∗(X)|X = x) for all x ∈ Rd such that
p(x) > 1

2 .
Next, consider any x ∈ Rd such that p(x) < 1

2 . From (1), we see that g∗(x) = 0 by definition. This
yields

P(Y ̸= g∗(X)|X = x) = P(Y = 1|X = x) = p(x) <
1

2
(4)

If g∗ does not output 0 for any such x, it must output 1, so we would have

P(Y ̸= 1|X = x) = 1− P(Y = 1|X = x) = 1− p(x) >
1

2
(5)
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Comparing (4) and (5), we see that g∗(x) = 0 minimizes P(Y ̸= g∗(X)|X = x) for all x ∈ Rd such
that p(x) < 1

2 . Finally consider all x ∈ Rd such that p(x) = 1
2 . From (1), we know that g∗(x) = 1 by

definition. This yields

P(Y ̸= g∗(X)|X = x) = P(Y = 0|X = x) = 1− P(Y = 1|X = x) = 1− 1

2
=

1

2
(6)

If, on the other hand, g∗(x) = 0 for such x, we would have

P(Y ̸= 0|X = x) = P(Y = 1|X = x) = p(x) =
1

2
(7)

Comparing (6) and (7), we see that, for all x ∈ Rd such that p(x) = 1
2 , there is no difference between

the probability of classification error for classifiers outputting 1 and those outputting 0. Thus, either
output, including the g∗(x) = 1 defined by (1), minimize P(Y ̸= g∗(X)|X = x) for all such x.
In every case, g∗ as defined in (1) produces an output with a lower generalization error than the
alternative output. Therefore, g∗ minimizes P(Y ̸= g(X)|X = x) over all x ∈ Rd and all binary
classifiers g, so g∗ minimizes P(Y ̸= g(X)) over the distribution of the training data and all possible
binary classifiers g. By definition, this means g∗ is the Bayes classifier for the label set {0, 1}.

(b) We follow the steps of the proof of a similar result for AdaBoost from lecture. We are given that X
is discrete, taking values in {x1, ..., xk} with corresponding probabilities in {p1, ..., pk}. By the law of
total expectation, since

(X = x1), · · · , (X = xk)

are all mututally disjoint events whose union is the sample space, we have

E[ln(1 + eg(X))− Y g(X)] =

k∑
i=1

E[
(
ln(1 + eg(X))− Y g(X)

)
|X = xi] · pi (8)

For each term inside the sum, if we are given X = xi, then we know g(X) = g(xi), so g(X) is a
constant. Thus, given X = xi, ln(1+ eg(X)) is also a constant, so we can pull it out of the expectation
to find

E[ln(1 + eg(X))− Y g(X)] =

k∑
i=1

(ln(1 + eg(xi))− E[Y g(X)|X = xi]) · pi (9)

Since g(X) = g(xi) is constant given X = xi, and E[aY |Z] = aE[Y ] for all constants a ∈ R, we can
also pull the g(X) out of the expectation to find

E[ln(1 + eg(X))− Y g(X)] =

k∑
i=1

(ln(1 + eg(xi))− g(xi)E[Y |X = xi]) · pi (10)

We know Y ∈ {0, 1}, so we can easily compute that

E[Y |X = xi] =

1∑
y=0

yP(Y = y|X = xi) = 0P(Y = 0|X = xi) + 1P(Y = 1|X = xi) = p(xi) (11)

The result from (11) allows us to remove the expectation entirely from (10):

E[ln(1 + eg(X))− Y g(X)] =

k∑
i=1

(ln(1 + eg(xi))− g(xi)p(xi)) · pi (11)

Now, define t1, ..., tk such that ti = g(xi) for all i ∈ {1, ..., k}. From (11), we see that to minimize
E[ln(1 + eg(X))− Y g(X)], it suffices to minimize

f(ti) := ln(1 + eti)− tip(xi) (12)
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Differentiating with respect to ti yields

f ′(ti) =
d

dt
f(ti) =

eti

1 + eti
− p(xi) (13)

To find a critical point on f , we just need to find a ti that satisfies f
′(ti) = 0. We can easily compute

that

f ′(ti) =
eti

1 + eti
− p(xi) = 0 ⇐⇒ eti

1 + eti
= p(xi) (14)

Also, by differentiating (13) once more with respect to ti, we find

f”(ti) =
d

dt
f ′(ti) =

(1 + eti)eti − etieti

(1 + eti)2
=

eti

(1 + eti)2
(15)

Since ex is a non-negative function, we have

f”(ti) > 0 (16)

so we know the critical point ti, which must satisfy (14), is indeed a global minimum of the function f .
Substituting g(xi) for ti in (14), we find that the optimal g∗ which minimizes E[ln(1+ eg(X))−Y g(X)]
satisfies

eg∗(xi)

1 + eg∗(xi)
= p(xi) (17)

for all i ∈ {1, ..., k}, so we have
eg∗(x)

1 + eg∗(x)
= p(x) (18)

The binary classifier associated with this function g∗ is defined to be

gb∗(x) :=

{
1 if eg∗(x)

1+eg∗(x) ≥ 1
2

0 otherwise.
(19)

Using the result from (18), we can simplify (19) to be

gb∗(x) =

{
1 if p(x) ≥ 1

2

0 if p(x) < 1
2

(20)

Comparing (20) and (1), we see that this binary classifier gb∗ corresponding to the function g∗ that
minimizes E[ln(1 + eg(X))− Y g(X)] is actually just the Bayes classifier itself. That is

gb∗(x)︸ ︷︷ ︸
the binary classifier corresponding to the optimal function g∗ defined in (17)

= g∗(x)︸ ︷︷ ︸
the binary classifier (Bayes classifier) defined in (1)

(21)

for all x.

(c) I interpret the results established above to mean that Logistic Regression can identify and output a
function g∗ which is sufficient to compute the Bayes classifier directly, without prior explicit knowledge
about the conditional distribution of Y given X. Thus, Logistic Regression appears to be a powerful
tool for extracting ideal binary classifiers from problems with unknown distributions over the training
data. By definition, the Bayes classifier performs the best over the true distribution of the training data.
Thus, obtaining it without needing to explicitly define that distribution could allow Logistic Regression
to solve problems over complicated distributions which cannot be explicitly defined. Moreover, since
the solution from Logistic Regression can yield the Bayes classifier, the algorithm not only can solve
difficult binary classification problems, but it can solve them ideally (or at least approximately ideally).
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2. AdaBoost.

Recall that on ever step t, the AdaBoost algorithm generates weights w
(t+1)
1 , ..., w

(t+1)
n attached to the

samples (X1, Y1), ..., (Xn, Yn). The goal of this problem is to understand how exactly these weights change.
Recall from the class notes that

w
(t+1)
j =

w
(t)
j exp(−αtYjft(Xj)

Zt

where

Zt :=

n∑
i=1

w
(t)
j exp(−αtYjft(Xj)), αt :=

1

2
ln(

1− en,w(t)(ft)

en,w(t)(ft)
, and en,w(t)(ft) :=

n∑
j=1

w
(t)
j I{Yj ̸= ft(Xj)}

(a) Read the class notes and prove that

Zt = 2
√
en,w(t)(ft)(1− en,w(t)(ft))

This was already done in class, but you need to fill in the missing details.

(b) Simplify the expression for w
(t+1)
j using this expression for Zt (consider two cases seprately: Yj = ft(Xj)

and Yj ̸= ft(Xj)).

(c) Recall that, by the “weak learnability” assumption of AdaBoost, en,w(t)(ft) <
1
2 . Use this fact together

with the simplified expression for w
(t+1)
j to show that, if ft classifies Xj correctly, then w

(t+1)
j < w

(t)
j ,

otherwise w
(t+1)
j > w

(t)
j .

Solution.

(a) Note that, for all j ∈ {1, ..., n},

I{Yj = ft(Xj)} = 1 ⇐⇒ I{Yj ̸= ft(Xj)} = 0 and I{Yj = ft(Xj)} = 0 ⇐⇒ I{Yj ̸= ft(Xj)} = 1 (22)

which directly implies
I{Yj = ft(Xj)}+ I{Yj ̸= ft(Xj)} = 1 (23)

for all j ∈ {1, ..., n}. Thus, we can write

Zt :=

n∑
j=1

w
(t)
j exp(−αtYjft(Xj)) =

n∑
j=1

w
(t)
j exp(−αtYjft(Xj))(I{Yj = ft(Xj)}+I{Yj ̸= ft(Xj)}) (24)

Adding and subtracting
∑n
j=1 w

(t)
j e−αtI{Yj ̸= ft(Xj)} to (24) yields

Zt =

n∑
j=1

w
(t)
j exp(−αtYjft(Xj))I{Yj = ft(Xj)}+

n∑
j=1

w
(t)
j exp(−αtYjft(Xj))I{Yj ̸= ft(Xj)})

+

n∑
j=1

w
(t)
j e−αtI{Yj ̸= ft(Xj)} −

n∑
j=1

w
(t)
j e−αtI{Yj ̸= ft(Xj)} (25)

If Yj ̸= ft(Xj), then

w
(t)
j exp(−αtYjft(Xj))I{Yj = ft(Xj)} = 0 (26)

and if Yj = ft(Xj), then Yjft(Xj) = 1, so

w
(t)
j exp(−αtYjft(Xj))I{Yj = ft(Xj)} = w

(t)
j e−αt (27)
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Whenever Yj = ft(Xj), (27) holds, so we can write

n∑
j=1

w
(t)
j exp(−αtYjft(Xj))I{Yj = ft(Xj)} =

n∑
j=1

w
(t)
j e−αtI{Yj = ft(Xj)} (28)

Similarly, if Yj = ft(Xj), then

w
(t)
j exp(−αtYjft(Xj))I{Yj ̸= ft(Xj)} = 0 (29)

while Yj ̸= ft(Xj) implies Yjft(Xj) = −1 and, subsequently,

exp(−αtYjft(Xj))I{Yj ̸= ft(Xj)} = w
(t)
j eαt (30)

This allows us to write

n∑
j=1

w
(t)
j exp(−αtYjft(Xj))I{Yj ̸= ft(Xj)} =

n∑
j=1

w
(t)
j eαtI{Yj ̸= ft(Xj)} (31)

Plugging the results from (28) and (31) into (25) yields

Zt =

n∑
i=1

w
(t)
j e−αtI{Yj = ft(Xj)}+

n∑
j=1

w
(t)
j eαtI{Yj ̸= ft(Xj)}

+

n∑
j=1

w
(t)
j e−αtI{Yj ̸= ft(Xj)} −

n∑
j=1

w
(t)
j e−αtI{Yj ̸= ft(Xj)} (32)

Rearranging the terms in (32), and pulling the eαt and e−αt terms out of the summations, we find

Zt = (eαt − e−αt)

n∑
j=1

w
(t)
j I{Yj ̸= ft(Xj)}+ e−αt

n∑
j=1

w
(t)
j (I{Yj = ft(Xj)}+ I{Yj ̸= ft(Xj)}) (33)

Plugging the result from (23) into (33) yields

Zt = (eαt − e−αt)

n∑
j=1

w
(t)
j I{Yj ̸= ft(Xj)}+ e−αt

n∑
i=1

w
(t)
j (34)

By definition, for any t,
∑n
j=1 w

(t)
j = 1, so we have

Zt = e−αt + (eαt − e−αt)

n∑
j=1

w
(t)
j I{Yj ̸= ft(Xj)} (35)

Noting that the summation from (35) is just the definition of en,w(t)(ft) from the problem statement,
we find

Zt = e−αt + (eαt − e−αt)en,w(t)(ft) (36)

Now, we will use the definition of αt to simplify the equation for Zt further. By the definition from
the problem statement, we have

e−αt = e
− 1

2 ln(
1−e

n,w(t) (ft)

e
n,w(t) (ft)

)
=
(
e
ln(

1−e
n,w(t) (ft)

e
n,w(t) (ft)

))− 1
2 =

(1− en,w(t)(ft)

en,w(t)(ft)

)− 1
2 =

√
en,w(t)(ft)

1− en,w(t)(ft)
(37)

and

eαt = e
1
2 ln(

1−e
n,w(t) (ft)

e
n,w(t) (ft)

)
=
(
e
ln(

1−e
n,w(t) (ft)

e
n,w(t) (ft)

)) 1
2 =

(1− en,w(t)(ft)

en,w(t)(ft)

) 1
2 =

√
1− en,w(t)(ft)

en,w(t)(ft)
(38)
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Plugging the results from (37) and (38) into (36) and simplifying yields

Zt =

√
en,w(t)(ft)

1− en,w(t)(ft)
+

(√
1− en,w(t)(ft)

en,w(t)(ft)
−

√
en,w(t)(ft)

1− en,w(t)(ft)

)
en,w(t)(ft)

=

√
en,w(t)(ft)

1− en,w(t)(ft)
+
√
en,w(t)(ft)(1− en,w(t)(ft)−

en,w(t)(ft)
√
en,w(t)(ft)√

1− en,w(t)(ft)

=

√
en,w(t)(ft)

1− en,w(t)(ft)

√
en,w(t)(ft)

en,w(t)(ft)
+
√
en,w(t)(ft)(1− en,w(t)(ft) ·

√
en,w(t)(ft)(1− en,w(t)(ft)√
en,w(t)(ft)(1− en,w(t)(ft)

−
en,w(t)(ft)

√
en,w(t)(ft)√

1− en,w(t)(ft)

√
en,w(t)(ft)

en,w(t)(ft)

=
en,w(t)(ft) + en,w(t)(ft) · (1− en,w(t)(ft))− en,w(t)(ft)

2√
en,w(t)(ft)(1− en,w(t)(ft))

=
en,w(t)(ft) · (1− en,w(t)(ft)) + en,w(t)(ft) · (1− en,w(t)(ft))√

en,w(t)(ft)(1− en,w(t)(ft))

=
2en,w(t)(ft) · (1− en,w(t)(ft))√
en,w(t)(ft)(1− en,w(t)(ft))

= 2
√
en,w(t)(ft)(1− en,w(t)(ft)) (39)

The last line of (39) completes the proof that

Zt = 2
√
en,w(t)(ft)(1− en,w(t)(ft))

which completes part (a).

(b) To simplify the expression for w
(t+1)
j , we plug in the expression for Zt from (39) and use (23) to find

w
(t+1)
j =

w
(t)
j exp(−αtYjft(Xj))

2
√
en,w(t)(ft)(1− en,w(t)(ft))

(I{Yj = ft(Xj)}+ I{Yj ̸= ft(Xj)})

=
w

(t)
j exp(−αtYjft(Xj))

2
√
en,w(t)(ft)(1− en,w(t)(ft))

I{Yj = ft(Xj)}+
w

(t)
j exp(−αtYjft(Xj))

2
√
en,w(t)(ft)(1− en,w(t)(ft))

I{Yj ̸= ft(Xj)} (40)

We already showed that

w
(t)
j exp(−αtYjft(Xj))I{Yj = ft(Xj)} = w

(t)
j e−αtI{Yj = ft(Xj)} (41)

in (27) and

w
(t)
j exp(−αtYjft(Xj))I{Yj ̸= ft(Xj)} = w

(t)
j eαtI{Yj ̸= ft(Xj)} (42)

in (30). Plugging these results into (40) yields

w
(t+1)
j =

w
(t)
j e−αt

2
√
en,w(t)(ft)(1− en,w(t)(ft))

I{Yj = ft(Xj)}+
w

(t)
j eαt

2
√
en,w(t)(ft)(1− en,w(t)(ft))

I{Yj ̸= ft(Xj)} (43)
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Plugging the results from (37) and (38) into (43) allows us to further simplify the equation for w
(t+1)
j :

w
(t+1)
j =

w
(t)
j

√
e
n,w(t) (ft)

1−e
n,w(t) (ft)

2
√
en,w(t)(ft)(1− en,w(t)(ft))

I{Yj = ft(Xj)}+
w

(t)
j

√
1−e

n,w(t) (ft)

e
n,w(t) (ft)

2
√
en,w(t)(ft)(1− en,w(t)(ft))

I{Yj ̸= ft(Xj)}

=
w

(t)
j

2

1

1− en,w(t)(ft)
I{Yj = ft(Xj)}+

w
(t)
j

2

1

en,w(t)(ft)
I{Yj ̸= ft(Xj)}

=
w

(t)
j

2(1− en,w(t)(ft))
I{Yj = ft(Xj)}+

w
(t)
j

2en,w(t)(ft)
I{Yj ̸= ft(Xj)}

=
w

(t)
j

2

(
I{Yj = ft(Xj)}
1− en,w(t)(ft)

+
I{Yj ̸= ft(Xj)}
en,w(t)(ft)

)
(44)

Thus, our simplified expression for w
(t+1)
j is

w
(t+1)
j =

w
(t)
j

2

(
I{Yj = ft(Xj)}
1− en,w(t)(ft)

+
I{Yj ̸= ft(Xj)}
en,w(t)(ft)

)
(45)

By (22), if Yj = ft(Xj), we have

w
(t+1)
j =

w
(t)
j

2

I{Yj = ft(Xj)}
1− en,w(t)(ft)

=
w

(t)
j

2

1

1− en,w(t)(ft)
(46)

and if Yj ̸= ft(Xj), we have

w
(t+1)
j =

w
(t)
j

2

I{Yj ̸= ft(Xj)}
en,w(t)(ft)

=
w

(t)
j

2

1

en,w(t)(ft)
(47)

This completes part (b).

(c) It suffices to show:

(i) If ft(Xj) = Yj , then w
(t+1)
j < w

(t)
j .

(ii) If ft(Xj) ̸= Yj , then w
(t+1)
j > w

(t)
j .

First we will show (i). From (46), if Yj = ft(Xj), we have

w
(t+1)
j =

w
(t)
j

2(1− en,w(t)(ft))
(48)

Note that

en,w(t)(ft) <
1

2
=⇒ 1−en,w(t)(ft) >

1

2
=⇒ 2(1−en,w(t)(ft)) > 1 =⇒ 1

2(1− en,w(t)(ft))
< 1 (49)

Plugging the result from (49) into (48) yields

w
(t+1)
j = w

(t)
j · 1

2(1− en,w(t)(ft))
< w

(t)
j · 1 = w

(t)
j (50)

for all j such that Yj = ft(Xj), which completes the proof of part (i).
Next, we show (ii). From (47), if Yj ̸= ft(Xj), we have

w
(t+1)
j = w

(t)
j

1

2en,w(t)(ft)
(51)

Page 211



Note that

en,w(t)(ft) <
1

2
=⇒ 2en,w(t)(ft) < 1 =⇒ 1

2en,w(t)(ft)
> 1 (52)

Plugging the result from (52) into (51) yields

w
(t+1)
j = w

(t)
j

1

2en,w(t)(ft)
> w

(t)
j · 1 = w

(t)
j (53)

for all j such that Yj ̸= ft(Xj), which completes the proof of part (ii). Thus, we have shown that

Yj = ft(Xj) =⇒ w
(t+1)
j < w

(t)
j (54)

and
Yj ̸= ft(Xj) =⇒ w

(t+1)
j > w

(t)
j (55)

which completes part (c).

3. Expressive power of the convex combinations (“majority vote”).

Recall that AdaBoost finds a solution in the class

G = {
k∑
j=1

αjfj : k ≥ 1, α1, ..., αk ≥ 0, f1, ..., fk ∈ F}

where F is some class of binary classifiers. How complex, or expressive, can the class of binary classifiers
{sign(g), g ∈ G} associated with G be? We look at one example in this exercise. Let F be the class of
threshold classifiers, or “decision stumps,”

F := {fθ,b(x) = sign(x− θ) · b : θ ∈ R, b ∈ {−1,+1}}

In other words, fθ,b(x) =

{
b if x ≥ θ,

−b if x < θ.

(a) Let −∞ = θ0 < θ1 < · · · < θr = ∞ be a sequence of real numbers, and define

gr(x) :=

r∑
j=1

αjI{x ∈ (θj−1, θj ]}

where αj = (−1)j . Draw the graph of a generic function gr for, say, r = 4 (you can pick θ’s as you
wish).

(b) Show that any function gr can be realized as an element of the class G (after taking the sign). Specif-
ically, let

h(x) = sign
( r∑
j=1

wj · sign(x− θj−1)
)

where w1 = − 1
2 and wj = (−1)j for all j > 1, and show that h(x) = gr(x).

Solution.

(a) We choose r = 4 and

−∞ = θ0 < −20 = θ1 < 0 = θ2 < 20 = θ3 < θ4 = ∞ (56)
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Note: By (56), for all x ∈ R,

x ∈ (θj−1, θj ] =⇒ x /∈ (θi−1, θj ] for all i ̸= j (57)

Note that, for all x ∈ (−∞,−20], we have

gr(x) = α1I{x ∈ (−∞,−20]}+
4∑
j=2

αjI{x ∈ (θj−1, θj)} = α1 + 0 = α1 = −1 (58)

since x ∈ (−∞,−20] to implies that I{x ∈ (θj−1, θ)} = 0 for all j > 1 by (57).
For all x ∈ (−20, 0], we have

gr(x) = α2I{x ∈ (−20, 0]}+
∑

j ̸=2,j∈{1,2,3,4}

αjI{x ∈ (θj−1, θj ]} = α2I{x ∈ (−20, 0]} = α2 = (−1)2 = 1 (59)

since x ∈ (−20, 0] implies x /∈ (θj−1, θj ] for all j ̸= 2 by (57).
For all x ∈ (0, 20], we have

gr(x) = α3I{x ∈ (0, 20]}+
∑

j ̸=3,j∈{1,2,3,4}

αjI{x ∈ (θj−1, θj)} = α3I{x ∈ (0, 20]} = α3 = (−1)3 = −1 (60)

since x ∈ (0, 20] implies x /∈ (θj−1, θj ] for all j ̸= 3 by (57).
Finally, for all x ∈ (20,∞] (i.e. all x we have not yet discussed), we have

gr(x) = α4I{x ∈ (20,∞]}+
3∑
j=1

αjI{x ∈ (θj−1, θj ]} = α4I{x ∈ (20,∞]} = α4 = (−1)4 = 1 (61)

Thus, for r = 4 and θ0 < θ1 < θ2 < θ3 < θ4 as defined in (56), we have

gr(x) =

{
−1 if x ∈ (−∞,−20] ∪ (0, 20]

1 if x ∈ (−20, 0] ∪ (20,∞)
(62)

We can now plot gr as a piece-wise function of x:

which completes part (a).
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(b) We want to show that, for all possible gr,

gr(x) = sign(g(x)) (63)

for some g ∈ G. To do so, it suffices to show:

(i) h(x) = sign(g(x)) for some g ∈ G.

(ii) h(x) = gr(x).

First, we will show (i). To do so, we will construct a valid g ∈ G, then show that h(x) = sign(g). Let

α1 =
1

2
and α2 = · · · = αr = 1 (64)

Next, define
fi(x) = fθi−1,sign(wi)(x) := sign(wi) · sign(x− θi−1) (65)

for all i ∈ {1, ..., r}. Since sign(wi) ∈ {−1,+1}, we have

fi(x) = sign(x− θi−1) · b ∈ F (66)

for all i ∈ {1, ..., r}. Also, by (64), we have αi ≥ 0 for all i ∈ {1, ..., r}. Thus, for all r ≥ 1, by the
definition of G, we have

g(x) :=

r∑
i=1

αifi ∈ G (67)

Now, we just have to show that h(x) = sign(g(x)). Note that

g(x) :=

r∑
i=1

αifi = α1f1 +

r∑
i=2

αifi =
1

2
sign(−1)sign(x− θ0) +

r∑
i=2

sign(wi)sign(x− θi−1)

= − 1

2
sign(x− θ0) +

r∑
i=2

sign((−1)i)sign(x− θi−1) (68)

Since sign((−1)i) = (−1)i for all i ≥ 1, we have

g(x) = −1

2
sign(x− θ0) +

r∑
i=2

(−1)jsign(x− θi−1) (69)

Noting that − 1
2 =: w1 and (−1)i =: wi for all i > 1, we can rewrite g(x) as

g(x) = w1sign(x− θ0) +

r∑
i=2

wisign(x− θi−1) =

r∑
i=1

wisign(x− θi−1) (70)

Combining (70) with the definition of h(x) from the problem statement, we find

h(x) := sign(

r∑
i=1

wisign(x− θi−1)) = sign(g(x)) (71)

Since g ∈ G by (67), this completes the proof that

h(x) = sign(g(x)) for some g ∈ G (72)

Now, we just need to show that gr(x) = h(x). We will consider several different cases. First, fix x ∈ R,
and define k ∈ {1, ..., r} to be the index such that x ∈ (θk−1, θk]. Note that, by (57), this definition
implies

x /∈ (θj−1, θj ] for all j ̸= k (73)
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Also, since θk−1 < x ≤ θk, we know

sign(x− θi) = +1 for all i ∈ {1, ..., k − 1} (74)

and
sign(x− θi) = −1 for all i ∈ {k, ..., r} (75)

Note that, since x = k is possible by the definition of k, we are defining sign(0) = −1 for (75) to hold.
The sign of 0 is arbitrary, so it is fine to do this. Also, whenever x ̸= k, x < k, and sign(x− θk) := −1.
Thus, defining sign(0) = −1 makes sense to maintain the consistency of the term sign(x− θk).
Since k ∈ Z, k is either even or odd. We consider these cases separately.

Case 1: First, we consider the case when k is odd. By (73), we can easily compute that

gr(x) = αkI{x ∈ (θk−1, θk]}+
∑

j ̸=k,j∈{1,...,r}

αjI{x ∈ (θj−1, θj ]} = αk = (−1)k = −1 (76)

with the last equality following from the assumption that k is odd.
Claim: We claim that, for all odd m ∈ Z where 1 ≤ m ≤ k,

m∑
i=1

wisign(x− θi−1) = −1

2

Proof: We induct on m.
Base Case: m = 1. We can easily compute

1∑
i=1

wisign(x− θ0) = w1 · (1) = −1

2

so the claim holds for the base case.
Inductive Hypothesis: Assume that

m∑
i=1

wisign(x− θi−1) = −1

2

for all odd integers m such that 1 ≤ m ≤ l ≤ k − 2 for some odd integer l.
Inductive Step: Consider m = l + 2. Note that l + 2 is odd since l is odd. With the help of (74), we
can easily compute that

l+2∑
i=1

wisign(x− θi−1) =

l∑
i=1

wisign(x− θi−1) + wl+1sign(x− θl) + wl+2sign(x− θl+1)

=

l∑
i=1

wisign(x− θi−1) + (−1)l+1(1) + (−1)l+2(1) (77)

Since l is odd, l + 1 is even, while l + 2 is odd, so

(−1)l+1 = 1 while (−1)l+2 = −1 (78)

Also, by the inductive hypothesis, we have

l∑
i=1

wisign(x− θi−1) = −1

2
(79)
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Plugging (79) and (78) into (77) yields

l+1∑
i=1

wisign(x− θi−1) = −1

2
+ 1(1) + (−1)(1) = −1

2
+ 1− 1 = −1

2
(80)

The conclusion that
m∑
i=1

wisign(x− θi−1) = −1

2
(81)

follows from (80) by induction for all odd integers m such that 1 ≤ m ≤ k. Thus, when k is odd, we
have

k∑
i=1

wisign(x− θi−1) = −1

2
(82)

The value of
∑r
i=k+1 wisign(x− θi−1) depends on whether r is even or odd, so we split into two more

sub-cases:

Case 1.1: k is odd AND r is even.
Claim: We claim that, for all even integers m such that k + 1 ≤ m ≤ r, we have

m∑
i=k+1

wisign(x− θi−1) = −1

Proof: We induct on m.
Base Case: Since k is odd, k + 1 is even, so we start with m = k + 1. With the help of (75), we can
directly compute

k+1∑
i=k+1

wisign(x− θi−1) = wk+1sign(x− θk) = (−1)k+1sign(x− θk) = 1(−1) = −1

with the last equality following since k is odd, so k+1 is even. Thus, the claim holds for the base case.
Inductive Hypothesis: Assume that, for all even integers m such that k + 1 ≤ m ≤ l ≤ r − 2, where l
is an even integer, we have

m∑
i=k+1

wisign(x− θi−1) = −1

Inductive Step: Consider m = l+ 2. Since l is even, l+ 2 is even. Combining (75) with the inductive
hypothesis, we can compute that

l+2∑
i=k+1

wisign(x− θi−1) =

l∑
i=k+1

wisign(x− θi−1) + wl+1sign(x− θl) + wl+2sign(x− θl+1)

= − 1 + (−1)l+1(−1) + (−1)l+2(−1) (83)

Since l is even, l + 1 is odd, while l + 2 is even, so

(−1)l+1 = −1 and (−1)l+2 = 1 (84)

Plugging the results from (84) into (83) yields

l+2∑
i=k+1

wisign(x− θi−1) = −1 + (−1)(−1) + 1(−1) = −1 + 1− 1 = −1 (85)

The conclusion that ∑
i = k + 1mwisign(x− θi− 1) = −1 (86)
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follows for all odd integers m such that k + 1 ≤ m ≤ r from (86) by induction. Thus, we have

r∑
i=k+1

wisign(x− θi−1) = −1 (87)

whenever k is odd AND r is even. Combining (87) with (82), we find

r∑
i=1

wisign(x− θi−1) =

k∑
i=1

wisign(x− θi− 1) +

r∑
i=k+1

wisign(x− θi− 1) = −1

2
− 1 = −3

2
(88)

Thus, by the definition of h(x) from the problem statement, we have

h(x) := sign(

r∑
i=1

wisign(x− θi−1)) = sign(−3

2
) = −1 (89)

Combining (89) and (76), we find that

h(x) = −1 = gr(x) (90)

for all odd k and even r, which completes Case 1.1.

Case 1.2: k is odd AND r is odd.
Claim: For all odd integers m such that k + 1 < m ≤ r, we have

m∑
i=k+1

wisign(x− θi−1) = 0

Proof: We induct on m.
Base Case: Note that, since k is odd, k+1 is even, so k+2 is the first odd integer greater than k+1.
Thus, our base case is m = k + 2. Using (75), we can directly compute

k+2∑
i=k+1

wisign(x− θi−1) = wk+1sign(x− θk) + wk+2sign(x− θk+1)

= (−1)k+1(−1) + (−1)k+2(−1) = 1(−1) + (−1)(−1) = −1 + 1 = 0 (91)

so the claim holds for the base case.
Inductive Hypothesis: Assume that, for all odd integers m such that k + 1 < m ≤ l ≤ r − 2 for some
odd integer l, we have

m∑
i=k+1

wi · sign(x− θi−1) = 0

Inductive Step: Consider m = l + 2. Combining the inductive hypothesis with (75), we find

l+2∑
i=k+1

wisign(x− θi−1) =

l∑
i=k+1

wisign(x− θi−1) + wl+1sign(x− θl) + wl+2sign(x− θl+1)

= 0 + (−1)l+1(−1) + (−1)l+2(−1) (92)

Since l is odd, l + 1 is even, while l + 2 is odd, so

(−1)l+1 = 1 and (−1)l+2 = −1 (93)
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Plugging (93) into (92) yields

l+2∑
i=k+1

wisign(x− θi−1) = 1(−1) + (−1)(−1) = −1 + 1 = 0 (94)

The conclusion that
m∑

i=k+1

wisign(x− θi−1) = 0 (95)

follows for all odd integers m such that k + 1 < m ≤ r from (94) by induction. Thus, since r is odd,
we have

r∑
i=k+1

wisign(x− θi− 1) = 0 (96)

whenever k and r are both odd.
Combining (96) with (82), we find

r∑
i=1

wisign(x− θi− 1) =

k∑
i=1

wisign(x− θi− 1) +

r∑
i=k+1

wisign(x− θi− 1) = −1

2
+ 0 = −1

2
(97)

Applying the definition of h(x) from the problem statement to (97) yields

h(x) := sign(

r∑
i=1

wisign(x− θi−1) = sign(−1

2
) = −1 (98)

whenever k and r are both odd. Combining (98) with (76), we find

h(x) = −1 = gr(x) (99)

whenever k and r are both odd, which completes Case 1.2.
Combining (99) with (90), we find that

h(x) = −1 = gr(x) (100)

whenever k is odd for all r ≥ 1, which completes all of Case 1.

Case 2: Now, consider the possibility that k is even. By (73), we can easily compute that

gr(x) = αkI{x ∈ (θk−1, θk]}+
∑

j ̸=k,j∈{1,...,r}

αjI{x ∈ (θj−1, θj ]} = αk = (−1)k = 1 (101)

with the last equality following from the assumption that k is even.
Claim: We claim that, for all even integers m such that 1 < m ≤ k, we have

m∑
i=1

wisign(x− θi−1) =
1

2

Proof: We induct on m.
Base Case: The smallest such m is m = 2. Using (74), we can directly compute that

2∑
i=1

wisign(x− θi−1) = w1sign(x− θ0) + w2sign(x− θ1) = −1

2
(1) + (−1)2(1) = −1

2
+ 1 =

1

2
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so the claim holds for the base case.
Inductive Hypothesis: Assume that, for all even integers such that 1 < m ≤ l ≤ k − 2 for some even
integer l, we have

m∑
i=1

wisign(x− θi−1) =
1

2

Inductive Step: Consider m = l + 2. Combining (74) with the inductive hypothesis, we find

l+2∑
i=1

wisign(x− θi−1) =

l∑
i=1

wisign(x− θi−1) + wl+1sign(x− θl) + wl+2sign(x− θl+1)

=
1

2
+ (−1)l+1(1) + (−1)l+2(1) (102)

Since l is even, l + 1 is odd, while l + 2 is even, so

(−1)l+1 = −1 and (−1)l+2 = 1 (103)

Combining (102) with (103) yields

l+2∑
i=1

wisign(x− θi−1) =
1

2
+−1(1) + 1(1) =

1

2
− 1 + 1 =

1

2
(104)

The conclusion that
m∑
i=1

wisign(x− θi−1) =
1

2
(105)

follows from (104) by induction for all even integers m such that 1 < m ≤ k whenever k is even. The
conclusion in (105) directly implies that

k∑
i=1

wisign(x− θi−1) =
1

2
(106)

for all even k.
Once more, the value of

∑r
i=k+1 wisign(x − θi−1) depends on whether r is even or odd, so we split

into two more sub-cases:

Case 2.1: k is even AND r is even.
Claim: We claim that, for all even integers m such that k + 1 < m ≤ r, we have

m∑
i=k+1

wisign(x− θi−1) = 0

Proof: We induct on m.
Base Case: The smallest such even integer m is m = k + 2 since k is even. Using (75) alongside the
fact that k + 1 is odd and k + 2 is even, we can directly compute that

k+2∑
i=k+1

wisign(x− θi−1) = wk+1sign(x− θk) + wk+2sign(x− θk+1)

= (−1)k+1(−1) + (−1)k+2(−1) = (−1)(−1) + 1(−1) = 1− 1 = 0

so the claim holds for the base case.
Inductive Hypothesis: Assume that, for all even integers m such that k + 1 < m ≤ l ≤ r− 2 for some
even integer l, we have

m∑
i=k+1

wisign(x− θi−1) = 0
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Inductive Step: Consider m = l + 2. Combining (75) with the inductive hypothesis, we find

l+2∑
i=k+1

wisign(x− θi−1) =

l∑
i=k+1

wisign(x− θi−1) + wl+1sign(x− θl) + wl+2sign(x− θl+1)

= 0 + (−1)l+1(−1) + (−1)l+2(−1) = (−1)l+1(−1) + (−1)l+2(−1) (107)

Since l is even, l + 1 is odd, while l + 2 is even, so

(−1)l+1 = −1 and (−1)l+2 = 1 (108)

Plugging the results from (108) into (107) yields

l+2∑
i=k+1

wisign(x− θi−1) = (−1)(−1) + 1(−1) = 1− 1 = 0 (109)

The conclusion that
m∑

i=k+1

wisign(x− θi−1) = 0 (110)

follows from (109) by induction for all even integers m such that k + 1 < m ≤ r, whenever k is even.
The conclusion in (110) directly implies that

r∑
i=k+1

wisign(x− θi−1) = 0 (111)

whenever k is even and r is even. Combining (111) and (106) yields

r∑
i=1

wisign(x− θi−1) =

k∑
i=1

wisign(x− θi−1) +

r∑
i=k+1

wisign(x− θi−1) =
1

2
+ 0 =

1

2
(112)

for all even k and even r. Applying the definition of h(x) from the problem statement to (112) yields

h(x) := sign(

r∑
i=1

wisign(x− θi−1)) = sign(
1

2
) = 1 (113)

for all even k and even r. Comparing (113) with (101), we see that

h(x) = 1 = gr(x) (114)

for all even k and even r, which completes Case 2.1.

Case 2.2: k is even AND r is odd.
Claim: We claim that, for all odd integers m such that k + 1 ≤ m ≤ r, we have

m∑
i=k+1

wisign(x− θi−1) = 1

Proof. We induct on m.
Base Case: Since k is even, the smallest such odd integer m is m = k + 1. Combining (75) with the
fact that k + 1 is odd, we can directly compute that

k+1∑
i=k+1

wisign(x− θi−1) = wk+1sign(x− θk) = (−1)k+1(−1) = (−1)(−1) = 1
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so the claim holds for the base case.
Inductive Hypothesis: Assume that, for all odd integers m such that k + 1 ≤ m ≤ l ≤ r − 2, for some
odd integer l, we have

m∑
i=k+1

wi(x− θi−1) = 1

Inductive Step: Consider m = l + 2. Combining the inductive hypothesis with (75), we find

l+2∑
i=k+1

wisign(x− θi−1) =

l∑
i=k+1

wisign(x− θi−1) + wl+1sign(x− θl) + wl+2sign(x− θl+1)

= 1 + (−1)l+1(−1) + (−1)l+2(−1) (115)

Since l is odd, l + 1 is even, while l + 2 is odd, so

(−1)l+1 = 1 and (−1)l+2 = −1 (116)

Plugging the results from (116) into (115), we find

l+2∑
i=k+1

wisign(x− θi−1) = 1 + 1(−1) +−1(−1) = 1− 1 + 1 = 1 (117)

The conclusion that
m∑

i=k+1

wisign(x− θi−1) = 1 (118)

follows from (117) by induction for all odd integers m such that k + 1 ≤ m ≤ r, whenever k is even
and r is odd. That means, for even k and odd r, we have

r∑
i=k+1

wisign(x− θi−1) = 1 (119)

Combining (119) with (106), we find

r∑
i=1

wisign(x− θi−1) =

k∑
i=1

wisign(x− θi−1) +

r∑
i=k+1

wisign(x− θi−1) =
1

2
+ 1 =

3

2
(120)

whenever k is even and r is odd. Applying the definition of h(x) from the problem statement to (120)
yields

h(x) = sign(

r∑
i=1

wisign(x− θi−1)) = sign(
3

2
) = 1 (121)

for all even k and odd r. Comparing (121) with (101), we find

h(x) = 1 = gr(x) (122)

for all even k and odd r, which completes Case 2.2.
Combining (122) with (114), we find that

h(x) = 1 = gr(x) (123)

for all even k and for all r ≥ 1, which completes the entirety of Case 2.
Combining (123) with (100), we find

h(x) = gr(x) (124)
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for all k (i.e. both all even and all odd k) and all r ≥ 1, which completes the proof of part (ii).
Combining (124) with (72), we conclude that any function gr can be realized as an element of the class
G after taking the sign. Specifically, we conclude that, for any gr, gr satisfies

gr(x) = sign(g(x)) (125)

for some g ∈ G, which completes part (b).
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MATH 407: Probability Theory

All assignments in this section were written by Joshua P. Swanson, RTPC Assistant Professor of Mathematics,
USC. Solutions to assignments 1 through 14 are provided.

Assignment 1

Math 407 (Swanson) – Spring 2023
Homework 1

Due Friday 1/13, 11:59pm

Name: Emerson Kahle Section: 39981

• You must upload your solutions to Gradescope as one single, high-quality PDF. You can convert
paper-based work to a high-quality PDF using a scanning app for mobile devices, such as Adobe Scan
(free, available for iOS and Android, can do multiple pages) or many others. If necessary, you can
combine or merge multiple PDF’s into a single PDF using a variety of services, such as Adobe Acrobat’s
cloud-based merge tool.

• After you upload, you must match each question with its corresponding page using Gradescope’s
interface. This allows graders to spend more time giving you feedback instead of hunting through
submissions.

• Answers without supporting work will receive no credit. Show your work.

• You are encouraged to work together on homework, but you must write up your solutions sepa-
rately in your own words. Copying from your fellow students or other sources is a serious academic
integrity violation. In particular, you may not use “tutoring” services which simply provide answers.

• You are encouraged to typeset your solutions in LATEX. Source code has been provided on Blackboard.
Overleaf is a popular cloud-based editor.

• Problem numbers refer to the course textbook, though the problems may have been modified signifi-
cantly.
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1. (Ross P1.6) A well-known nursery rhyme starts as follows:

“As I was going to St. Ives
I met a man with 7 wives.
Each wife had 7 sacks.
Each sack had 7 cats.
Each cat had 7 kittens...”

How many kittens did the traveler meet?
How many were going to St. Ives?

Solution.
To count the total number of kittens that the traveler met, we operate under the assumption that
the traveler meets all of the wives, sacks, cats, and kittens that the man has. Since the traveler
describes in first person the specific quantities of wives, sacks, cats, and kittens in the man’s
possession, it is reasonable to assume that the traveler actually met these people, animals, and
objects. Furthermore, since the only specific quantities described by the traveler relate to the
numbers of wives, sacks, cats and kittens that the man has, this assumption is necessary to
conclude that the traveler met a specific number of kittens.
Now, we can make a series of observations to determine the specific number of kittens that the
traveler met (under the above assumption).
Observation 1:
Since each sack has 7 cats, each with 7 kittens, each sack has exactly 7 ∗ 7 = 49 kittens.
Observation 2:
Since each wife has 7 sacks, each with 49 kittens, each wife has 7 ∗ 49 = 343 kittens.
Observation 3:
Since the man had 7 wives, each with 343 kittens, the man’s wives combine to have
exactly 7 ∗ 343 = 2401 kittens.
Observation 4:
Since the traveler met the man, and we assume he met all of the man’s wives, sacks, cats, and
kittens, we know the traveler met exactly 2401 kittens.

To answer the second question, we again must make an assumption.
Since the traveler meets the man on the way to a destination, it is most likely that the man and
his wives, sacks, cats, and kittens are moving in the opposite direction of the traveler.
Since the traveler is on his way towards St. Ives, this implies that the man and his wives, sacks,
cats, and kittens are heading away from St. Ives. Thus, we assume that the man and his wives,
sacks, cats, and kittens are all moving away from St. Ives.
If the man and traveler were both traveling to St. Ives, it seems more likely they would meet
at their shared destination than at some point along the way.
Under this assumption, it is clear that, of all the people, objects, and animals described by
the traveler, only the traveler himself is going to St. Ives.
Thus, the answer to “how many were going to St. Ives” is exactly 1, the traveler himself.
Note: Since the second question does not specify kittens, we assume that it refers to all people,
objects, and animals described by the traveler, including himself.
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2. (Ross P1.1)

(a) How many different 7-plate license plates are possible if the first 2 places are for letters and the
other 5 are for numbers?

(b) Repeat part (a) under the assumption that no letter or number can be repeated in a single license
plate.

Solution.
(a)
Since the letters can be repeated, and there are 26 letters, there are 26 ∗ 26 = 676
distinct possibilities for the first two places.
Since the numbers can be repeated, and there are 10 digits, there are
10 ∗ 10 ∗ 10 ∗ 10 ∗ 10 = 105 = 100, 000 possibilities for the last five places.
Since each one of the 676 possibilities for the first two places can be paired with any
of the 100,000 possibilities for the last five places to produce a distinct 7-plate license plate,
there are exactly 676 ∗ 100, 000 = 67, 600, 000 different 7-plate license plates,
if the first two places are for letters and the other five are for numbers.
(b)
Since the letters cannot be repeated, there are 26 options for the first letter but only
25 options for the second, meaning there are exactly 26 ∗ 25 = 650 distinct possibilities
for the first two places.
Since the numbers cannot be repeated, there are 10 options for the first digit, but only
9 options for the second, then 8 for the third, 7 for the fourth, and 6 for the fifth.
Thus, there are exactly 10 ∗ 9 ∗ 8 ∗ 7 ∗ 6 = 30, 240 distinct possibilities for the last five places.
Just like in part (a), each one of the 650 possibilities for the first two places can be paired
with any of the 30,240 possibilities for the last five places to produce a distinct 7-plate
license plate. Thus, there are exactly 650 ∗ 30, 240 = 19, 656, 000 different 7-plate license plates,
if the first two places are for letters and the other five are for numbers, and neither
numbers nor letters can be repeated in a single license plate.
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3. (Ross TE1.3) In how many ways can r objects be selected from a set of n objects if the order of selection
is considered relevant?

Solution.
To select r objects from an n object set, we must first select 1 object from the set,
for which there are exactly n possibilities.
For the second object, we now have exactly n− 1 possibilities, so there are
n ∗ (n− 1) = n2 − n distinct possibilities for the first two objects that we select (assuming r ≥ 2).
This pattern continues until we have selected r objects, at which point we will have n− r
objects in the set that have yet to be selected.
This implies that we had n− r + 1 options when we selected the r’th object.
Therefore, we can select r distinct objects from a set of n objects in exactly
n(n− 1)...(n− r + 1) ways if the order of selection is considered relevant.

Multiply this expression by 1 = (n−r)!
(n−r)! to obtain:

n(n− 1)...(n− r + 1)
(n− r)!

(n− r)!
=
n(n− 1)...(n− r + 1)(n− r)!

(n− r)!
=

n!

(n− r)!

Thus, there are exactly n!
(n−r)! ways that r distinct objects can be selected from a set of n objects,

if the order of selection is considered relevant.
Note: Although the combinatorial method used to obtain this answer relies on r ≥ 2,
the final formula works even if r = 1, at which point n!

(n−r)! =
n!

(n−1)! = n, as expected.
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4. (Ross P1.15) Consider a group of 20 people. If everyone shakes hands with everyone else, how many
handshakes take place?

Prove that

1 + 2 + · · ·+ n =
n(n+ 1)

2

by interpreting each side in terms of handshakes.

Solution.
The first person shakes hands with 19 distinct people.
The second person adds 18 new handshakes by shaking hands with all 18 people besides
the first person.
This pattern continues until the nineteenth person only adds 1 new handshake by shaking
hands with the twentieth person, who adds 0 new handshakes.
Thus, a total of 1 + 2 + ...+ 18 + 19 = 190 distinct handshakes take place.

Proof.
Generalizing the above solution, it is clear that the total number of handshakes in a similar
group of n+ 1 people is the left side of the equation (1 + 2 + ...+ n).
Now, let’s count the total number of handshakes among a similar group of n+ 1 people in a different way.
Each of the n+ 1 people shakes hands with each of the n other people, for a total of
n(n+ 1) handshakes.
We want to consider only distinct handshakes, and n(n+ 1) counts each handshake twice
(i.e. counts both the handshake between the first person and second person and the
handshake between the second person and first person, even though they are not distinct),
so we must divide our product by 2.

Thus, the total number of distinct handshakes is n(n+1)
2 .

Since we already know the total number of distinct handshakes is 1 + 2 + ...+ n, we have
proven that

1 + 2 + ...+ n =
n(n+ 1)

2
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5. (Ross TE1.8) Prove that(
n+m

r

)
=

(
n

0

)(
m

r

)
+

(
n

1

)(
m

r − 1

)
+ · · ·+

(
n

r

)(
m

0

)
Hint: Consider a group of n men and m women. How many groups of size r are possible?

Proof.
Consider a group of n men and m women, from which we want to select a subgroup of size r,
where 0 ≤ r ≤ m+ n. By definition, there are

(
n+m
r

)
ways to do this.

In any such subgroup, some number, i, of the r people will be from the group of n men,
where 0 ≤ i ≤ r.
The remaining r − i people from the r person subgroup must be from the group of m women.
Since 0 ≤ i ≤ r, 0 ≤ r − i ≤ r.
Also, for each i, there are exactly

(
n
i

)(
m
r−i
)
groups of size r.

Since i can be any integer value from 0 to n, there are exactly

r∑
i=0

(
n

r

)(
m

r − i

)
=

(
n

0

)(
m

r

)
+

(
n

1

)(
m

r − 1

)
+ · · ·+

(
n

r

)(
m

0

)
ways to select a subgroup of r people from a group of n men and m women.
Therefore, (

n+m

r

)
=

(
n

0

)(
m

r

)
+

(
n

1

)(
m

r − 1

)
+ · · ·+

(
n

r

)(
m

0

)
which concludes the proof.
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6. (Ross P1.8) When all letters are used, how many different letter arrangements can be made from the
letters

(a) FLUKE

(b) PROPOSE

(c) MISSISSIPPI

Solution.

(a)
FLUKE consists of 5 distinct letters, so their are 5! distinct ways to arrange the letters in FLUKE.
Thus, the number of different letter arrangements when all letters in FLUKE are used once is 5!.

(b)
There are 7 letters in PROPOSE, but P and O both appear twice.
Number them P1, P2, O1, O2. Now, P1RO1P2O2SE consists of 7 distinct letters.
Therefore, there are 7! distinct ways to arrange all the letters in P1RO1P2O2SE.
Since 7! considers P1RO1P2O2SE, P2RO1P1O2SE, P1RO2P2O1SE, and P2RO2P1O1SE
all to be distinct, it quadruple counts each of the possible letter arrangments for PROPOSE.
Therefore, there are 7!

4 = 1260 distinct letter arrangments when all letters in PROPOSE
are used once.

(c)
There are 11 letters in MISSISSIPPI, but I and S appear 4 times each, while P appears twice.
Similar to part (b), if we number the I’s, S’s, and P’s to distinguish them, then we could create
11! distinct letter arrangments using each letter in MI1S1S2I2S3S4I3P1P2I4.
However, each distinct letter arrangment that uses each letter in MISSISSIPPI once is
overcounted 4! ∗ 4! ∗ 2! times by 11!, due to the 4! permutations of the 4 I’s, the 4!
permutations of the 4 S’s, and the 2! permutations of the 2 P’s.
Thus, the total number of distinct letter arrangments that use each letter in MISSISSIPPI once is

11!

(4!)2 ∗ 2!
= 34, 650
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7. (Ross TE1.12) Consider the following combinatorial identity:

n∑
k=1

k

(
n

k

)
= n · 2n−1.

(a) Present a combinatorial argument for this identity by considering a set of n people and determining,
in two ways, the number of possible selections of a committee of any size and a chairperson for the
committee.

Hint:

(i) How many possible selections are there of a committee of size k and its chairperson?

(ii) How many possible selections are there of a chairperson and the other committee members?

(b) Now present an algebraic argument for this identity.

Hint: Differentiate the binomial theorem.

Proof.
(a)
We want to count the total number of ways to select a committee of size k and a chairperson for
that committee from a set of n people.
Note: the number of ways to make these selections is the same regardless of whether the
committee or chairperson is chosen first.
First, consider choosing the committee first, then the chairperson from that committee. The
committee must have at least one person (the chairperson), and it can be any size, so it can
include all people from the set. Therefore, the size of the committee, k, can be any element of
{1, 2, ..., n}. For any such k ∈ {1, 2, ..., n}, there are

(
n
k

)
ways to choose a group of k people to

form the committee from the set of n people. Since the chairperson must be a member, this
leaves exactly k choices for the chairperson. Therefore, for any such k, there are exactly k

(
n
k

)
ways to choose a committee of size k then a chairperson from that committee. Since k can be
any integer value from 1 to n, we can compute that the total number of ways to choose a
committee of any size then a chairperson from that committee is

n∑
k=1

k

(
n

k

)
(3)

which is the left side of the identity.
Now, we can count this same quantity, but first we will choose the chairperson, then we will choose
the committee around the chairperson. Since there are n people in the set, we have exactly n
options for the chairperson. Since the committee can be any size from 1 to n, and the chairperson
is the first member of the committee, the size of the committee excluding the chairperson, which
we’ll call j, can be any integer from 0 to n− 1. For any such j, there are exactly

(
n−1
j

)
ways to

choose the members of the of set that will join the chairperson in the committee. Summing over all
possible values of j, we find that the total number of ways to select a chairperson then form
the committee around that chairperson is

n

n−1∑
j=0

(
n− 1

j

)
(4)

∑n−1
j=0

(
n−1
j

)
counts every way to choose 0 elements from an n− 1 element set, every way to

choose 1 element from an n− 1 element set, and so forth, all the way until every way to choose
n− 1 elements from an n− 1 element set. Therefore,

∑n−1
j=0

(
n−1
j

)
= the number of subsets of a

set of size n− 1. To construct a subset of a set of size n− 1, we can either choose to include or
exclude each element of the set. All of these choices are independent, which yields 2n−1 total
possible subsets (multiplying the number of possible subsets by 2 for each additional element).
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Thus,
∑n−1
j=0

(
n−1
j

)
= 2n−1. Plugging this into (2), we find that the total number of ways to

select a chairperson then form the committee around that chairperson is

n2n−1 (5)

Since (1) and (3) both describe the number of possibile selections for the same situation, they are
equivalent, which concludes the combinatorial proof that

n∑
k=1

k

(
n

k

)
= n2n−1

(b)
Newton’s Binomial Theorem specifies that

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k (6)

Plugging y = 1 into (4) yields:

(x+ 1)n =

n∑
k=0

(
n

k

)
xk1n−k =

n∑
k=0

(
n

k

)
xk (7)

Differentiating both sides of (5) with respect to x yields:

n(x+ 1)n−1 =

n∑
k=0

k

(
n

k

)
xk−1 (8)

Plugging x = 1 into (6) yields:

n(1 + 1)n−1 = n2n−1 =

n∑
k=0

k

(
n

k

)
1k−1 =

n∑
k=0

k

(
n

k

)
(9)

Note:
∑n
k=0 k

(
n
k

)
= 0 +

∑n
k=1 k

(
n
k

)
=
∑n
k=1 k

(
n
k

)
, so we know

n∑
k=1

k

(
n

k

)
= n2n−1 (10)

which concludes the algebraic proof.
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8. (Ross P1.31) If 8 new teachers are to be divided among 4 schools, how many divisions are possible?
What if each school must receive 2 teachers?

Solution.
(a)
For the first question, there are no specifications on how many teachers must go to each school,
so each teacher can go to any of the four schools. Thus, there are 4 choices for the first teacher’s
school, at which point there are still 4 choices for the second teacher’s school, and so forth, until
there are still 4 choices for the eighth teacher’s school. Therefore, the total number of ways of
dividing the 8 distinct teachers among the 4 distinct schools is

4 · 4 · 4 · 4 · 4 · 4 · 4 · 4︸ ︷︷ ︸
8 4′s

= 48 = 65, 536

(b)
Let’s number the schools S1, ..., S4. Since each school must receive 2 teachers, we must choose 2
teachers from the 8 new teachers for S1. There are

(
8
2

)
ways to do this. At this point, only 6

new teachers remain, from which we must choose 2 for S2. There are
(
6
2

)
ways to do this. Now,

only 4 new teachers remain, from which we must choose 2 for S3. There are
(
4
2

)
ways to do this.

Now, only 2 new teachers remain, both of which must go to S4. There is
(
2
2

)
= 1 way to do this.

Thus, if each school must receive 2 teachers, the the total number of ways to divide the 8 new
teachers among the 4 schools is(

8

2

)(
6

2

)(
4

2

)(
2

2

)
=

8!

2! · 6!
6!

2! · 4!
4!

2! · 2!
2!

2! · 0!
=

8!

2! · 2! · 2! · 2! · 0!
=

8!

(2!)4
= 2, 520
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9. (Ross P1.27) Using the binomial theorem, determine the coefficient of x6y2 in the expansion of (3x2+y)5.
Verify your answer by actually computing the expansion.

Solution.
The binomial theorem guarantees that

(3x2 + y)5 =

5∑
k=0

(
5

k

)
(3x2)ky5−k =

5∑
k=0

(
5

k

)
3kx2ky5−k

Therefore, to find the coefficient of x6y2 in the expansion of (3x2 + y)5, we just need to find k s.t.{
2k = 6

5− k = 2
Clearly, 2k = 6 =⇒ k = 3, which also satisfies 5− k = 2.

Thus, the coefficient of x6y2 in the expansion of (3x2 + y)5 is(
5

k

)
3k =

(
5

3

)
33 = 27 · 5!

3! · 2!
= 27 · 120

12
= 27 ∗ 10 = 270

Manually computing the expansion, we find:

(3x2 + y)5 = (3x2 + y)((3x2 + y)2)2 = (3x2 + y)(9x4 + 6x2y + y2)2

= (3x2 + y)(81x8 + 108x6y + 54x4y2 + 12x2y3 + y4)

= 243x10 + 405x8y + 270x6y2 + 90x4y3 + 15x2y4 + y5

which verifies that the coefficient of x6y2 is 270.
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10. (a) The following identity is known as the Hockey Stick Identity:(
n

k

)
=

n∑
i=k

(
i− 1

k − 1

)
(n ≥ k).

Give a combinatorial argument (no computations are needed) to establish the identity.

Hint: Consider the set of numbers 1 through n. How many subsets of size k have i as their highest
numbered member?

(b) Illustrate a particular case of this identity using Pascal’s Triangle,

n = 0 1
n = 1 1 1
n = 2 1 2 1
n = 3 1 3 3 1
n = 4 1 4 6 4 1
n = 5 1 5 10 10 5 1
n = 6 1 6 15 20 15 6 1

While you can easily find such illustrations online, you will rob yourself of an opportunity to practice
your own problem solving skills if you do so.

(c) The geometric series identity says

1 + y + · · ·+ yN =
1− yN+1

1− y
.

Let y = 1+ x and use the binomial theorem to derive a binomial coefficient identity. How does the
identity relate to (a)?

Solution.
(a)
Consider the size n set S := {1, 2, ..., n}.

(
n
k

)
equals the total number of size k subsets of S.

Observation 1:
For any such subset, it’s highest numbered element will be some i ∈ {k, k + 1, ..., n}.
Thus, if we calculate the number of size k subsets with i as their highest numbered member for all
i ∈ {k, k + 1, ..., n}, then add them up, this will equal the total number of size k subsets of S,

(
n
k

)
.

Now, let’s count how many subsets of size k have a specific i ∈ {k, k + 1, ..., n} as their highest
numbered member. Since i is the highest numbered member in the subset, all other elements must
be ∈ {1, 2, ..., i− 1}, a set with size i− 1. Also, since the subset has size k, and i is an element of
the subset, we must choose the remaining k − 1 elements of the subset from {1, 2, ..., i− 1}.
This can be done in

(
i−1
k−1

)
ways. Thus, exactly

(
i−1
k−1

)
subsets of S of size k have i as their highest

numbered member.
Combining this with Observation 1 and summing over all possible i ∈ {k, k + 1, ..., n}, we obtain:(

n

k

)
=

n∑
i=k

(
i− 1

k − 1

)
which concludes the proof of the Hockey Stick Identity.

(b)
We will illustrate the following example:
The Hockey Stick Identity guarantees that, with n = 6, k = 4(

6

4

)
=

6∑
i=4

(
i− 1

3

)
=

(
3

3

)
+

(
4

3

)
+

(
5

3

)

Page 234



From Pascal’s Triangle, we can quickly find that
(
6
4

)
= 15,

(
3
3

)
= 1,

(
4
3

)
= 4, and

(
5
3

)
= 10.

Now, we can easily verify that the Hockey Stick Identity holds for n = 6, k = 4:(
6

4

)
= 15 =

(
3

3

)
+

(
4

3

)
+

(
5

3

)
= 1 + 4 + 10

If we highlight the binomial coefficients from Pascal’s Triangle that we just used for our example
with n = 6 and k = 4, we find that the Hockey Stick Identity’s name stems from the shape it
traces through Pascal’s Triangle.

n=0 1
n=1 1 1
n=2 1 2 1
n=3 1︸︷︷︸

(33)

3 3 1

n=4 1 4︸︷︷︸
(43)

6 4 1

n=5 1 5 10︸︷︷︸
(53)

10 5 1

n=6 1 6 15︸︷︷︸
(64)

20 15 6 1

(c)
First, multiply the right side of the geometric series identity by 1 = −1

−1 to obtain:

1 + y + · · ·+ yN =
yN+1 − 1

y − 1

Now, let y = x+ 1 to obtain:

1 + (1 + x) + (1 + x)2 + · · ·+ (1 + x)N =
(1 + x)N+1 − 1

(x+ 1)− 1
=

(1 + x)N+1 − 1

x

Note: The binomial theorem guarantees that, for all 0 ≤ k ≤ N ,

(1 + x)i =

i∑
k=0

(
i

k

)
xk

Therefore, we know that

[xk]((1 + x)i) =

(
i

k

)
While i can be any integer in {0, 1, ..., n}, for all 0 ≤ i < k,

(
i
k

)
= 0, so,

summing over all k ≤ i ≤ n, we find that

[xk](1 + (1 + x) + (1 + x)2 + · · ·+ (1 + x)n) =

N∑
i=k

(
i

k

)
, ∀ 0 ≤ k ≤ N (11)

Now, let’s examine [xk]( (1+x)
N+1−1
X ). Applying the binomial theorem, we find:

(1 + x)N+1 − 1

X
=

(
∑N+1
k=0

(
N+1
k

)
xk)− 1

x
=

(
∑N+1
k=1 x

k) +
(
N+1
0

)
x0 − 1

x
=

∑N+1
k=1

(
N+1
k

)
xk

x

=

N+1∑
k=1

(
N + 1

k

)
xk−1 =

N∑
k=0

(
N + 1

k + 1

)
xk
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which implies that

[xk](
(1 + x)N+1 − 1

X
) =

(
N + 1

k + 1

)
(12)

for all 0 ≤ k ≤ N . Since 1 + (1 + x) + (1 + x)2 + · · ·+ (1 + x)N = (1+x)N+1−1
X ,

we can combine (9) and (10) to conclude:

N∑
i=k

(
i

k

)
=

(
N + 1

k + 1

)
(13)

The identity shown in (11) is directly related to the Hockey Stick Identity from part (a).
To see this clearly, let i = u− 1 and k = v − 1 to find:

N∑
i=k

(
i

k

)
=

N+1∑
u=v

(
u− 1

v − 1

)
We can now apply the Hockey Stick Identity to verify that

N∑
i=k

(
i

k

)
=

N+1∑
u=v

(
u− 1

v − 1

)
=

(
N + 1

v

)
=

(
N + 1

k + 1

)
as expected. Thus, the identity found in part (c) is just the Hockey Stick Identity from part (a),
up to a change of variables.

Assignment 2

Math 407 (Swanson) – Spring 2023
Homework 1

Due Friday 1/13, 11:59pm

Name: Emerson Kahle Section: 39981

• You must upload your solutions to Gradescope as one single, high-quality PDF. You can convert
paper-based work to a high-quality PDF using a scanning app for mobile devices, such as Adobe Scan
(free, available for iOS and Android, can do multiple pages) or many others. If necessary, you can
combine or merge multiple PDF’s into a single PDF using a variety of services, such as Adobe Acrobat’s
cloud-based merge tool.

• After you upload, you must match each question with its corresponding page using Gradescope’s
interface. This allows graders to spend more time giving you feedback instead of hunting through
submissions.

• Answers without supporting work will receive no credit. Show your work.

• You are encouraged to work together on homework, but you must write up your solutions sepa-
rately in your own words. Copying from your fellow students or other sources is a serious academic
integrity violation. In particular, you may not use “tutoring” services which simply provide answers.
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• You are encouraged to typeset your solutions in LATEX. Source code has been provided on Blackboard.
Overleaf is a popular cloud-based editor.

• Problem numbers refer to the course textbook, though the problems may have been modified signifi-
cantly.
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1. (Ross P1.16) How many 5-card poker hands are there?

Solution. There are 52 cards in a standard poker deck, from which we must select 5. The values
and suits of the cards only, not the order in which they are selected, differentiate one poker hand from
another. Thus, the total number of 5-card poker hands is:(

52

5

)
=

52!

5!47!
=

52(51)(50)(49)(48)

5(4)(3)(2)(1)
= 13 ∗ 17 ∗ 10 ∗ 49 ∗ 24 = 2, 598, 960
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2. (Ross P1.28) The game of bridge is played by 4 players, each of whom is dealt 13 cards from a single
standard 52-card deck. How many bridge deals are possible?

Solution. We want to choose 4 groups of size 13 from a deck of size 52. By the definition of the
multinomial coefficient, the number of ways to do this is:(

52

13, 13, 13, 13

)
=

(
52

13

)(
39

13

)(
26

13

)(
13

13

)
=

52!

13!13!13!13!
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3. (Ross P1.10) In how many ways can 8 people be seated in a row if

(a) there are no restrictions on the seating arrangement?

(b) persons A and B must sit next to each other?

(c) there are 4 men and 4 women and no 2 men or 2 women can sit next to each other?

(d) there are 5 men and they must sit next to one another?

(e) there are 4 married couples and each couple must sit together?

Solution.
(a) If there are no restrictions on the seating arrangement, then there are 8 choices for the location of
the first person, 7 for the location of the second, 6 for the location of the third, 5 for the location of the
fourth, 4 for the location of the fifth, 3 for the location of the sixth, 2 for the location of the seventh,
and just one choice for the location of the eighth person. This results in a total of

8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 8! = 40, 320

total possible seating arrangements.

(b) If persons A and B must sit next to each other, then we can treat persons A and B as a com-
bined person AB. Now, we have 7 people, and so there are 7! seating arrangements. However, 7! does
not account for the position of persons A and B relative to each other. Since persons A and B account
for 2 total people, there are 2! permutations of their relative location for each of the 7! possibilities,
resulting in a total of

7! ∗ 2! = 5, 040 ∗ 2 = 10, 080

total possible seating arrangements.

(c)There are two choices for the gender of the first person. Once this choice is made, seating arrange-
ments are only distinguished by the permutation of the group of men and the permutation of the group
of women, independently. There are 4 men, so there are 4! ways to permute them. Similarly, there are
4! ways to permute the women. Since all of these choices are independent, the total number of possible
seating arrangements is:

2 ∗ 4! ∗ 4! = 2 ∗ (24)2 = 1, 152

(d) Similar to part (b), let’s combine the 5 men into a single person. This leaves us with 4 distinct people
(the combined man and the three women), which leaves exactly 4! ways to permute them. However, 4!
does not account for the positions of the men relative to each other. Since there are 5 men, for each of
the 4! possibilities, there are 5! permutations of the men that result in distinct seating arrangements.
Thus, the total number of possible seating arrangements is:

4! ∗ 5! = 24 ∗ 120 = 2, 880

(e) Similar to parts (b) and (d), we can first permute the 4 couples, which can be done in 4! ways.
However, for each of these 4! possibilities, there are 2! ways to permute the first couple, 2! ways to
permute the second couple, 2! ways to permute the third couple, and 2! ways to permute the fourth
couple. Therefore, the total number of possible seating arrangements is:

4! ∗ 2! ∗ 2! ∗ 2! ∗ 2! = 4! ∗ 24 = 24 ∗ 16 = 384

Page 240



4. A group of 11 students says their favorite animal is the cat. A separate group of 17 students says their
favorite animal is the dog. Every student then flips a coin. What are the odds that 7 of the cat-loving
students get Heads while 12 of the dog-loving students get Tails?

Solution.
The results of the cat-loving coin tosses are independent from the results of the dog-loving coin tosses.
Therefore, we can calculate the individual probabilities of 7 cat-loving Heads and 12 dog-loving Tails,
then multiply them together to arrive at a final solution. There are 2 options for each of the 11 cat-loving
coin tosses, which results in a total of 211 possible combinations of cat-loving coin tosses. Of these, by
the definition of the binomial coefficient, there are exactly

(
11
7

)
combinations of cat-loving coin tosses

that result in exactly 7 Heads. Thus, the probability of exactly 7 of the cat-loving students getting
Heads is: (

11
7

)
211

(14)

Similarly, there are 2 options for each of the 17 dog-loving coin tosses which results in a total of 217 total
combinations of dog-loving coin tosses. Of these, by the definition of the binomial coefficient, there are
exactly

(
17
12

)
combinations of dog-loving tosses that result in exactly 12 Tails. Thus, the probability of

exactly 12 dog-loving students getting Tails is: (
17
12

)
217

(15)

Multiplying (1) and (2) together, we find that the total probability of 7 cat-loving students getting Heads
and 12 dog-loving students getting Tails is:(

11
7

)(
17
12

)
211217

=

(
11
7

)(
17
12

)
228
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5. (Ross P1.29)

(a) Expand (x1 + 2x2 + 3x3)
4.

(b) Interpret the coefficient of x1x2x
2
3 as the solution to some counting problem.

Solution.
(a)

(x1 + 2x2 + 3x3)
4 = ((x1 + 2x2 + 3x3)(x1 + 2x2 + 3x3))

2

= (x21 + 4x1x2 + 6x1x3 + 4x22 + 12x2x3 + 9x23)
2

= x41 + 8x31x2 + 12x31x3 + 24x21x
2
2 + 72x21x2x3 + 54x21x

2
3 + 32x1x

3
2 + 144x1x

2
2x3

+ 216x1x2x
2
3 + 108x1x

3
3 + 16x42 + 96x32x3 + 216x22x

2
3 + 216x2x

3
3 + 81x43

(b)
The coefficient of x1x2x

2
3 in (x1 +2x2 +3x3)

4 is 216, which is also the solution to the following counting
problem:

Suppose you roll 4 fair 3-sided dice (with values 1,2,3) and get 4 values, v1, v2, v3, v4. Let p :=
v1 ∗ v2 ∗ v3 ∗ v4. Considering all possible distinct sequences of rolling 4 dice, calculate the sum of p
over all sequences for which p = 18.

Explanation: Upon writing the prime factorization 18 = 3 ∗ 3 ∗ 2, we see that the only possible combina-
tion of 4 values from {1, 2, 3} whose product equals 18 is a combination with 1 one, 1 two, and 2 threes.
Therefore, p = 18 =⇒ the four dice rolls resulted in a total of 1 one, 1 two, and 2 threes being rolled.
If we let x1 = 1 is rolled, x2 = 2 is rolled, and x3 = 3 is rolled, then the coefficient of each term in the
(unsimplified) expansion of (x1 + 2x2 + 3x3)

4 represents an individual value of p for a specific sequence
of dice rolls (v1, v2, v3, v4). Thus, each distinct sequence of dice rolls with p = 18 contributes the term
p = x1 ∗2x2 ∗3x3 ∗3x3 = 18x1x2x

2
3 to the expanded sum. Therefore, we can find the coefficient of x1x2x

2
3

in the simplified expansion by summing 18 once for each distinct sequence with p = 18. To find how
many such sequences exist, we can use multinomial coefficients. We have 4 total dice rolls, from which
exactly 2 must belong to the “three” group, exactly 1 must belong to the “two” group, and exactly 1
must belong to the “one” group, so we have a total of:(

4

2, 1, 1

)
=

4!

2!1!1!
=

24

2
= 12

distinct sequences of 4 dice rolls that each contribute exactly 18x1x2x
2
3 to the simplified expansion of

(x1 + 2x2 + 3x3)
4. Thus, the sum of p over all distinct sequences for which p = 18 is:

12∑
i=1

18 = 18 ∗ 12 = 216 = [x1x2x
2
3](x1 + 2x2 + 3x3)

4

as expected.
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6. (Ross TE1.13)

(a) Show that, for n > 0,
n∑
i=0

(−1)i
(
n

i

)
= 0.

Hint : Use the binomial theorem.

(b) Give a combinatorial proof of (a) when n is odd.

(c) (Optional) Give a combinatorial proof of (a) when n is even.

Solution.
(a) For n > 0, the binomial theorem guarantees that:

(x+ 1)n =

n∑
i=0

xi
(
n

i

)
(16)

Plugging x = −1 into (3), we obtain:

(−1 + 1)n = 0n = 0 =

n∑
i=0

(−1)i
(
n

i

)
which concludes the proof that, for n > 0

n∑
i=0

(−1)i
(
n

i

)
= 0.

(b) Since we are summing from i = 0 to n, there are n + 1 terms in the sum. If n is odd, this means
n+ 1 is even. Therefore, we can split the sum into n+1

2 pairs of terms.
For all 0 ≤ i ≤ n, i is either even or odd. If i is even, then n− i is odd. If i is odd, then n− i is even.
In either case n− i and i have different signs, which also means n− i ̸= i.
This suggests, for each term corresponding to i, we should pair it with the term corresponding to n− i.
We can now rewrite the sum as follows:

n∑
i=0

(−1)i
(
n

i

)
=

(
(−1)0

(
n

0

)
+ (−1)n

(
n

n

))
+

(
(−1)1

(
n

1

)
+ (−1)n−1

(
n

n− 1

))
+ · · ·+(

(−1)
n−1
2

(
n
n−1
2

)
+ (−1)

n+1
2

(
n
n+1
2

))

Note: By the definition of the binomial coefficient, for all 0 ≤ i ≤ n,(
n

i

)
=

n!

i!(n− i)!
=

n!

(n− i)!(n− (n− i))!
=

(
n

n− i

)
(17)

Since i and n− i must have different signs, (4) implies that

(−1)i
(
n

i

)
= −(−1)n−i

(
n

n− i

)
(18)

Now, (5) directly implies that, for all 0 ≤ i ≤ n,(
(−1)i

(
n

i

)
+ (−1)n−i

(
n

n− i

))
= 0 (19)
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Plugging (6) into the sum, we obtain:

n∑
i=0

(−1)i
(
n

i

)
=

(
(−1)0

(
n

0

)
+ (−1)n

(
n

n

))
+

(
(−1)1

(
n

1

)
+ (−1)n−1

(
n

n− 1

))
+ · · ·+(

(−1)
n−1
2

(
n
n−1
2

)
+ (−1)

n+1
2

(
n
n+1
2

))
= 0 + 0 + · · · 0
= 0

which completes the combinatorial proof for when n is odd.

(c) Since n is even, n + 1 is odd, so we can no longer pair up each term in the sum. However, we
can apply Pascal’s Identity to the sum to find that:

n∑
i=0

(−1)i
(
n

i

)
=

n∑
i=0

(−1)i

((
n− 1

i− 1

)
+

(
n− 1

i

))
=

n∑
i=0

(−1)i
(
n− 1

i− 1

)
+

n∑
i=0

(−1)i
(
n− 1

i

)
Note: Since

(
n−1
n

)
= 0 for all n > 0, we know

n∑
i=0

(−1)i
(
n− 1

i

)
= (−1)n

(
n− 1

n

)
+

n−1∑
i=0

(−1)i
(
n− 1

i

)
= 0 +

n−1∑
i=0

(−1)i
(
n− 1

i

)
=

n−1∑
i=0

(−1)i
(
n− 1

i

)
Since n is even, n− 1 is odd, so we already know from part (b) that

n∑
i=0

(−1)i
(
n− 1

i

)
=

n−1∑
i=0

(−1)i
(
n− 1

i

)
= 0

Similarly, since
(
n−1
−1

)
= 0 for all n > 0, we know

n∑
i=0

(−1)i
(
n− 1

i− 1

)
= (−1)0

(
n− 1

−1

)
+

n∑
i=1

(−1)i
(
n− 1

i− 1

)
= 0 +

n∑
i=1

(−1)i
(
n− 1

i− 1

)
=

n∑
i=1

(−1)i
(
n− 1

i− 1

)
In the rightmost sum, the binomial coefficients range from

(
n−1
0

)
to
(
n−1
n−1

)
, and the exponent ranges from

1 to n. Therefore, we can rewrite the rightmost sum as:

n−1∑
k=0

(−1)k+1

(
n− 1

k

)
Now, since n − 1 is odd, we can pair up the (n − 1) + 1 = n terms of the sum like we did in part (b).
However, instead of (−1)i

(
n
i

)
and (−1)n−i

(
n
n−i
)
, we have (−1)k+1

(
n−1
k

)
and (−1)(n−1)−(k−1)

(
n−1

(n−1)−k
)
.

Note: For all 0 ≤ k ≤ n − 1, k − 1 is either even or odd. If k − 1 is even, (n − 1) − (k − 1) is
odd. If k− 1 is odd, (n− 1)− (k− 1) is even. Therefore, for all 0 ≤ k ≤ n− 1, k+1 and (n− 1)− (k− 1)
have different signs. Thus, just like in part (b), for all 0 ≤ k ≤ n− 1,(

(−1)k+1

(
n− 1

k

)
+ (−1)(n−1)−(k−1)

(
n− 1

(n− 1)− k

))
= 0

Therefore,

n∑
i=0

(−1)i
(
n− 1

i− 1

)
=

n∑
i=1

(−1)i
(
n− 1

i− 1

)
=

n−1∑
k=0

(−1)k+1

(
n− 1

k

)
= 0 + · · ·+ 0 = 0
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Combining all these results together, we find that:

n∑
i=0

(−1)i
(
n

i

)
=

n∑
i=0

(−1)i
(
n− 1

i− 1

)
+

n∑
i=0

(−1)i
(
n− 1

i

)
= 0 + 0 = 0

which concludes the combinatorial proof for when n is even.
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7. Recall that a permutation of [n] is a word w = w1 · · ·wn which is a rearrangement of the word 12 · · ·n.
How many permutations of [4] satisfy w1 > w3 and w2 > w4 and w1 > w4?

Solution.
Since w1 > w3 and w1 > w4, we know w1 is greater than at least two other elements in {1,2,3,4}. This
means (i) w1 ∈ {3, 4}.
Since w2 > w4, we know w2 is greater than at least one other element in {1,2,3,4}. This means (ii)
w2 ∈ {2, 3, 4}.
Since w1 > w3, we know that w3 is smaller than at least one other element in {1,2,3,4}. This means
(iii) w3 ∈ {1, 2, 3}.
Since w1 > w4 and w2 > w4, we know w4 is smaller than at least two other elements in {1, 2, 3, 4}. This
means (iv) w4 ∈ {1, 2}.
Now, we can list all 4! permutations of [4], and identify those which satisfy properties (i), (ii), (iii), and
(iv).
The 24 permutations are as follows:
1 2 3 4 1 2 4 3 1 3 2 4 1 3 4 2 1 4 2 3 1 4 3 2
2 1 3 4 2 1 4 3 2 3 1 4 2 3 4 1 2 4 1 3 2 4 3 1
3 1 2 4 3 1 4 2 3 2 1 4 3 2 4 1 3 4 1 2 3 4 2 1
4 1 2 3 4 1 3 2 4 2 1 3 4 2 3 1 4 3 1 2 4 3 2 1

We can clearly see that none of the permutations from the top 2 rows satisfy property (i), as w1 ̸∈ {3, 4}.
We can also see that none of the permutations from the bottom 2 rows of the left 2 columns satisfy prop-
erty (ii), as w2 ̸∈ {2, 3, 4}.
We can also see that none of the permutations from the third column satisfy property (iv), as w4 ̸∈ {1, 2}.
Finally, we can see that none none of the permutations from the top three spots in column 4 sat-
isfy property (iii), as w3 ̸∈ {1, 2, 3}. Thus, the only permutations that satisfy all four properties are
4231, 3412, 3421, 4312, 4321.
Clearly, all 5 of these permutations satisfy w1 > w3, w1 > w4, and w2 > w4, and we already know that
the other 19 permutations do not satisfy one or more of the inequalities.
Thus, the total number of permutations of [4] that satisfy w1 > w3, w1 > w4, and w2 > w4 is 5.
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8. Recall from lecture that, if p(x) = a0 + a1x + · · · + anx
n, then the “reversal” of p(x) is obtained by

xnp(1/x) = an+an−1x+ · · ·+a0xn. That is, reversing the coefficients of p(x) can be expressed in terms
of simple algebraic operations on p(x).

(a) Let q(x) =
∑n
k=0 kakx

k. Express q(x) in terms of p(x) using well-known operations.

(b) Use the fact that 1 + x+ · · ·+ xn = (1− xn+1)/(1− x) and (a) to show that

1 + 2 + · · ·+ n =

(
n+ 1

2

)
.

(c) Extend (b) to prove that
13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2.

Solution.
(a) First, we can rewrite p(x) as a sum as follows:

p(x) = a0 + a1x+ · · ·+ anx
n =

n∑
k=0

akx
k

Differentiating both sides with respect to x, we find:

p′(x) =

n∑
k=0

kakx
k−1

Multiply both sides by x to obtain:

xp′(x) =

n∑
k=0

kakx
k = q(x)

Thus, we can express q(x) in terms of p(x) by:

q(x) = xp′(x) (20)

(b) Let ak = 1 for all 0 ≤ k ≤ n. Then

p(x) = 1 + x+ x2 + ...+ xn =
1− xn+1

1− x

Differentiating both sides, we find:

p′(x) = 1 + 2x+ 3x2 + ...+ nxn−1 =
d

dx

(1− xn+1

1− x

)
=
nxn+1 − (n+ 1)xn + 1

(1− x)2

Multiplying both sides by x, we find:

q(x) = xp′(x) = x+ 2x2 + 3x3 + · · ·+ nxn =
nxn+2 − (n+ 1)xn+1 + x

(1− x)2

Now, let’s take the limit of q(x) as x→ 1:

lim
x→1

q(x) = lim
x→1

x+ 2x2 + · · ·nxn = 1 + 2 + ...+ n = lim
x→1

nxn+2 − (n+ 1)xn+1 + x

(1− x)2

Applying L’Hopital’s rule, we find:

lim
x→1

nxn+2 − (n+ 1)xn+1 + x

(1− x)2
= lim
x→1

n(n+ 2)xn+1 − (n+ 1)2xn + 1

−2(1− x)
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Applying L’Hopital’s rule again, we find:

lim
x→1

nxn+2 − (n+ 1)xn+1 + x

(1− x)2
= lim

x→1

(n+ 2)(n+ 1)nxn − n(n+ 1)2xn−1

2

=
(n+ 2)(n+ 1)(n)− n(n+ 1)2

2

=
n(n2 + 3n+ 2)− n(n2 + 2n+ 1)

2

=
n(n+ 1)

2
=
n(n+ 1)(n− 1)!

2!(n− 1)!

=
(n+ 1)!

2!(n− 1)!
=

(
n+ 1

2

)
Thus, we have shown that:

lim
x→1

q(x) = 1 + 2 + ...+ n =

(
n+ 1

2

)
(21)

which concludes part (b).

(c) We want to show:

13 + 23 + · · ·+ n3 =

n∑
k=1

k3 = (1 + 2 + · · ·+ n)2

From (8), we know it is sufficient to show:

13 + 23 + · · ·+ n3 =

n∑
k=1

k3 =

(
n+ 1

2

)2

=

(
(n+ 1)!

2!(n− 1)!

)2

=

(
(n+ 1)n

2!

)2

=
(n+ 1)2n2

4

To do this, we induct on n:
Base Case:

n = 1 =⇒
n∑
k=1

k3 = 13 = 1 =
(1 + 1)212

4
=

22 ∗ 1
4

=
4

4
= 1

so the claim holds for the base case.

Inductive Hypothesis:

Assume that
∑n
k=1 k

3 = (n+1)2n2

4 for all 1 ≤ n ≤ j.

Inductive Step:
Let n = j + 1. Then

j+1∑
k=1

k3 = (j + 1)3 +

j∑
k=1

k3 = (j + 1)3 +
(j + 1)2j2

4

by the Inductive Hypothesis. As expected,

(j + 1)3 +
(j + 1)2j2

4
=

4(j3 + 3j2 + 3j + 1)

4
+

(j + 1)2j2

4
=
j4 + 6j3 + 13j2 + 12j + 4

4

=
(j2 + 4j + 4)(j2 + 2j + 1)

4
=

(j + 2)2(j + 1)2

4
=

((j + 1) + 1)2(j + 1)2

4

The conclusion that, for all natural numbers n,

13 + 23 + · · ·+ n3 =

n∑
k=1

k3 =
(n+ 1)2n2

4
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follows by induction. This completes the proof that

13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2 =

(
n+ 1

2

)2

=
(n+ 1)2n2

4
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Assignment 3

Math 407 (Swanson) – Spring 2023
Homework 1

Due Friday 1/13, 11:59pm

Name: Emerson Kahle Section: 39981

• You must upload your solutions to Gradescope as one single, high-quality PDF. You can convert
paper-based work to a high-quality PDF using a scanning app for mobile devices, such as Adobe Scan
(free, available for iOS and Android, can do multiple pages) or many others. If necessary, you can
combine or merge multiple PDF’s into a single PDF using a variety of services, such as Adobe Acrobat’s
cloud-based merge tool.

• After you upload, you must match each question with its corresponding page using Gradescope’s
interface. This allows graders to spend more time giving you feedback instead of hunting through
submissions.

• Answers without supporting work will receive no credit. Show your work.

• You are encouraged to work together on homework, but you must write up your solutions sepa-
rately in your own words. Copying from your fellow students or other sources is a serious academic
integrity violation. In particular, you may not use “tutoring” services which simply provide answers.

• You are encouraged to typeset your solutions in LATEX. Source code has been provided on Blackboard.
Overleaf is a popular cloud-based editor.

• Problem numbers refer to the course textbook, though the problems may have been modified signifi-
cantly.
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0. Assignment overview:

The “twelvefold way” consists of twelve basic counting problems. They are frequently stated in terms of
the number of ways to put “balls into boxes” subject to various conditions. This assignment will explore
the twelvefold way and relate it to the theory we have developed involving subsets, multisets, compositions,
words, and partitions.

The balls may be distinguishable or indistinguishable; the boxes may be distinguishable or indistinguish-
able; and we may allow any number of balls in boxes, or each box to have at most one ball, or each box to
have at least one ball. The result is 2 · 2 · 3 = 12 variations on a theme.

Each of the following problems 1-7 deals with one or more of the 12 variations. As you complete these 7
problems, write the number of the corresponding problem or sub-part in the proper square in
the table below.

Any # balls per box At most 1 ball/box At least 1 ball/box

Distinguishable balls,
distinguishable boxes

4: (a) 4: (b) | 3: (a), (b) 5: (a)

Distinguishable balls,
indistinguishable boxes

6: (a), (b)

Indistinguishable balls,
distinguishable boxes

1: (a), (b) 4: (c) 2: (a), (b)

Indistinguishable balls,
indistinguishable boxes

7
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1. (a) How many ways can 7 scoops of vanilla ice cream be distributed to Alice, Bob, and Stacey?

(b) Write down an explicit general formula for distributing k scoops to n people.

Solution.
(a) There are no restrictions imposed on how many scoops Bob, Alice, and Stacey receive individually,
except for the restriction that the sum of the numbers received must equal 7. Thus, the number of ways
7 indistinguishable scoops of vanilla ice cream can be distributed to Alice, Bob, and Stacey is equivalent
to the number of 7 element multisubsets of a 3 element set S = {Alice, Bob, Stacey}. By the definition
of the multiset coefficient, the number of ways to do this is((

3

7

))
=

(
3 + 7− 1

7

)
=

(
9

7

)
=

3(4)(5)(6)(7)(8)(9)

7!
=

8 · 9
2

=
72

2
= 36

(b) Similarly, the explicit general formula for distributing k scoops to n people is equal to the gen-
eral formula for the number of k element multisubsets of an n element set. This is just the formula for
the multiset coefficient: ((n

k

))
=

(
n+ k − 1

k

)
=
n(n+ 1) · (n+ k − 1)

k!
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2. (a) How many ways can 7 scoops of vanilla ice cream be distributed to Alice, Bob, and Stacey, where
each person gets at least one scoop?

(b) Write down an explicit general formula for distributing k scoops to n people, where each person
gets at least one scoop.

Solution.
(a) First, we can distribute 3 of the 7 scoops, one to each of the three people. Since the scoops are
indistinguishable and each person receives the same quantity there is only one way to do this. This
leaves us with 4 remaining scoops, each of which can go to any of the three people. The total number of
ways to assign all 7 scoops such that each child gets at least one scoop is equal to the total number of
ways to distribute the remaining 4 scoops to Alice, Bob, and Stacey, with no restrictions imposed. This
is just the number of 4 element multisubsets of a 3 element set. Using the formula from 1. b), we can
easily compute that there are exactly((

3

4

))
=

(
3 + 4− 1

4

)
=

(
6

4

)
=

3(4)(5)(6)

4!
=

5(6)

2
= 15

ways 7 scoops of vanilla ice cream can be distributed to Alice, Bob, and Stacey, where each person gets
at least one scoop.

(b) First, line up all k scoops next to each other, leaving k − 1 spots in between them.

()()()...()︸ ︷︷ ︸
k scoops

By choosing n− 1 of these k− 1 spots to place dividers, we split the k scoops into n groups, where each
group has at least one scoop in it. We can think of each of the n people receiving all the scoops in one
group. Then, each person gets at least one scoop, and the total number of scoops adds up to k. There
are exactly

(
k−1
n−1

)
ways to do this. Thus, the general formula for distributing k indistinguishable scoops

to n distinguishable people, where each person must receive at least one scoop, is(
k − 1

n− 1

)
=
k(k − 1) · · · (k − n+ 1)

(n− 1)!

Note: The formula from 2. b) is just the formula for the number of strong compositions of k in-
distinguishable items into n distinguishable parts. This makes sense, as the formula from 1. b) is just
the formula for the number of weak compositions of k indistinguishable items into n parts, and 2. b)
only changed 1. b) by imposing the restriction that all parts must have at least 1 item, which is just the
distinction between strong and weak compositions.
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3. (a) How many ways can 10 party guests choose from 15 possible costumes, where no two guests can
choose the same costume?

(b) Write down an explicit general formula generalizing (a).

Solution.
(a) There are 15 costume choices for the first guest, then 14 for the second guest, all the way until there
are only 6 costume choices left for the 10th guest. Thus, there are a total of

15(14)(13)(12)(11)(10)(9)(8)(7)(6) =
15!

5!

ways that 10 party guests can choose from 15 costumes such that no two guests choose the same costume.
(b) In general, if we have k party guests and n costumes, we want to compute a formula for the number
of ways each of the k party guests can choose one costume such that no two guests choose the same
costume. The first guest will have n choices for their costume, the second will have n− 1, and so on, all
the way until the k’th party guest has n − k + 1 choices for their costume. Thus, the general formula
for the number of ways k party guests can choose a costume from n costumes such that no two guests
choose the same costume is

n(n− 1) · · · (n− k + 1) =
n!

(n− k)!

Note: If k > n, then 0 ∈ {n, n− 1, · · · , n− k+ 1}, so the formula outputs 0 (assuming k, n ∈ Z ). This
makes sense, as it is impossible for k people to each choose different costumes if there are less than k
costumes.
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4. A function f : A → B from a set A to a set B is a rule which assigns to each input a ∈ A some output
f(a) ∈ B. For example, f(1) = H, f(2) = T , f(3) = H is one particular function f : {1, 2, 3} → {H,T}.

(a) Determine the number of functions f : [n] → [x].

(b) A function is injective if all of its outputs are distinct, i.e. for all a1, a2 ∈ A with a1 ̸= a2, we have
f(a1) ̸= f(a2). Determine the number of injective functions f : [n] → [x].

(c) A function between sets of numbers is strictly increasing if a1 < a2 implies f(a1) < f(a2). Note
that a strictly increasing function is necessary injective. Determine the number of strictly increasing
functions f : [n] → [x].

Solution.
(a) We want to find the total number of functions mapping from a set of size n to a set of size x. To
satisfy the definition of a function, each of the n elements from the domain must be assigned to exactly
one of the x elements in the codomain. There are x choices for each of the n elements in the domain,
resulting in a total of xn distinct ways to assign each of the n elements in the domain to exactly one of
the x elements in the codomain. Thus, the total number of functions f : [n] → [x] is xn.

(b) We still need to assign each of the n elements in the domain to one of the x elements in the
codomain. However, this time, assigning one element decreases the number of possible assignments for
the next element by 1. We have x choices for the first element’s assignment, then x − 1 choices for
the second element’s assignment, and so on, until there are x − n + 1 choices for the n’th element’s
assignment. All of these choices are made independently, resulting in a total of

x(x− 1) · · · (x− n+ 1)

ways to assign the n elements in the domain to the x elements in the codomain such that no two el-
ements are assigned to the same place. Thus, the total number of injective functions f : [n] → [x] is
x(x− 1) · · · (x− n+ 1).

Note: If x < n, then 0 ∈ {x, x − 1, · · · , x − n + 1}, so there will be zero injective functions. This
makes sense as you cannot assign each of the n elements from the domain to a distinct element from the
codomain if the codomain has fewer total elements.

(c) We still need to assign each of the n elements in the domain to exactly one (unique) element out
of the x elements in the codomain. Thus, we need to pick a subset of n elements from the codomain,
to which each of its elements will be assigned exactly one element from the domain. Once we have
selected this subset, we must assign the smallest number from the domain to the smallest number from
the subset, then assign the second smallest number from the domain to the second smallest number from
the subset, and so on, until we assign the biggest number from the domain to the biggest number in the
subset. Thus, once we have selected the subset of elements from the codomain to which the elements
from the domain will be assigned, there is exactly one way to actually assign them. This means the
total number of ways to assign each element in the domain to an element in the codomain such that
a1 < a2 =⇒ f(a1) < f(a2) is equivalent to the total number of ways to select an n element subset of
an x element set, which is

(
x
n

)
. Thus, the total number of increasing functions f : [n] → [x] is

(
x
n

)
.

Note: The result from part (c) is identical to dividing the result from part (b) by n!. This makes
sense, as both injective and increasing functions require the n elements of the domain to be assigned
to an n element subset of the codomain, but injective functions allow for all n! permutations of the
assignments, while increasing functions impose the restriction that elements be assigned in the (unique)
strictly increasing order.
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5. A function f : A → B is surjective if every b ∈ B appears as an actual output, i.e. for all b ∈ B, there
exists some a ∈ A such that f(a) = b. The example function from the previous question is surjective,
whereas g : {1, 2, 3} → {H,T} given by g(1) = g(2) = g(3) = T is not surjective.

(a) Determine the number of surjective functions f : [4] → [2].

(b) Suppose an,k is the number of surjective functions f : [n] → [k]. Give a combinatorial proof that

n∑
k=0

(
x

k

)
an,k = xn.

Hint: let k count the number of actual outputs of an appropriate function. You may find working
through the n = 4, x = 2 case enlightening.

Solution.
(a) It is easiest to compute the number of surjective functions f : [4] → [2] by first computing the total
number of functions, then computing the number of non-surjective functions. To satisfy the definition of
a function, we must assign each of the 4 elements in the domain to one of the 2 elements in the codomain.
We have 2 choices for each of the 4 elements, so there are 24 = 16 ways to do this. This means the total
number of functions f : [4] → [2] is 16. Of these, the only ones which aren’t surjective will be those that
only assign elements from the domain to one of the two elements in the codomain. Suppose the domain
is D := {a, b, c, d} and the codomain is C := {e, f}. Then the only non-surjective functions f : D → C
are f1(a) = f1(b) = f1(c) = f1(d) = e and f2(a) = f2(b) = f2(c) = f2(d) = f . Thus, of the 16 possible
functions, only 2 aren’t surjective, so there are exactly 16− 2 = 14 surjective functions f : [4] → [2]

(b) From 4. a), we know that the right hand side, xn, is equivalent to the total number of func-
tions f : [n] → [x].

Now, let’s count the total number of functions f : [n] → [x] in a different way. By the definition of
a function, we know that each of these functions must assign each of the n elements in the domain to
one of the x elements in the codomain. However, the total number of elements in the codomain to which
elements of the domain are assigned can vary. Depending on the relative sizes of n and x, the number of
elements in the codomain which get assigned elements from the domain could be anything from 1 to n.
For some 1 ≤ k ≤ n, pick exactly k of the x elements in the codomain to get elements from the domain
assigned to them. There are

(
x
k

)
ways to do this. Next, count up all the functions f : [n] → [k] that

assign n elements to exactly k elements. This is equal to the number of surjective functions f : [n] → [k],
defined to be an,k. Each of these an,k functions exists for each of the

(
x
k

)
choices of k elements from the

codomain, so there are a total of
(
x
k

)
an,k functions f : [n] → [x] that assign the n elements of the domain

to exactly k elements in the codomain. If we sum for all values of 1 ≤ k ≤ n, we find that the total
number of functions f : [n] → [x] that assign the n elements of the domain to a total of any number of
elements from the codomain, which equals the total number of functions f : [n] → [x], is also equal to

n∑
k=1

(
x

k

)
an,k

Note: This sum is very similar to the left-hand side of the identity we want to prove, as

n∑
k=0

(
x

k

)
an,k =

(
x

0

)
an,0 +

n∑
k=1

(
x

k

)
an,k = an,0 +

n∑
k=1

(
x

k

)
an,k

However, an,0 refers to the number of surjective functions f : [n] → [0], which is 0 since there are no
elements in the codomain for elements in the domain to be assigned to. Therefore,

n∑
k=0

(
x

k

)
an,k =

n∑
k=1

(
x

k

)
an,k
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This makes sense, as the k = 0 term missing from our combinatorial argument simply refers to the
number of functions f : [n] → [x] that map the n elements of the domain to exactly 0 elements of the
codomain, which is also 0 by the definition of a function. Thus, we have shown combinatorially that the
total number of functions f : [n] → [x] is equal to:

n∑
k=0

(
x

k

)
an,k =

n∑
k=1

(
x

k

)
an,k = xn

which completes the proof of the identity.
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6. The Stirling numbers of the second kind, S(n, k), count the number of ways to put the integers 1, 2, . . . , n
into k non-empty groups, where the order of the groups does not matter. (These are called set partitions
of [n] with k non-empty blocks.) Unlike many of the objects we have encountered, there is no useful
product formula to compute S(n, k).

(a) Compute S(4, 2).

(b) Continuing the notation of the previous problem, show that

S(n, k) =
an,k
k!

.

(c) The falling factorial is defined by

xn = x(x− 1) · · · (x− n+ 1).

Show that the Stirling numbers of the second kind satisfy the fundamental generating function
identity

n∑
k=0

S(n, k)xk = xn.

Hint: You do not need to think creatively to solve this problem. You may instead combine other
parts.

Solution.
(a)We need to put the numbers 1,2,3,4 into 2 nonempty groups, where the order of the groups does not
matter. We can encode each distinct placement of numbers with a 4-digit binary string, where the i’th
character in the string represents the group where we put the number i. For example, if we assign the
numbers 1 and 2 to the same group, we could encode this as either 1100 or equivalently 0011, as the
order of groups does not matter. The possible number placements can take two distinct forms:
1. One number is placed in one group and 3 numbers are placed in the other group: Since it does not
matter which group has 3 numbers and which group has 1 number, we only need to choose the specific
number that will stand alone in its group. We have 4 numbers, so we have 4 options, which we could
encode as 1000, 0100, 0010, 0001 (or equivalently 0111, 1011, 1101, 1110)
2. Two numbers are placed in each group: Since it does not matter which group the number 1 is in,
we only have to choose which number will accompany the number 1 in its group. This leaves us with 3
options, (2,3,4), which we could encode as 1100, 1010, 1001 (or equivalently 0011, 0101, 0110).
Thus, the total number of ways to put the numbers 1,2,3,4 into 2 nonempty groups, where the order of
groups does not matter, is

S(4, 2) = 3 + 4 = 7

encoded as 1000, 0100, 0010, 0001, 1100, 1010, 1001 (or equivalently 0111, 1011, 1101, 1110, 0011, 0101,
0110)

(b) We will give a combinatorial argument. Each set partition of [n] with k non-empty blocks can
be viewed as a surjective function f : [n] → [k], as each of the k elements (blocks) in the codomain
must receive at least one element (integer) from the domain. Thus, S(n, k) equals the total number of
distinct surjective functions f : [n] → [k] where the specific element of the codomain that a subset of the
domain is assigned to does not matter. This is directly related to an,k, which counts the total number of
distinct surjective functions f : [n] → [k] where the specific element of the codomain that a subset of the
domain is assigned to does matter. Thus, an,k overcounts the quantity described by S(n, k) by exactly
the number of permutations of the k elements of the codomain. There are exactly k! ways to permute
the elements of the codomain among the corresponding subsets from the domain, which completes the
combinatorial argument that

S(n, k) =
an,k
k!
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(c) From 5. b), we know that
n∑
k=0

(
x

k

)
an,k = xn

From 6. b), we know that

S(n, k) =
an,k
k!

From 6. c), we know that
xk = x(x− 1) · · · (x− k + 1)

Combining these three facts, we find:

n∑
k=0

S(n, k)xk =

n∑
k=0

an,k
k!

x(x− 1) · · · (x− k + 1) =

n∑
k=0

an,k
x(x− 1) · · · (x− k + 1)

k!

=

n∑
k=0

an,k
x!

k!(x− k)!
=

n∑
k=0

an,k

(
x

k

)
= xn

which completes the proof that the Stirling numbers of the second kind satisfy the fundamental generating
function identity

n∑
k=0

S(n, k)xk = xn.
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7. How many ways can you create words using the letters U, S,C where

(i) each letter is used at least once;

(ii) the total length is 6;

(iii) at least as many U ’s are used as S’s;

(iv) at least as many S’s are used as C’s;

(v) and the word is lexicographically last among all of its rearrangements.

Solution.
Let nU = # of U’s in the word, nS = # of S’s in the word, and nC = # of C’s in the word. Based on
the listed requirements, we know that 

nU + nS + nC = 6

nU ≥ nS ≥ nC

nU , nS , nC ≥ 1

This leaves us with three distinct possibilities for (nU , nS , nC), which are as follows:
(2, 2, 2)

(3, 2, 1)

(4, 1, 1)

Regardless of nU , nS , nC , since each word is lexicographically last among all of its rearrangements, it
must have all of its U’s before all of its S’s and all of its S’s before all of its C’s.
For (nU , nS , nC) = (2, 2, 2), this leaves UUSSCC as the only possibility.
For (nU , nS , nC) = (3, 2, 1), this leaves UUUSSC as the only possibility.
For (nU , nS , nC) = (4, 1, 1), this leaves UUUUSC as the only possibility.

Thus, the only possible words are UUSSCC, UUUSSC, and UUUUSC, so you can create a total of
3 words using the letters U, S, C under the 5 requirements.
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8. (Not part of the twelvefold way.) Suppose you roll 10 4-sided dice.

(a) What are the odds the sum is 10?

(b) What are the odds the sum is 18?

(c) What is the most likely sum?

Solution.
(a) For each of the 10 rolls, there are 4 different possible values that can be rolled, so there are 410 total
sequences of dice rolls.
Of these, only 1 sequence results in a sum of 10: (1,1,1,1,1,1,1,1,1,1)
Thus, the probability that the sum of 10 4-sided dice rolls is 10 is

1

410
≈ 0.000095%

(b) First, we must determine all possible combinations of 10 4-sided dice rolls which result in a sum
of 18. Then, for each such combination, we can use multinomial coefficients to determine how many
distinct sequences result from that combination. We can sum this quantity for each such combination
to determine the total number of dice roll sequences that result in a sum of 18.

Let k1 = # of 1’s rolled, k2 = # of 2’s rolled, k3 = # of 3’s rolled, and k4 = # of 4’s rolled. Then we can
will denote a single combination of 10 rolls by (k1, k2, k3, k4). The total number of sequences resulting
in any such combination is

(
10

k1,k2,k3,k4

)
= 10!

k1!k2!k3!k4!
.

The combinations with sums of 18 are as follows:

(Zero 4’s)



(3, 6, 1, 0)

(4, 4, 2, 0)

(5, 2, 3, 0)

(6, 0, 4, 0)

(2, 8, 0, 0)

(One 4)


(4, 5, 0, 1)

(5, 3, 1, 1)

(6, 1, 2, 1)

(Two 4’s)

{
(6, 2, 0, 2)

(7, 0, 1, 2)

The corresponding multinomial coefficients are as follows:

(Zero 4’s)



(
10

3,6,1,0

)
= 10!

3!6!(
10

4,4,2,0

)
= 10!

4!4!2!(
10

5,2,3,0

)
= 10!

5!2!3!(
10

6,0,4,0

)
= 10!

6!4!(
10

2,8,0,0

)
= 10!

2!8!

(One 4)


(

10
4,5,0,1

)
= 10!

4!5!(
10

5,3,1,1,

)
= 10!

5!3!(
10

6,1,2,1

)
= 10!

6!2!

(Two 4’s)

{(
10

6,2,0,2

)
= 10!

6!2!2!(
10

7,0,1,2

)
= 10!

7!2!

Thus, the total number of 10 roll sequences whose rolls sum to 18 is

10!

3!6!
+

10!

4!4!2!
+

10!

5!2!3!
+

10!

6!4!
+

10!

2!8!
+

10!

4!5!
+

10!

5!3!
+

10!

6!2!
+

10!

6!2!2!
+

10!

7!2!
= 17, 205

Therefore, the probability that a sequence of 10 4-sided dice rolls results in a sum of 18 is

17, 205

410
≈ 1.64%

Note: I found the various combinations with sums of 18 by solving the system{
k1 + k2 + k3 + k4 = 10

k1 + 2k2 + 3k3 + 4k4 = 18
under the restriction k1, k2, k3, k4 ≥ 0.

(c) Let X = an individual roll of a 4-sided die. Then there is a 1
4 probability of rolling each of the

4 values, 1,2,3,4. Thus,

E(X) =
1

4
+

2

4
+

3

4
+

4

4
=

10

4
= 2.5
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Thus, if we let X10 = rolling 10 4-sided dice, then, since the rolls are independent,

E(X10) = 10 ∗ E(X) = 10 ∗ 2.5 = 25

Since 25 is an integer between 10 and 40, it is a valid sum that can result from a sequence of 10 4-sided
dice rolls. Moreover, since 25 is the expected sum from 10 4-sided dice rolls, it is also the most likely sum
from the 10 rolls. This makes sense, as 10 is the lowest possible sum of 10 rolls, 40 is the highest possible
sum of 10 rolls, and 25 is in the exact center of [10, 40]. Thus, the most likely sum from 10 4-sided dice
rolls is 25. This could also be shown by expanding (x+ x2 + x3 + x4)10, whose largest coefficient would
be on the term x25.
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9. (Not part of the twelvefold way.) How many solutions are there to

x+ y + z = 10

where x, y, z are integers satisfying x ≥ −3, y ≥ 0, z ≥ 3?
Solution.
We can manipulate the equation to make counting more familiar. Note that, since 3− 3 = 0,

x+ y + z = x+ y + z + 3− 3 = (x+ 3) + y + (z − 3) = 10

Since x ≥ −3, we know x+ 3 ≥ 0. Similarly, since z ≥ 3, we know z − 3 ≥ 0. If we let x1 = x+ 3 and
z1 = z − 3, then we can rewrite the initial equation as

x1 + y + z1 = 10

with the restriction x1, y, z1 ≥ 0. At this point, we can think of the problem as the weak combinations
of 10 into 3 parts, which is (

n+ k − 1

k − 1

)
=

(
12

2

)
=

12!

10!2!
=

132

2
= 66

Thus, there are exactly 66 solutions to
x1 + y + z1

where x1, y, z1 ≥ 0 are integers. Since

x+ y + z = 10, where x ≥ −3, y ≥ 0, z ≥ 3

is equivalent to
x1 + y + z1 = 10, where x1, y, z1 ≥ 0

the two equations have the same number of solutions.
Thus, there are also exactly 66 solutions (x, y, z) to

x+ y + z = 10

where x, y, z are integers satisfying x ≥ −3, y ≥ 0, z ≥ 3.

Assignment 4

Math 407 (Swanson) – Spring 2023
Homework 1

Due Friday 1/13, 11:59pm

Name: Emerson Kahle Section: 39981

• You must upload your solutions to Gradescope as one single, high-quality PDF. You can convert
paper-based work to a high-quality PDF using a scanning app for mobile devices, such as Adobe Scan
(free, available for iOS and Android, can do multiple pages) or many others. If necessary, you can
combine or merge multiple PDF’s into a single PDF using a variety of services, such as Adobe Acrobat’s
cloud-based merge tool.
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• After you upload, you must match each question with its corresponding page using Gradescope’s
interface. This allows graders to spend more time giving you feedback instead of hunting through
submissions.

• Answers without supporting work will receive no credit. Show your work.

• You are encouraged to work together on homework, but you must write up your solutions sepa-
rately in your own words. Copying from your fellow students or other sources is a serious academic
integrity violation. In particular, you may not use “tutoring” services which simply provide answers.

• You are encouraged to typeset your solutions in LATEX. Source code has been provided on Blackboard.
Overleaf is a popular cloud-based editor.

• Problem numbers refer to the course textbook, though the problems may have been modified signifi-
cantly.
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1. Let cn denote the number of partitions of n into distinct parts. For example, λ = (3, 3, 2, 1) has 3
repeated twice, so it should not be counted in c9, whereas λ = (5, 3, 2, 1) does contribute to c11.

(a) Show that
∞∑
n=0

cnx
n =

∞∏
i=1

(1 + xi).

(Hint: adapt the proof of Euler’s product formula from lecture.)

(b) Argue that

cn = [xn]

n∏
i=1

(1 + xi).

(c) Use the formula in the previous part to compute c5.

Solution.
(a) A partition of n is a partition into distinct parts if and only if it satisfies the following two conditions,
where ei = the # of size i parts in the partition, for all natural numbers i:
(i) 0 ≤ e1, e2, · · · ≤ 1
(ii) e1 + 2e2 + · · · = n
Therefore, we can rewrite cn as a summation as follows:

cn =
∑

0≤e1,e2,···≤1
e1+2e2+···=n

1

Now, we can rewrite the infinite sum from (a) as:

∞∑
n=0

cnx
n =

∞∑
n=0

( ∑
0≤e1,e2,···≤1
e1+2e2+···=n

1
)
xn

Since e1 + 2e2 + · · · = n in every term in the innermost sum, and x does not depend on e1, e2, · · · we
can move xn inside the innermost sum as follows:

∞∑
n=0

cnx
n =

∞∑
n=0

( ∑
0≤e1,e2,···≤1
e1+2e2+···=n

1
)
xn =

∞∑
n=0

∑
0≤e1,e2,···≤1
e1+2e2+···=n

xe1+2e2+···

Note: The innermost sum counts over all combinations of e1, e2, · · · such that 0 ≤ e1, e2, · · · ≤ 1 and
e1 + 2e2 + · · · = n, and the outermost sum counts one of these innermost sums for all non-negative
integers n. Thus, we can remove the need for the outermost sum by simply removing the restriction
e1 +2e2 + · · · = n. This allows for all combinations of 0 ≤ e1, e2, · · · ≤ 1 such that e1 +2e2 + · · · = n for
any non-negative integer n to be counted with just one sum. Thus, we know that:

∞∑
n=0

∑
0≤e1,e2,···≤1
e1+2e2+···=n

xe1+2e2+··· =
∑

0≤e1,e2,···≤1

xe1+2e2+···

Since xe1+2e2+··· = (xe1)(x2e2) · · · , we know that:

∑
0≤e1,e2,···≤1

xe1+2e2+··· =
∑

0≤e1,e2,···≤1

(xe1)(x2e2) · · · =
( 1∑
e1=0

xe1
)( 1∑

e2=0

x2e2
)
· · ·

Now, we can easily compute each sum individually to find that:( 1∑
e1=0

xe1
)( 1∑

e2=0

x2e2
)
· · · = (1 + x1)(1 + x2) · · · =

∞∏
i=1

(1 + xi)
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Thus, we have shown that:

∞∑
n=0

cnx
n =

∑
0≤e1,e2,···≤1

xe1+2e2+··· =
( 1∑
e1=0

xe1
)( 1∑

e2=0

x2e2
)
· · · =

∞∏
i=1

(1 + xi)

which completes the proof that
∞∑
n=0

cnx
n =

∞∏
i=1

(1 + xi).

(b) We want to show that

cn = [xn]

n∏
i=1

(1 + xi)

We can clearly see that

cn = [xn]

∞∑
n=0

cnx
n

From part (a), since
∑∞
n=0 cnx

n =
∏∞
i=1(1 + xi), this implies that

cn = [xn]

∞∏
i=1

(1 + xi)

Thus, it suffices to show that, for all natural numbers n,

[xn]

∞∏
i=1

(1 + xi) = [xn]

n∏
i=1

(1 + xi)

Let bi = (1 + xi) for all natural numbers i.
Consider the expansion of

∏∞
i=1 bi, which is a sum of infinitely many terms.

cn is equal to the number of such terms that equal xn.
Each of the terms in the expanded infinite sum has exactly one factor from each bi in the initial infinite
product.
For all bi, the factor that bi contributes to a given term in the expanded sum is either 1 or xi.
Thus, for all bi, the factor from bi can only increase or not change the power of x in a specific term of
the expanded infinite sum.
It follows that, if some bj s.t. j > n contributes xj to a specific term in the expanded infinite sum, then
that term can never equal xn.
Thus, each bj s.t. j > n must contribute a 1 as its factor to each term in the expanded infinite sum that
equals xn.
Thus, for each such term in the expanded infinite sum, the only bi’s that possibly contribute meaningful
factors (i.e. factors that aren’t 1) to that term are bi s.t. 1 ≤ i ≤ n.
Thus, for each term that equals xn in the expansion of

∏∞
i=1 bi, there is exactly one term that equals xn

in the expansion of
∏n
i=1 bi.

In fact, the corresponding terms each received the same factors from all bi s.t 1 ≤ i ≤ n, but the terms
from

∏n
i=1 bi are just missing the infinitely many 1’s contributed by the infinitely many bi s.t. i > n.

Thus, the number of copies of xn in
∏∞
i=1 bi is exactly the same as the number of copies of xn in

∏n
i=1 bi.

Thus, we have shown that

[xn]

∞∏
i=1

(1 + xi) = [xn]

n∏
i=1

(1 + xi)

so we know that

cn = [xn]

∞∑
n=0

cnx
n = [xn]

∞∏
i=1

(1 + xi) = [xn]

n∏
i=1

(1 + xi)
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which completes the argument that

cn = [xn]

n∏
i=1

(1 + xi)

(c) From part (b), we know that

c5 = [x5]

5∏
i=1

(1 + xi) = [x5]
(
(1 + x)(1 + x2)(1 + x3)(1 + x4)(1 + x5)

)
Now, we can expand this product to directly calculate c5.

(1 + x)(1 + x2)(1 + x3)(1 + x4)(1 + x5)

= (1 + x+ x2 + x3)(1 + x3)(1 + x4)(1 + x5)

= (1 + x+ x2 + 2x3 + x4 + x5 + x6)(1 + x4)(1 + x5)

= (1 + x+ x2 + 2x3 + 2x4 + 2x5 + 2x6 + 2x7 + x8 + x9 + x10)(1 + x5)

= (1 + x+ x2 + 2x3 + 2x4 + 3x5 + 3x6 + 3x7 + 3x8 + 3x9 + 3x10 + 2x11 + 2x12 + x13 + x14 + x15)

Now, we can clearly see that

c5 = [x5]

5∏
i=1

(1 + xi) = 3

We can verify that this result is correct by listing all possible partitions of 5 into distinct parts, which
are: (5), (4,1), and (3,2). As expected, there are exactly 3 such partitions.
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2. You are on a chair lift at a certain Southern California ski resort. You notice a message on one of the
support poles:

The message says, “How many different ways down can you find using chairs 5, 6, 7, & 10 in combination
?”

You quickly look at the resort’s trail map:

What is your answer to the message?
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Solution.
First, we must define a few terms and state a few assumptions in order to arrive at a conclusive quan-
tifiable solution.
Assumption 1: Any ‘way down’ must start at one of the mountain’s peaks and end at the base of the
mountain
Assumption 2: For a ‘way down’ to ‘use a combination of chairs 5, 6, 7, and 10,’ these chairs must
provide the most direct path to/from the start/end of the ‘way down.’

Let’s call any sequence of trails a route. Let’s call any ‘way down using chairs 5,6,7, & 10 in com-
bination’ a valid route. We will say that a route is a valid route if and only if it satisfies the following
conditions:

(1) The first trail in the route starts at either the top of chair 6 or 7.

(2) The last trail in the route ends at the bottom of either chair 5 or 10.

(3) Every trail in the route (besides the last trail) connects directly to the next trail in the route.

(4) No trail in the route starts or ends at a chair other than chair 5, 6, 7, or 10.

Now, we will provide a rationale for each rule:

(1) The tops of both chairs 6 and 7 end at one of the mountain’s three peaks. By imposing this
restriction, we ensure that all valid routes start at one of the mountain’s peaks, as required by
Assumption 1.

(2) The bottoms of both chairs 5 and 10 are at the base of the mountain. By imposing this restriction,
we ensure that all valid routes end at the mountain’s base, as required by Assumption 1.

(3) For our route to be a valid ‘way down’ the mountain, it must consist of connected trails so that
one could ski down our route in the specified order without needing to take any other trails. This
restriction ensures that there are no discontinuities in any valid route.

(4) If a trail starts or ends at a chair other than 5, 6, 7, or 10, then it would be easiest to ski to/from
that trail using a chair other than 5, 6, 7, or 10. However, we want all valid routes to use a
‘combination of chairs 5, 6, 7, or 10.’ By imposing this restriction, we ensure that chairs 5, 6,
7, and 10 combine to provide the most direct path to/from the start/end of every valid route, as
required by Assumption 2.

Now that we have identified assumptions, defined rules, and provided rationales, we can count the
number of valid routes under these conditions.
First, we can note that condition (1) forces the first trail in any valid route to be the wall, olympic, log
chute, or timber ridge.
Also, we can note that condition (2) forces the last trail in any valid route to be side chute, log chute,
jo’s, pipe dream, or perfect pitches.
Now, for each potential starting trail, let’s list the potential valid routes.
i) We start at the wall:
<the wall, side chute>
so only 1 valid route starts at the wall.
ii) We start at olympic:
<olympic, side chute>
so only 1 valid route starts at olympic.
iii) We start at log chute:
<log chute>, <log chute, olympic, side chute>, <log chute, off chute, side chute>,
<log chute, side chute>, <log chute, jo’s>, <log chute, pipe dream>,
<log chute, tommi’s, log chute>, <log chute, tommi’s, log chute, side chute>,
<log chute, tommi’s, jo’s>, <log chute, tommi’s, pipe dream>,
<log chute, side show, pipe dream>, <log chute, side show, sugarpine, perfect pitches>, <log chute,
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perfect pitches>, <log chute, perfect pitches, side show, pipe dream>,
<log chute, perfect pitches, side show, sugarpine, perfect pitches>,
<log chute, perfect pitches, sugarpine, perfect pitches>,
<log chute, 7 down, perfect pitches>, <log chute, 7 down, sugarpine, perfect pitches>
so exactly 18 valid routes start at log chute.
iv) We start at timber ridge:
<timber ridge, 7 down, perfect pitches>,
<timber ridge, 7 down, sugarpine, perfect pitches>
so exactly 2 valid routes start at timber ridge.
Adding the number of valid routes for each of the possible starting trails, we find that there are exactly:

1 + 1 + 18 + 2 = 22

total valid routes.
Thus, the total number of ‘ways down using chairs 5,6,7, & 10 in combination’ is 22.
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3. (Ross P2.1) A box contains 3 marbles: 1 red, 1 green, and 1 blue. Consider an experiment that consists
of taking 1 marble from the box and then replacing it in the box and drawing a second marble from the
box. Describe the sample space. Repeat when the second marble is drawn without replacing the first
marble.

Solution.
(a) We want to describe the sample space for the experiment when the first marble is replaced. For the
first marble chosen, there are 3 possible choices, red, green, and blue. Since the first marble is replaced
into the box, there are also the same 3 possible choices for the second marble. Thus, the sample space
is:
S = {red, green, blue}2 = {(red,red), (red, green), (red, blue), (green, red), (green, green),
(green, blue), (blue, red), (blue, green), (blue, blue)}
Here, the size of the sample space is |S| = |{red, green, blue}|2 = 32 = 9.

(b) We want to describe the sample space for the experiment when the first marble is not replaced.
There are 3 possible choices for the first marble, red, green, and blue. This leaves the two colors that
were not chosen as the two choices for the color of the second marble. Thus, the sample space is:
S′ = {(red, green), (red, blue), (green, red), (green, blue), (blue, red), (blue, green)}
Here, the size of the sample space is |S′| = 6.
Note: S′ = S − {(red, red), (green, green), (blue, blue)}, as the only events from S that disallowing
replacement prevents are those in which the first and second marbles share the same color.
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4. In an experiment, a die is rolled repeatedly until a 6 appears, at which point the experiment stops. What
is the sample space of this experiment? Let En denote the event that n rolls are necessary to complete
the experiment. What points of the sample space are contained in En? What is (∪∞

n=1En)
c
?

Solution.
Note: For the duration of this problem {1, 2, 3, 4, 5}i denotes the set of all possible sequences of i ele-
ments of {1, 2, 3, 4, 5}.
Similarly, {{1, 2, 3, 4, 5}i6} denotes the set of all possible sequences of i elements of {1, 2, 3, 4, 5}, followed
by one 6.

(a) We want to find the sample space of this experiment.
Note: The sample space contains all possible outcomes of the experiment, and a given outcome can take
anywhere from 1 → ∞ dice rolls to be completed.
Let f(6) : {6} → {1, 2, · · · }, where f(6) = the roll on which 6 first appears, with f(6) = ∞ meaning
that 6 never appears during the experiment.
We can identify the set of possible outcomes for each value of f(6), and the union of these sets will be
our sample space.

For all i ∈ N, if f(6) = i, then we know the i’th roll was a 6, so the experiment only takes i dice
rolls. We also know that 6 did not appear in the first i− 1 dice rolls, so the set of possible outcomes for
the first i− 1 dices rolls is

{1, 2, 3, 4, 5}i−1

Thus, the set of possible outcomes when f(6) = i is

{{1, 2, 3, 4, 5}i−16}

for all i ∈ N.
For example, if f(6) = 1, then the set of possible outcomes is

{{1, 2, 3, 4, 5}1−16} = {6}

If f(6) = 2, then the set of possible outcomes of the experiment is:

{{1, 2, 3, 4, 5}2−16} = {{1, 2, 3, 4, 5}6}

If f(6) = 3, then the set of possible outcomes of the experiment is:

{{1, 2, 3, 4, 5}3−16} = {{1, 2, 3, 4, 5}26}

This is true for all i ∈ N, but we also need to consider what happens when i→ ∞.
This represents all outcomes where we never roll a 6, which is equivalent to all infinite sequences of
elements from {1, 2, 3, 4, 5}.
Thus, if f(6) = ∞, then the set of possible outcomes of the experiment is:

{1, 2, 3, 4, 5}∞

Now that we have identified the set of possible outcomes for all possible values of f(6), we can take their
infinite union to find the sample space:

S =
(
{6} ∪ {{1, 2, 3, 4, 5}6} ∪ {{1, 2, 3, 4, 5}26} ∪ ...

)
∪ {1, 2, 3, 4, 5}∞

=
( ∞⋃
i=0

{{1, 2, 3, 4, 5}i6}
)
∪ {1, 2, 3, 4, 5}∞

(b) We want to describe the contents of En for all n.
Note: En is nonempty for all i ∈ N, as there are there are outcomes of the experiment for which i rolls
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are necessary for all i ∈ N.
Also, for an outcome e ∈ En, the experiment must stop after n dice rolls, so a 6 must be rolled for the
first time on the n’th dice roll. Therefore, all outcomes in which a 6 is never rolled (represented in part
(a) by f(6) = ∞), are not included in any event En.

Just like when f(6) = n for some n ∈ N, for an outcome e ∈ En, the first n − 1 rolls must be some
sequence of elements from {1, 2, 3, 4, 5}, and the n’th roll must be a 6. Thus, for all n ∈ N (the only
values for which En ̸= ∅), we know that

En = {{1, 2, 3, 4, 5}n−16}

And for all n ̸∈ N,
En = ∅

(c) We want to find (∪∞
n=1En)

c
.

Applying the formula from part (b), we find:

∞⋃
n=1

En =

∞⋃
n=1

{{1, 2, 3, 4, 5}n−16} =
∞⋃
n=0

{{1, 2, 3, 4, 5}n6}

From part (a), we know that S =
(⋃∞

n=0{{1, 2, 3, 4, 5}n6}
)
∪ {1, 2, 3, 4, 5}∞.

Thus, we can clearly see that

∞⋃
n=1

En =

∞⋃
n=0

{{1, 2, 3, 4, 5}n6} =
(( ∞⋃

n=0

{{1, 2, 3, 4, 5}n6}
)
∪ {1, 2, 3, 4, 5}∞

)
− {1, 2, 3, 4, 5}∞

= S − {1, 2, 3, 4, 5}∞

Since our universe is just the sample space, S, (
⋃∞
n=1En)

c
= S −

⋃∞
n=1En. Therefore,( ∞⋃

n=1

En

)c
= S −

∞⋃
n=1

En = S − (S − {1, 2, 3, 4, 5}∞) = S − (S ({1, 2, 3, 4, 5}∞)
c
)

= S(S ({1, 2, 3, 4, 5}∞)
c
)c = S(Sc ∪ ({1, 2, 3, 4, 5}∞)

cc
) = SSc ∪ S ({1, 2, 3, 4, 5}∞)

cc

= ∅ ∪ S{1, 2, 3, 4, 5}∞ = {1, 2, 3, 4, 5}∞

Thus, we have found that ( ∞⋃
n=1

En

)c
= {1, 2, 3, 4, 5}∞
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5. (Ross P2.3)

(a) Two dice are thrown. Let E be the event that the sum of the dice is odd, let F be the event that
at least one of the dice lands on 1, and let G be the event that the sum is 5. Describe the events
EF,E ∪ F, FG,EF c, and EFG. (Recall that EF = E ∩ F .)

(b) Assuming the dice are fair, what are the probabilities of each of the above events?

Solution.
(a) First, we should explicitly describe the events E, F , and G themselves:
E consists of all sequences of dice rolls that include 1 odd and 1 even:

E = {(1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (3, 6),
(4, 1), (4, 3), (4, 5), (5, 2), (5, 4), (5, 6), (6, 1), (6, 3), (6, 5)}

F consists of all sequences of dice rolls that include at least one 1.

F = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)}

G consists of all sequences of dice rolls that result in a sum of 5.

G = {(1, 4), (2, 3), (3, 2), (4, 1)}

Now, we can describe the events EF,E ∪ F, FG,EF c, and EFG one by one using the definitions of the
various set operations.
i) EF = E∩F = the set of all sequences of dice rolls (r1, r2) s.t. (r1, r2) ∈ E and (r1, r2) ∈ F . In words,
this is equivalent to the set of all sequences of dice rolls that both include at least one 1 and have an
odd sum of dice. The set of such sequences (r2, r2) is:

EF = {(1, 2), (1, 4), (1, 6), (2, 1), (4, 1), (6, 1)

ii) E ∪ F = the set of all sequences of dice rolls (r1, r2) s.t. (r1, r2) ∈ E or (r1, r2) ∈ F , or both. In
words, this is equivalent to the set of all sequences of dice rolls that either include at least one 1 or have
an odd sum, or both. The set of all such sequences (r1, r2) is:

E ∪ F = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (2, 3), (2, 5), (3, 1), (3, 2), (3, 4),
(3, 6), (4, 1), (4, 3), (4, 5), (5, 1), (5, 2), (5, 4), (5, 6), (6, 1), (6, 3), (6, 5)}

iii) FG = F ∩ G = the set of all sequences of dice rolls (r1, r2) s.t. (r1, r2) ∈ F and (r1, r2) ∈ G. In
words, this is equivalent to the set of all sequences of dice rolls that both include at least one 1 and
whose sum of dice is 5. The set of all such sequences (r1, r2) is:

FG = {(1, 4), (4, 1)}

iv) EF c = E ∩ F c = E ∩ (S − F ) = the set of all sequences of dice rolls (r1, r2) s.t. (r1, r2) ∈ E and
(r1, r2) ̸∈ F . In words, this is equivalent to the set of all sequences of dice rolls that both have an odd
sum and include exactly 0 ones. The set of all such sequences (r1, r2) is:

EF c = {(2, 3), (2, 5), (3, 2), (3, 4), (3, 6), (4, 3), (4, 5), (5, 2), (5, 4), (5, 6), (6, 3), (6, 5)}

v) EFG = (EF )G =
(
E ∩ F

)
∩ G = the set of all sequences of dice rolls (r1, r2) s.t. (r1, r2) ∈ E,

(r1, r2) ∈ F , and (r1, r2) ∈ G. In words, this is equivalent to the set of all sequences of dice rolls that
have an odd sum, include at least one 1, and that have a sum of exactly 5. The set of all such sequences
(r1, r2) is:

EFG = {(1, 4), (4, 1)}
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Note: EFG = FG because EFG = E(FG), and all sequences which have a sum of exactly 5 also have
an odd sum.

(b) There are 6 possibilities for the first roll and 6 possibilities for the second roll. The rolls are in-
dependent, so there are 62 = 36 total possible sequences of two dice rolls. Thus, our sample space
is

S = {1, 2, 3, 4, 5, 6}2 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

Since we assume the dice are fair, each one of these 36 outcomes is equally likely. Thus, for each of the
events, the probability of the event is just

P(event) =
|event|
|S|

=
|event|
36

We can calculate the probability of each event using this formula.
1) P(E): |E| = 18 =⇒

P(E) =
18

36
=

1

2
= 50%

2) P(F ): |F | = 11 =⇒
P(F ) =

11

36
≈ 30.56%

3) P(G): |G| = 4 =⇒
P(G) =

4

36
=

1

9
≈ 11.11%

4) P(EF ): |EF | = 6 =⇒
P(EF ) =

6

36
=

1

6
≈ 16.67%

5) P(E ∪ F ): |E ∪ F | = 23 =⇒
P(E ∪ F ) = 23

36
≈ 63.89%

6) P(FG): |FG| = 2 =⇒
P(FG) =

2

36
=

1

18
≈ 5.56%

7) P(EF c): |EF c| = 12 =⇒
P(EFC) =

12

36
=

1

3
≈ 33.33%

8) P (EFG): |EFG| = 2 =⇒
P (EFG) =

2

36
=

1

18
≈ 5.56%
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6. (Ross P2.7) Consider an experiment that consists of determining the type of job—either blue-collar or
white-collar—and the political affiliation—Republican, Democratic, or Independent—of the 15 members
of an adult soccer team. How many outcomes are

(a) in the sample space?

(b) in the event that at least one of the team members is a blue-collar worker?

(c) in the event that none of the team members considers himself or herself an Independent?

Solution.
(a) First, let’s define explicitly what we mean by an outcome of this experiment.
Let an outcome be any assignment of one of the two job types and one of the three political affiliations
to each of the 15 team members.
For each team member, there are two choices for that member’s job type and three choices for that
member’s political affiliation. These choices are made independently, so, for each team member, there
are a total of 2 · 3 = 6 ways to assign them a job type and a political affiliation. This choice of the
assignment for member mi is independent from the choice of the assignment for member mj for all j ̸= i,
and there are 15 total team members. Thus, there are a total of 615 ways to assign one of the two job
types and one of the three political affiliations to each of the 15 team members. Thus, there are 615

distinct possible outcomes, so the number of outcomes in the sample space is 615.

(b) The number of outcomes in which at least one of the team members is a blue-collar worker is
equal to the total number of outcomes in the sample space, 615, minus the total number of outcomes in
which none of the team members are blue-collar workers.
If none of the team members are blue-collar workers, then there is only 1 option for the job type of each
member (white-collar). This decreases the total number of ways to assign an individual team member
one job type and one political affiliation to 3, the number of different political affiliations. The choice of
political affiliation is still made independently for each of the 15 team members, so there are 315 possible
ways to to assign one job type and one political affiliation to each team member such that none of the
members are blue-collar workers.
Thus the total number of outcomes in which none of the team members are blue-collar workers is 315.
Using the aforementioned formula, we can easily calculate that the total number of outcomes in the
event that at least one of the team members is a blue-collar workers is

615 − 315

(c) If none of the team members considers himself or herself an Independent, then, for each team member,
there are only 2 options for political affiliation (Republican or Democratic). For each team member,
there are still 2 options for job type (blue-collar or white-collar). Thus, for each team member, there
are 2 ∗ 2 = 4 ways to assign that member one job type and one political affiliation if none of the team
members is an Independent. The assignment of job type and political affiliation is still independent for
each of the 15 team members, so there are

415

total outcomes in the event that none of the team members considers himself or herself an Independent.
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7. (Ross P2.9) A retail establishment accepts either the American Express or the VISA credit card. A total
of 24 percent of its customers carry an American Express card, 61 percent carry a VISA card, and 11
percent carry both cards. What percentage of its customers carry a credit card that the establishment
will accept?

Solution.
Let A = the event that one of the establishment’s customers carries an American Express card.
Let V = the event that one of the establishment’s customers carries a VISA credit card.
Then the percentage of the establishment’s customers that carry a credit card it will accept is P(A∪V ).

Note: P(A ∪ V ) = P(A) + P(V ) − P(A ∩ V ). This is because summing the probabilities of V and
A accounts for all outcomes in A∪V , but it double counts all customers with both VISA and American
Express cards.

Since 24% of the establishment’s customers carry an American Express card, we know

P(A) = 24%

Since 61% of the establishment’s customers carry a VISA card, we know

P(V ) = 61%

Since 11% of the establishment’s customers carry both an American Express and a VISA card, we know

P(A ∩ V ) = 11%

By applying the aforementioned formula, we can easily calulate that

P(A ∪ V ) = P(A) + P(V )− P(A ∩ V ) = 24% + 61%− 11% = 74%

Thus, the percentage of the establishment’s customers that carry a credit card that it will accept it 74%.
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8. (Ross TE2.10) Prove that

P (E ∪ F ∪G) = P (E) + P (F ) + P (G)− P (EcFG)− P (EF cG)− P (EFGc)− 2P (EFG).

Solution. Consider the events E− (F ∪G), F − (E ∪G), G− (E ∪F ), EcFG, EF cG, EFGc, and EFG.
E − (F ∪G) refers to all outcomes in E but not in F and not in G.
F − (E ∪G) refers to all outcomes in F but not in E and not in G.
G− (E ∪ F ) refers to all outcomes in G but not in E and not in F.
EcFG refers to all outcomes in F and in G but not in E.
EF cG refers to all outcomes in E and in G but not in F.
EFGc refers to all outcomes in E and in F but not in G.
Finally, EFG refers to all outcomes in E and in F and in G. Thus, E−(F ∪G), F −(E∪G), G−(E∪F ),
EcFG, EF cG, EFGc, and EFG are all mutually disjoint, and(
E− (F ∪G)

)
∪
(
F − (E ∪G)

)
∪
(
G− (E ∪F )

)
∪
(
EcFG

)
∪
(
EF cG

)
∪
(
EFGc

)
∪EFG = E ∪F ∪G

Since the events are mutually disjoint, we have

P(E ∪ F ∪G) = P(E − (F ∪G)) + P(F − (E ∪G)) + P(G− (E ∪ F )
+ P(EcFG) + P(EF cG) + P(EFGc) + P(EFG)

Note: Since (F ∪G)E refers to all outcomes in E and either in F or in G, or both, we know that

E =
(
E − (F ∪G)

)
∪ (F ∪G)E

Also, (F ∪G)E and E − (F ∪G) are mutually disjoint, so

P(E) = P(E − (F ∪G)) + P((F ∪G)E)

Thus,
P(E − (F ∪G)) = P(E)− P((F ∪G)E)

By symmetry, we also know

{
P(F − (E ∪G)) = P(F )− P(E ∪G)F
P(G− (E ∪ F )) = P(G)− P(E ∪ F )G

Thus,

P(E ∪ F ∪G) = P(E) + P(F ) + P(G)− P((F ∪G)E)− P((E ∪G)F )− P((E ∪ F )G)
+ P(EcFG) + P(EF cG) + P(EFGc) + P(EFG)

Note: Since EFG refers to all outcomes in E, in F, and in G, EF cG refers to all outcomes in E, not in
F, and in G, and EFGc refers to all outcomes in E, in F, and not in G, we know

(F ∪G)E = EFG ∪ EF cG ∪ EFGc

Since EFG, EF cG, and EFGc are mutually disjoint, we know

P((F ∪G)E) = P(EFG) + P(EF cG) + P(EFGc)

Multiplying both sides by -1, we find

−P((F ∪G)E) = −P(EFG)− P(EF cG)− P(EFGc)
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By symmetry, we also know

{
−P((E ∪G)F ) = −P(EFG)− P(EcFG)− P(EFGc)
−P((E ∪ F )G) = −P(EFG)− P(EcFG)− P(EF cG)

Plugging this into the equation for P(E ∪ F ∪G), we find

P(E ∪ F ∪G) = P(E) + P(F ) + P(G)− P((F ∪G)E)− P((E ∪G)F )− P((E ∪ F )G)
+ P(EcFG) + P(EF cG) + P(EFGc) + P(EFG)

= P(E) + P(F ) + P(G)− P(EFG)− P(EF cG)− P(EFGc)− P(EFG)
− P(EcFG)− P(EFGc)− P(EFG)− P(EcFG)− P(EF cG)
+ P(EcFG) + P(EF cG) + P(EFGc) + P(EFG)

= P(E) + P(F ) + P(G)− P(EcFG)− P(EF cG)− P(EFGc)− 2P(EFG)

as required. This completes the proof that

P(E ∪ F ∪G) = P(E) + P(F ) + P(G)− P(EcFG)− P(EF cG)− P(EFGc)− 2P(EFG).
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9. (Ross TE2.12) Show that the probability that exactly one of the events E or F occurs equals P (E) +
P (F )− 2P (EF ).
Let X = exactly one of the events E or F occurs.
We want to prove that P(X) = P(E) + P(F )− 2P(EF ).
Note: X ∪ EF = (E ∪ F ). Since X and EF are mutually disjoint, it directly follows that

P(X) + P(EF ) = P(E ∪ F )

Subtracting P(EF ) from both sides, we find

P(X) = P(E ∪ F )− P(EF )

We already know that
P(E ∪ F ) = P(E) + P(F )− P(EF )

Plugging this into our equation for P(X), we find

P(X) = P(E ∪ F )− P(EF ) = P(E) + P(F )− P(EF )− P(EF ) = P(E) + P(F )− 2P(EF )

as required. This completes the proof that the probability that exactly one of the events E or F occurs
equals P(E) + P(F )− 2P(EF ).
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10. (Ross P2.29) An urn contains n white and m black balls, where n and m are positive numbers.

(a) If two balls are randomly withdrawn, what is the probability that they are the same color?

(b) If a ball is randomly withdrawn and then replaced before the second one is drawn, what is the
probability that the withdrawn balls are the same color?

(c) Show that the probability in part (b) is always larger than the one in part (a).

Solution.
(a) There are n + m total balls in the urn, and we want to select 2. Since the balls are withdrawn
simultaneously, there is no order in which they are withdrawn. Thus, there are

(
n+m

2

)
equally likely

ways to select two balls simultaneously from the urn. Thus, the size of the sample space is |S| =
(
n+m

2

)
If the two balls are the same color, then they are either both white or both black.

1) Both balls are white:
We need to select 2 white balls from the n white balls in the urn. Since the balls are withdrawn simul-
taneously, there is no order in which they are withdrawn. Thus, there are a total of

(
n
2

)
equally likely

ways to simultaneously select two white balls from the urn.

2) Both balls are black:
We need to select 2 black balls from the m white balls in the urn. Since the balls are withdrawn simul-
taneously, there is no order in which they are withdrawn. Thus, there are a total of

(
m
2

)
equally likely

ways to simultaneously select two black balls from the urn.

Thus, the total number of ways to simultaneously draw 2 balls of the same color from the urn is(
n
2

)
+
(
m
2

)
.

Let E = the event that the two balls are the same color (without replacement).
Then, since all outcomes are equally likely,

P(E) =
|E|
|S|

=

(
n
2

)
+
(
m
2

)(
n+m

2

) =
n(n−1)

2 + m(m−1)
2

(m+n)(m+n−1)
2

=
n(n− 1) +m(m− 1)

(m+ n)(m+ n− 1)

Therefore, the probability that both of the balls are the same color (without replacement) is

P(E) =
n(n− 1) +m(m− 1)

(m+ n)(m+ n− 1)

(b) There are still n+m total balls in the urn, but now the balls are drawn one at a time, with replace-
ment. Thus, we have n+m options for the first ball we choose, and we still have n+m options for the
second ball we choose. This results in a total of (n +m)2 equally likely ways to draw one ball, replace
it, then draw another. Thus, the size of the sample space is |S′| = (n+m)2

Once again, if the two balls are the same color, then they are either both white or both black.

1. Both balls are white:
We have n ways to select a first white ball. Since we replace our first ball before choosing our second,
we also have n ways to select our second white ball. Thus, there are a total of n2 equally likely ways to
draw one white ball, replace it, then draw another white ball.

2. Both balls are black:
We have m ways to select the first black ball. Since we replace our first ball before choosing our second,
we also have m ways to select our second black ball. Thus, there are exactly m2 equally likely ways to
select one black ball, replace it, then select another black ball.
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Thus, the total number of ways to draw one ball, replace it, then draw another of the same color is
n2 +m2.
Let F = the event that the two balls are the same color (with replacement).
Then, since all outcomes are equally likely,

P(F ) =
|F |
|S′|

=
n2 +m2

(n+m)2

Therefore, the probability that both of the balls are the same color (with replacement) is

P(F ) =
n2 +m2

(n+m)2

(c) Note: It suffices to show that P(F ) > P(E).
Thus, it also suffices to show P(F )− P(E) > 0.

P(F )− P(E) =
n2 +m2

(n+m)2
− n(n− 1) +m(m− 1)

(m+ n)(m+ n− 1)

We can now rewrite both fractions in terms of the common denominator (n+m)2(n+m−1) to combine
the fractions into a single term as follows:

n2 +m2

(n+m)2
− n(n− 1) +m(m− 1)

(m+ n)(m+ n− 1)
=

(n2 +m2)(n+m− 1)

(n+m)2(n+m− 1)
− (n(n− 1) +m(m− 1))(m+ n)

(n+m)2(n+m− 1)

=
(n2 +m2)(n+m− 1)− (n(n− 1) +m(m− 1))(m+ n)

(n+m)2(n+m− 1)

Expanding and simplifying the numerator, we obtain

n2 +m2

(n+m)2
− n(n− 1) +m(m− 1)

(m+ n)(m+ n− 1)

=
(n2 +m2)(n+m− 1)− (n(n− 1) +m(m− 1))(m+ n)

(n+m)2(n+m− 1)

=
(n3 + n2m− n2 +m3 +m2n−m2)− (n3 − n2 + n2m− nm+ nm2 +m3 − nm−m2)

(n+m)2(n+m− 1)

=
n3 + n2m− n2 +m3 +m2n−m2 − n3 + n2 − n2m+ nm− nm2 −m3 + nm+m2

(n+m)2(n+m− 1)

=
2nm

(n+m)2(n+m− 1)
> 0

as required. This completes the proof that

P (F ) > P (E)

.
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11. (a) Give a probabilistic proof of the geometric series identity in the form

(1− p)

∞∑
i=0

pi = 1

for any 0 ≤ p ≤ 1.

(b) Give a probabilistic proof of the related identity

∞∑
i=0

(i+ 1)pi =
1

(1− p)2
.

Solution.
(a) Consider an experiment in which we roll a die until the value v appears once, at which point the
experiment stops. For each die roll, let p = the probability that we do not roll a v. Then 0 ≤ p ≤ 1 as
required, and 1− p = the probability that we do roll a v on any given roll of the die.

We will now argue that both sides of the identity

(1− p)

∞∑
i=0

pi = 1 (1)

are equal to the probability of the sample space, P(S), in our experiment.

Right-Hand Side: P(S) is trivially equal to the Right-Hand Side of (1), as the second axiom of probability
guarantees that

P(S) = 1

for any experiment.

Left-Hand Side: Let’s try to find the a way to express our sample space S. We can do this by counting
the number of rolls in possible outcomes of the experiment. If v first appears on on the first roll, then our
experiment takes exactly 1 roll. If v first appears on the second roll, then our experiment takes exactly
2 rolls. Similarly, for any i ∈ N, if v first appears on the i’th roll, then our experiment takes exactly i
rolls. Thus, there are outcomes in our sample space that take exactly i rolls for all i ∈ N. Additionally,
there is the possibility that v never appears, in which case we must keep rolling the die infinitely. Thus,
there is also an outcome in our sample space that takes infinitely many rolls. Let Si = the event that
our experiment takes exactly i rolls, and let X = the event that v never appears in our experiment.
Then we can think of the sample space as the union between X and Si, for all i : 1 → ∞. That is,

S =
( ∞⋃
i=1

Si

)
∪X

Note: For all outcomes s, if s takes exactly i rolls, it is impossible for s to take exactly j rolls, for all
j ̸= i. Thus,

s ∈ Si =⇒ s ̸∈ Sj

for all j ̸= i.
Also,

s ∈ X =⇒ s ̸∈ Si

for all i ∈ N . Therefore, {X,S1, S2, · · · } is a mutually disjoint set, so we know

P(S) = P(X) +

∞∑
i=1

P(Si)
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Let’s try to find a probabilistic formula for P(X). If s ∈ X, then we know we have infinitely many dice
rolls, all of which are not the value v. The probability of not rolling v on any given roll, independent of
the roll number, is p, so the probability of an infinite sequence of rolls that all aren’t v is

P(X) = lim
i→∞

pi = 0

for all p < 1. This makes sense, as the probability of rolling infinitely many times without getting a v
should be zero unless the probability of not getting a v is 100 %.
Thus,

P(S) = 0 +

∞∑
i=1

P(Si) =
∞∑
i=1

P(Si)

Now, let’s try to find a probabilistic formula for P(Si). If an outcome s ∈ Si, then v first appeared on
the i’th roll of that outcome of the experiment. Thus, v did not appear during the first i − 1 rolls of
the experiment. On any given roll, the probability of not rolling v is p. Each of these probabilities is
independent, so the probability of not rolling a v on all of the first i− 1 rolls is pi−1. On any given roll,
the probability of rolling a v is 1− p, and this probability is also independent of the roll number. Thus,
the probability of not rolling a v on all of the first i− 1 rolls and then rolling a v on the i’th roll is

P(Si) = (1− p)pi−1

This is true for all i from 1 → ∞, so

P(S) =
∞∑
i=1

P(Si) =
∞∑
i=1

(1− p)pi−1

i takes values from 1 → ∞, so i− 1 takes values from 0 → ∞, so we can rewrite the sum as

∞∑
i=1

(1− p)pi−1 =

∞∑
i=0

(1− p)pi

Now, since (1−p) does not depend on i, we can pull it out of the sum, applying the distributive property
of addition, to find

∞∑
i=0

(1− p)pi = (1− p)

∞∑
i=0

pi

which is exactly the Left-Hand Side of the identity we want to prove. Thus, we have shown that

(1− p)

∞∑
i=0

pi = P(S) = 1

which completes the probabilistic proof that

(1− p)

∞∑
i=0

pi = 1

(b) Note: It suffices to show

(1− p)2
∞∑
i=0

(i+ 1)pi = 1 (2)

We will apply a very similar probabilistic argument, with a slightly different setup. This time, consider
an experiment in which we roll a die until the value v appears twice, at which point the experiment
stops. For each die roll, let p = the probability that we do not roll a v. Then 0 ≤ p ≤ 1 as required, and
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1 − p = the probability that we do roll a v on any given roll of the die. We will now argue that both
sides of the identity

(1− p)2
∞∑
i=0

(i+ 1)pi = 1 (2)

are equal to the probability of the sample space, P(S), in our experiment.

Right-Hand Side: P(S) is trivially equal to the Right-Hand Side of (2), as the second axiom of probability
guarantees that

P(S) = 1

for any experiment.

Left-Hand Side: Once again, let’s try to find the a way to express our sample space S. v cannot appear
a second time by the first roll, so we know our experiment takes ≥ 2 rolls to finish. v could appear for
a second time on the second roll, and v could appear for a second time on the i’th roll, for all i ∈ N
s.t. i ≥ 2. However, v could also never appear for a second time, meaning we must continue to roll
the die infinitely. Thus, the number of rolls taken by different outcomes of the experiment ranges from
i : 2 → ∞. Let Si = the event that the experiment takes exactly i rolls, and let X = the event that v
never appears twice during the experiment. Just like in part (a)

S =
( ∞⋃
i=2

Si

)
∪X

Once again, all Si are mutually disjoint, so

P(S) = P(X) +

∞∑
i=2

P(Si)

Let’s try to find a probabilistic formula for P(X). x ∈ X implies there are infinitely rolls in outcome x,
at which point v never appears twice. Thus, we could either have v appear once, or v never appear in
the outcome x. If v appears once, it could have appeared during any of the infinitely many rolls, except
the last one. Thus, we have

P(X) = lim
i→∞

(i− 1)(1− p)pi−1 = 0

for all p < 1.
Similarly, if v never appears, then we know all of the infinitely many rolls were not v, so all of the
infinitely many rolls had probability p, so we have

P(X) = lim
i→∞

pi = 0

for all p < 1.
Thus, just like in part (a), the probability that our experiment takes infinitely many rolls is 0, as long
as the probability of rolling a v is nonzero, so we have

P(S) = 0 +

∞∑
i=2

P(Si) =
∞∑
i=2

P(Si)

Now, let’s try to find a probabilistic formula for P(Si). On any given roll, there is a p probability of
not rolling a v, and a (1 − p) probability of rolling a v. For s ∈ Si, exactly 2 of those i rolls were v’s,
and the remaining i− 2 rolls were not v’s. These probabilities are independent for each roll, so, for any
individual outcome s ∈ Si,

P(s) = (1− p)2pi−2
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Now, lets count how many distinct s ∈ Si. Since the experiment only stops when v appears for a second
time, we know the last value rolled was v (assuming we didn’t take infinitely many rolls). Also, we know
v appeared in exactly 1 of the first i− 1 rolls. This gives us i− 1 different choices for the location of the
first v, each of which results in a distinct s ∈ Si. Thus, there are i− 1 distinct outcomes in Si, each of
which has a probability of (1− p)2pi−2. Thus, the total probability of each Si is

P(Si) = (1− p)2(i− 1)pi−2

Plugging this into the equation for P(S), we find

P(S) =
∞∑
i=2

P(Si) =
∞∑
i=2

(1− p)2(i− 1)pi−2

Now, since (1−p) does not depend on i, we can pull it out of the sum, applying the distributive property
of addition, to find

∞∑
i=2

(1− p)2(i− 1)pi−2 = (1− p)2
∞∑
i=2

(i− 1)pi−2

i takes values from 2 → ∞, so i− 2 takes values from 0 → ∞, so we can rewrite the sum as

(1− p)2
∞∑
i=2

(i− 1)pi−2 = (1− p)2
∞∑
i=0

(i+ 1)pi

Thus, we have shown that

(1− p)2
∞∑
i=0

(i+ 1)pi = P(S) = 1

which completes the probabilistic proof that

∞∑
i=0

(i+ 1)pi =
1

(1− p)2

Assignment 5

Math 407 (Swanson) – Spring 2023
Homework 1

Due Friday 1/13, 11:59pm

Name: Emerson Kahle Section: 39981

• You must upload your solutions to Gradescope as one single, high-quality PDF. You can convert
paper-based work to a high-quality PDF using a scanning app for mobile devices, such as Adobe Scan
(free, available for iOS and Android, can do multiple pages) or many others. If necessary, you can
combine or merge multiple PDF’s into a single PDF using a variety of services, such as Adobe Acrobat’s
cloud-based merge tool.
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• After you upload, you must match each question with its corresponding page using Gradescope’s
interface. This allows graders to spend more time giving you feedback instead of hunting through
submissions.

• Answers without supporting work will receive no credit. Show your work.

• You are encouraged to work together on homework, but you must write up your solutions sepa-
rately in your own words. Copying from your fellow students or other sources is a serious academic
integrity violation. In particular, you may not use “tutoring” services which simply provide answers.

• You are encouraged to typeset your solutions in LATEX. Source code has been provided on Blackboard.
Overleaf is a popular cloud-based editor.

• Problem numbers refer to the course textbook, though the problems may have been modified signifi-
cantly.
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1. (Ross P2.21) A small community organization consists of 20 families, of which 4 have one child, 8 have
two children, 5 have three children, 2 have four children, and 1 has five children.

(a) If one of these families is chosen at random, what is the probability it has i children, i = 1, 2, 3, 4, 5?

(b) If one of the children is randomly chosen, what is the probability that child comes from a family
having i children, i = 1, 2, 3, 4, 5?

Solution.
(a) Since we are choosing from the families at random, there is an equal probability of selecting each of
the 20 families. There are 20 total families, so the size of our sample space S is |S| = 20 However, the
probability that the family we select has i children depends on the value of i. Let Ei = the event that
the chosen family has i children.

(i) i = 1: There are 4 families that that have exactly one child, and we have an equal probability of
selecting each family, so the probability that the selected family has exactly 1 child is

P(E1) =
|E1|
|S|

=
4

20
=

1

5
= 20%

(ii) i = 2: There are 8 families that have exactly two children, and we have an equal probability of
selecting each family, so the probability that the selected family has exactly two children is

P(E2) =
|E2|
|S|

=
8

20
=

2

5
= 40%

(iii) i = 3: There are 5 families that have exactly three children, and we have an equal probability of
selecting each family, so the probability that the selected family has exactly three children is

P(E3) =
|E3|
|S|

=
5

20
=

1

4
= 25%

(iv) i = 4: There are 2 families that have exactly four children, and we have an equal probability of
selecting each family, so the probability that the selected family has exactly four children is

P(E4) =
|E4|
|S|

=
2

20
=

1

10
= 10%

(v) i = 5: There is only 1 family that has exactly five children, and we have an equal probability of
selecting each family, so the probability that the selected family has exactly five children is

P(E5) =
|E5|
|S|

=
1

20
= 5%

Note: As expected, since the Ei’s are all mutually disjoint, and the selected family must have exactly
1, 2, 3, 4, or 5 children, we find that

P(E1) + P(E2) + P(E3) + P(E4) + P(E5) =
4

20
+

8

20
+

5

20
+

2

20
+

1

20
=

20

20
= 1

(b) Similarly, since we are selecting from the children at random, there is an equal probability of selecting
each child. Therefore, we need to count up all the children to find a size for our sample space. Then, we
can use the same process from part (a) to calculate the probabilities for each i, this time with the event
Fi = the selected child comes from a family with exactly i children. Adding up the children from all 20
families, we find there are exactly

4 · 1 + 8 · 2 + 5 · 3 + 2 · 4 + 1 · 5 = 4 + 16 + 15 + 8 + 5 = 48

children between the 20 families. Therefore, the size of our sample space, S′, is |S′| = 48. The probability
that the selected child belongs to a family with exactly i children depends on the value of i.
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(i) i = 1: There are 4 families with exactly one child, for a total of 4 ∗ 1 children that belong to such
a family. Since we have an equal probability of selecting each child, we know the probability that
the selected child belongs to a family with exactly one child is

P(F1) =
|F1|
|S′|

=
4

48
=

1

12
≈ 8.33%

(ii) i = 2: There are 8 families with exactly two children, for a total of 8 ∗ 2 = 16 children that belong
to such a family. Since we have an equal probability of selecting each child, we know the probability
that the selected child belongs to a family with exactly two children is

P(F2) =
|F2|
|S′|

=
16

48
=

1

3
≈ 33.33%

(iii) i = 3: There are 5 families with exactly three children, for a total of 5 ∗ 3 = 15 children that belong
to such a family. Since we have an equal probability of selecting each child, we know the probability
that the selected child belongs to a family with exactly three children is

P(F3) =
|F3|
|S′|

=
15

48
=

5

16
= 31.25%

(iv) i = 4: There are 2 families with exactly four children, for a total of 4∗2 = 8 children that belong to
such a family. Since we have an equal probability of selecting each child, we know the probability
that the selected child belongs to a family with exactly four children is

P(F4) =
|F4|
|S′|

=
8

48
=

1

6
≈ 16.67%

(v) i = 5: There is only 1 family with exactly five children, for a total of 1 · 5 = 5 children that belong
to such a family. Since we have an equal probability of selecting each child, we know the probability
that the selected child belongs to a family with exactly five children is

P(F5) =
|F5|
|S′|

=
5

48
≈ 10.42%

Note: As expected, since the Fi’s are all mutually disjoint, and the selected child must belong to a
family with 1, 2, 3, 4, or 5 children, we find that

P(F1) + P(F2) + P(F3) + P(F4) + P(F5) =
4

48
+

16

48
+

15

48
+

8

48
+

5

48
=

48

48
= 1
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2. (Ross P2.25) A pair of dice is rolled until a sum of either 5 or 7 appears. Find the probability that a 5
occurs first. Hint: Let En denote the event that a 5 occurs on the nth roll and no 5 or 7 occurs on the
first n− 1 rolls. Compute P (En) and argue that

∑∞
n=1 P (En) is the desired probability.

Solution.
Let S5 = the event that the sum of a given pair of dice rolls equals 5.
Let S7 = the event that the sum of a given pair of dice rolls equals 7.
The sample space for a pair of dice rolls is

S = {1, 2, 3, 4, 5, 6}2 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

Each of these outcomes is equally likely, and only 4 outcomes, (1, 4), (2, 3), (3, 2), (4, 1) have sums of 5.
Therefore, S5 = {(1, 4), (2, 3), (3, 2), (4, 1)}, and the probability that the sum of a given pair of dice rolls
equals 5 is

P(S5) =
|S5|
|S|

=
4

36
=

1

9
≈ 11.11%

Similarly, only 6 outcomes, (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1) have sums of 7. Therefore, S7 = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)},
and the probability that the sum of a given pair of dice rolls equals 7 is

P(S7) =
|S7|
|S|

=
6

36
=

1

6
≈ 16.67%

If a given pair of dice rolls has a sum of 7, it cannot have a sum of 5, and vice-versa. Therefore, S7 and
S5 are mutually disjoint, so the probability that a given pair of dice rolls has a sum of 5 or 7 is

P(S5 ∪ S7) = P(S5) + P(S7) =
4 + 6

36
=

10

36
=

5

18
≈ 27.78%

Let S∗ = the event that a given pair of dice rolls has a sum that is neither 5 nor 7. Then

S∗ = (S5 ∪ S7)
c =⇒ P(S∗) = 1− P(S5 ∪ S7) = 1− 5

18
=

13

18
≈ 72.22%

Now, let En = the event that a 5 occurs on the nth roll and no 5 or 7 occurs on the first n − 1 rolls.
We want to find P(En) in terms of n. For any outcome e ∈ En, each of the n pairs of dice rolls occur
independently, so we can multiply their corresponding probabilities together to get P(En). Each of the
first n− 1 pairs of dice rolls has a sum that is neither 5 nor 7. Therefore, each of the first n− 1 pairs of
dice rolls have a probability of

P(S∗) =
13

18

The nth dice roll must have a sum of 5, so its probability is

P(S5) =
1

9

Therefore, the total probability that the first n − 1 pairs of rolls never sum to 5 or 7 and the nth pair
of rolls has a sum of 5 is

P(En) = (
13

18
)n−1(

1

9
)

Note: For all e ∈ En, e ̸∈ Ej for all j ̸= n.
Proof. Assume to the contrary that ∃ e ∈ En s.t. e ∈ Ej but j ̸= n. Without loss of generality, assume
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n > j. Then e ∈ En implies that none of the first n− 1 pairs of dice rolls had a sum of 5. However, one
of the first n− 1 pairs of dice rolls was the jth pair, and e ∈ Ej implies that a sum of 5 appeared on the
jth pair of dice rolls. This contradiction completes the proof.
From this proof, we know that all En are mutually disjoint.

We want to find the probability that a sum of 5 appears first. Consider any such outcome. Since
the experiment ends after the first 5 or 7 appears, we know that only one pair of dice rolls (the last one)
had a sum of 5. The 5 could first appear on the first pair of rolls, or the second, or the third, all the way
to the nth, for all n ∈ N. Since the 5 appears only once in any of these outcomes, we know it cannot
appear on two different pairs of dice rolls. Thus, if we calculate the probability of the 5 appearing on
the nth roll for all n ∈ N, we can add these probabilities together to find the total probability that a
sum of 5 appears before a sum of 7 (Observation 1).
To do so, we just need to calculate the probability of the 5 appearing first on the nth roll in terms of n.

Note: The probability of the 5 appearing first on the nth roll is equal to P(En).
Proof. It suffices to show that for all e ∈ En, a 5 appears first on the nth roll of e, and that for all
outcomes o in which a 5 appears first on the nth roll of o, o ∈ En.
First, we will show the former. By the definition of En, for all e ∈ En, we know a 5 occurs on the nth
pair of rolls, and we know that no 5 nor 7 appears during the first n − 1 pairs of rolls. Thus, for all
e ∈ En, e is an outcome in which 5 appears first on the nth roll.
Now, we can show the latter. For all such o, a 5 appears first on the nth pair of rolls. Since the experi-
ment stops as soon as a 5 or 7 appears, we know that no 5 nor 7 appeared during the first n− 1 pairs of
rolls in o. Therefore, for all o in which 5 appears first on the nth roll, o satisfies both of the conditions
for En, so o ∈ En.
Thus, we have shown that {5 first appears on the nth roll} = En for all n ∈ N, which completes the
proof that

P(5 first appears on the nth roll) = P(En) = (
13

18
)n−1(

1

9
)

for all n ∈ N.

Combining this result with Observation 1, we find that the total probability that a sum of 5 appears
before a sum of 7 is

∞∑
n=1

P(En) =
∞∑
n=1

(
13

18
)n−1(

1

9
) =

1

9

∞∑
n=1

(
13

18
)n−1 =

1

9

∞∑
n=0

(
13

18
)n (1)

Now,
∑∞
n=0(

13
18 )

n is a geometric series, so we can apply the geometric series identity for |r| < 1 to find

∞∑
n=0

(
13

18
)n =

1

1− 13
18

=
1
5
18

=
18

5

Combining this with (1), we find that the total probability that a sum of 5 appears before a sum of 7 in
our experiment is

1

9

∞∑
n=0

(
13

18
)n =

1

9

18

5
=

2

5
= 40%
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3. (Ross P2.34) The second Earl of Yarborough is reported to have bet at odds of 1000 to 1 that a bridge
hand of 13 cards would contain at least one card that is ten or higher. (By ten or higher we mean
that a card is either a ten, a jack, a queen, a king, or an ace.) Nowadays, we call a ahnd that has no
cards higher than 9 a Yarborough. What is the probability that a randomly selected bridge hand is a
Yarborough?

Solution.
Note that each bridge hand is equally likely, and there are

(
52
13

)
possible bridge hands. Thus, the size of

our sample space, S, is |S| =
(
52
13

)
.

Now, we just need to count the number of bridge hands that are Yarboroughs. Let Y = a randomly
selected bridge hand is a Yarborough. There are 4 tens, 4 jacks, 4 queens, 4 kings, and 4 aces in standard
deck. Therefore, there are 4 + 4+ 4+ 4+ 4 = 4 · 5 = 20 cards which would prevent a hand from being a
Yarborough. Since there are 52 cards in a standard deck, there are 52−20 = 32 cards which we can select
from to construct a hand which is a Yarborough. We need to select 13 cards from these 32 cards, and
the permutation of the cards does not matter, so there are

(
32
13

)
equally likely ways to do this. Therefore,

out the
(
52
13

)
equally likely bridge hands, exactly

(
32
13

)
of them are Yarboroughs. Thus, |Y | =

(
32
13

)
, so the

probability that a randomly selected bridge hand is a Yarborough is(
32
13

)(
52
13

) =
32!

13!·19!
52!

13!·39!
=

32!

13! · 19!
13! · 39!
52!

=
39 · 38 · · · 21 · 20
52 · 51 · · · 34 · 33

=
32 · 31 · · · 21 · 20
52 · 51 · · · 41 · 40

≈ 0.05%
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4. (Ross P2.37) An instructor gives her class a set of 10 problems with the information that the final exam
will consist of a random selection of 5 of them. If a student has figured out how to do 7 of the problems,
what is the probability that he or she will answer correctly...

(a) all 5 problems?

(b) at least 4 of the problems?

Solution.
(a) If the student knows how to do all 5 problems, then they must know how to do the first problem.There
are 10 equally likely possibilities for the first problem, of which the student knows how to solve 7. Thus,
the probability that the student gets the first question correct is 7

10 = 70%.
After getting the first problem correct, there are 9 equally likely possibilities for the second question,
of which the student now only knows how to solve 6. Thus, the probability that the student gets the
second question correct given that they got the first question correct is 6

9 .
After getting the first two questions right, there are 8 equally likely possibilities for the third question,
of which the student now only knows how to solve 5. Thus, the probability that the student gets the
third question right given that they got the first two problems right is 5

8 .
After getting the first three problems right, there are 7 equally likely possibilities for the fourth problem,
of which the student now only knows how to solve 4. Thus, the probability that the student gets the
fourth problem right given that they got the first three problems right is 4

7 .
After getting the first four problems right, there are 6 equally likely possibilities for the fifth problem, of
which the student now only knows how to solve 3. Thus, the probability that the student gets the fifth
problem right given that they got the first four problems right is 3

6 .
Multiplying these probabilities together, we find that the total probability that the student answers all
5 problems correctly is

7

10

6

9

5

8

4

7

3

6
=

1

2

2

1

1

2

1

1

1

6
=

2

24
=

1

12
≈ 8.33%

Alternatively, we could note that the number of ways to choose the 5 test questions from the set of 10
possible problems is

(
10
5

)
, each of which is equally likely. Similarly, the number of ways to choose 5 test

questions from the set of 7 which the student knows how to solve is
(
7
5

)
. Therefore, the probability that

a randomly selected combination of 5 test problems equals some combination of 5 of the 7 questions the
student knows is (

7
5

)(
10
5

) =
7!!
2!5!
10!
5!5!

=
7!

2!5!

5!5!

10!
=

7!

2!

5!

10!
=

7 · 6 · 5 · 4 · 3
10 · 9 · 8 · 7 · 6

=
1

12
≈ 8.33%

(b) Let C5 = the event that the student answers all 5 problems correctly.
Let C4 = the event that the student answers exactly 4 of the 5 problems correctly.
Let C≥4 = the event that the student answers at least 4 of the 5 problems correctly.
If the student answers exactly 4 of the 5 problems correctly, they cannot possibly have answered all 5
questions correctly, and vice-versa. Therefore, C5 and C4 are mutually disjoint.
Also, if a student answers at least 4 of the 5 questions correctly, they could have either answered exactly
4 of the questions correctly or all 5 problems correctly, but not both. Thus, we know that C≥4 = C4∪C5.
Since C4 and C5 are mutually disjoint, this implies the probability that a student answers at least 4 of
the problems correctly is

P(C≥4) = P(C4) + P(C5)

From part (a), we already know that

P(C5) =
1

12

so we just need to calculate P(C4). We can do this similarly to the alternative approach from the end of
part (a).
Once again, there are

(
10
5

)
ways to choose 5 test problems from the set of 10 possible problems. However,

this time, we want to choose only 4 problems from the set of 7 problems which the student knows how
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to solve, which can be done in
(
7
4

)
ways. For each of these

(
7
4

)
combinations of 4 problems which the

student knows how to solve, we need to choose one problem from the set of 10− 7 = 3 problems which
the student cannot solve, which can be done in

(
3
1

)
= 3 ways. Thus, the total number of ways that the

student can get exactly 4 of the 5 problems right is |C4| = 3
(
7
4

)
. Since all of the

(
10
5

)
combinations of

test questions are equally likely, this implies the probability that the student gets exactly 4 out of the 5
questions correct is

P(C4) =
3
(
7
4

)(
10
5

) =
3∗7!
4!3!
10!
5!5!

=
7 ∗ 6 ∗ 5

2

5!5!

10!
=

7 ∗ 3 ∗ 5 ∗ 5!
10 ∗ 9 ∗ 8 ∗ 7 ∗ 6

=
5!

2 ∗ 3 ∗ 8 ∗ 6
=

5

2 ∗ 6
=

5

12

Combining this with the result from part (a), we find that the probability that the student gets at least
4 out of the 5 problems correct is

P(C≥4) = P(C4) + P(C5) =
1

12
+

5

12
=

6

12
=

1

2
= 50%
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5. (Ross P2.43)

(a) If N people, including A and B, are randomly arranged in a line, what is the probability that A
and B are next to each other?

(b) What would the probability be if the people were randomly arranged in a circle?

Solution.
(a) If N people are randomly arranged in a line, then there are N ! total permutations of the people,
each of which is equally likely. Therefore, the size of our sample space, S, is |S| = N !.
Now, we need to count the number of permutations in which A and B are next to each other. Let C
= the event that A and B are next to each other when the N people are randomly arranged in a line.
There are N − 1 pairs of adjacent people. If we let the first person in line be p1, the second be p2, and
so on, all the way until pN , then these N − 1 pairs of adjacent people are

(p1, p2), (p2, p3), ..., (pN−1, pN )

We need to choose one of these N − 1 pairs to be the locations of A and B, which can be done in(
N−1
1

)
= N − 1 ways. For each of these choices, we have 2! = 2 choices for the permutation of A and

B within the pair. Once we make this choice, we have to permute the remaining N − 2 people in the
remaining N − 2 places in the line. This can be done in (N − 2)! ways. Therefore, the total number of
permutations in which A and B are next to each other when the N people are randomly arranged in a
line is

|C| = (N − 1) · 2 · (N − 2)! = 2(N − 1)!

Since all permutations are equally likely, this implies that the probability that A and B are next to each
other when the N people are randomly arranged in a line is

P(C) =
|C|
|S|

=
2(N − 1)!

N !
=

2

N

(b) Let’s number the N spots in the circle from 1 to N . Then we still have N ! total ways to permute
the N people among the N spots in the circle, each of which is equally likely. Therefore, the size of our
sample space, S′, is |S′| = N !.
Now, we need to count the number of permutations in which A and B are next to each other, considering
that the people are now arranged in a circle. Let D = the event that A and B are next to each other
when the N people are randomly arranged in a circle. Now, there are N pairs of adjacent people. If we
let the person in spot 1 be p1, the person in spot 2 be p2, and so on, until we let the person in spot N
be pN , then the N pairs of adjacent people are

(p1, p2), (p2, p3), ..., (pN−1, pN ), (pN , p1)

We need to choose one of these N pairs to be the locations of A and B, which can be done in
(
N
1

)
= N

ways. For each of these choices, we have 2! = 2 choices for the permutation of A and B within the pair.
Once we make this choice, we have to permute the remaining N − 2 people in the remaining N − 2 spots
in the circle. This can be done in (N − 2)! ways. Therefore, the total number of permutations in which
A and B are next to each other when the N people are randomly arranged in a circle is

|D| = N · 2 · (N − 2)!

Since all permutations are equally likely, this implies that the probability that A and B are next to each
other when the N people are randomly arranged in a circle is

P(D) =
|D|
|S′|

=
N · 2 · (N − 2)!

N !
=

2

N − 1
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6. (Ross P2.45) A woman has n keys, of which one will open her door.

(a) If she tries the keys at random, discarding those that do not work, what is the probability that she
will open the door on her kth try?

(b) What if she does not discard previously tried keys?

Solution.
(a) The woman is guaranteed to open the door by the nth try, so the probability of her opening the
door on her kth try only makes sense for 1 ≤ k ≤ n. For such k, if the woman opens the door on the
kth try, we know that she did not open the door on any of her first k − 1 tries. On the first try, there
is a n−1

n probability that she does not open the door. After discarding the first key, there is an n−2
n−1

probability that she does not open the door on her second try. After discarding the second key, there is
an n−3

n−2 probability that she does not open the door on her third try. This pattern continues until there

is a n−k+1
n−k+2 probability that she doesn’t open the door on her k − 1th try. She must open the door on

her kth try, and there are n−k+1 keys left to choose from, only one of which will open the door. Thus,
the probability that she opens the door on her kth try, given that she already discarded the keys from
her first k− 1 failed attempts, is 1

n−k+1 . Multiplying these probabilities together, we find that the total
probability that the woman opens the door on her kth try is

n− 1

n

n− 2

n− 1

n− 3

n− 2
· · · n− k + 1

n− k + 2

1

n− k + 1
=

1

n

Alternatively, we could note that there are n!
(n−k)! permutations of k keys from a set of n keys. To form

a permutation such that the woman opens the door on the kth try, the woman must try k− 1 keys from

the n− 1 keys that do not open the door. There are (n−1)!
((n−1)−(k−1))! =

(n−1)!
(n−k)! ways to do this. Since the

woman must choose the key that opens the door on her kth try, there is only one option for the first try.

This leaves a total of (n−1)!
(n−k)! ways to permute k of the n keys such that the woman opens the door on

her kth try. Since all of the permutations are equally likely, the probability that the woman opens the
door on her kth try is

(n−1)!
(n−k)!
n!

(n−k)!
=

(n− 1)!

(n− k)!

(n− k)!

n!
=

(n− 1)!

n!
=

1

n

The two methods produce the same probability, as expected.

(b) If the woman doesn’t discard previously tried keys, then the probability that the woman opens
the door on any given roll is 1

n , and the probability that the woman doesn’t open the door on any given
roll is n−1

n . Since the woman opens the door on her kth roll, we know that she doesn’t open the door
on any of her first k − 1 rolls. Thus, each of her first k − 1 rolls has an independent probability of n−1

n ,
while her kth roll has an independent probability of 1

n . Multiplying these probabilities together, we find
that the probability that the woman opens the door on her kth try if she does not discard previously
tried keys is (n− 1

n

)k−1 · 1
n
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7. (Ross P2.47) Suppose that 5 of the numbers 1, 2, . . . , 14 are chosen. Find the probability that 9 is the
third smallest value chosen.

Solution. There are
(
14
5

)
equally likely ways to choose 5 numbers from the 14 numbers in {1, 2, . . . , 14}.

Thus, the size of our sample space, S, is |S| =
(
14
5

)
.

Let E = the event that 9 is the third smallest value chosen. For any e ∈ E, 9 must be one of the
numbers chosen, 2 numbers chosen must be smaller than 9, and 2 numbers chosen must be larger than
9. Since we know we have to choose 9, we only have to consider how many ways we can select the other
4 numbers. There are 8 numbers in {1, 2, . . . , 14} that are less than 9, from which we need to select 2
numbers. There are

(
8
2

)
ways to do this. There are 5 numbers in {1, 2, . . . , 14} that are greater than

9, from which we need to select 2 numbers. There are
(
5
2

)
ways to do this, and each of these choices

is made independently from each of the
(
8
2

)
choices for the 2 numbers smaller than 9. Therefore, the

total number of combinations of 5 elements from {1, 2, . . . , 14} with 9 as the third smallest value in the
combination is

|E| =
(
8

2

)(
5

2

)
=

8!

6!2!

5!

2!3!
= 28 · 10 = 280

Since all combinations of 5 elements from {1, 2, . . . , 14} are equally likely, this means the probability
that a combination has 9 as its third smallest element is

P(E) =
|E|
|S|

=
280(
14
5

) =
280
14!
5!9!

= 280 · 5!9!
14!

= 280 · 5!

14 · 13 · 12 · 11 · 10
=

280

14 · 13 · 11
=

20

143
≈ 13.99%

Page 297



8. Consider the claim, “The probability that a randomly selected integer is even is 1/2.” Either rigorously
justify the claim using the axioms of probability, or show that it cannot be done.

Solution.
This cannot be done using the axioms of probability. We will show this by applying the axioms of
probability and deriving a contradiction.
The sample space S, is the set of all integers, so S = Z.
By the second axiom of probability, we know that

P(S) = 1

Let Ei = the event that the randomly selected integer is i, for all i ∈ Z.
For all i ∈ Ei, i ∈ Z =⇒ i ∈ S. Also, for all i ∈ S, i ∈ Z =⇒ i ∈ Ei. Therefore, we know

S = Z =

∞⋃
i=−∞

Ei

In any outcome, if the randomly selected integer is i, then the randomly selected integer cannot be j for
all j ̸= i. Therefore, for all i ∈ Ei, i ̸∈ Ej for all j ̸= i, and vice-versa. Thus, we know that the Ei’s are
mutually disjoint for all i ∈ Z. By the third axiom of probability, we know

P(S) = P
( ∞⋃
i=−∞

Ei
)
=

∞∑
i=−∞

P(Ei)

Since the integer is selected randomly, there is an equal probability of selecting each integer, for all z ∈ Z.
Therefore, the probabilities of all the Ei’s should be equal. Thus, we know that

p = · · · = P(E−2) = P(E−1) = P(E0) = P(E1) = P(E2) = · · ·

By the first axiom of probability, we know that

0 ≤ p ≤ 1

If p = 0, then

P(S) =
∞∑

i=−∞
P(Ei) =

∞∑
i=−∞

p =

∞∑
i=−∞

0 = 0

which is a contradiction since the second axiom of probability guarantees that

P(S) = 1

If 0 < p ≤ 1, then

P(S) =
∞∑

i=−∞
P(Ei) =

∞∑
i=−∞

p = ∞ · p = ∞

which is also a contradiction by the second axiom of probability.

Therefore, applying the axioms of probability yields a contradiction, so we cannot prove the claim
using the axioms of probability.
Note: If we let Ee = the event that a randomly selected integer is even and try to calculate its
probability, we similarly fail to prove P(Ee) = 1

2 .
If p = 0, then

P(Ee) =
∑

i∈Z s.t. i is even

p =
∑

i∈Z s.t. i is even

0 = 0 ̸= 1

2
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If p > 0, then

P(Ee) =
∑

i∈Z s.t. i is even

p = ∞ · p = ∞ ≠
1

2

since there are infinitely many even integers.
Thus, it is impossible to prove that “The probability that a randomly selected integer is even is 1

2” using
the axioms of probability.
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9. (Ross P2.55) Compute the probability that a hand of 13 cards contains

(a) the ace and king of at least one suit;

(b) all 4 of at least 1 of the 13 denominations.

Solution.
(a) There are

(
52
13

)
equally likely ways to choose a hand of 13 cards from a standard deck of 52 cards.

Therefore, the size of our sample space, S, is |S| =
(
52
13

)
.

Let E = the event that a randomly selected hand contains the ace and king of at least one suit. We
want to find |E|.
Let EH = the event that a randomly selected hand contains the ace and king of hearts.
Let ED = the event that a randomly selected hand contains the ace and king of diamonds.
Let EC = the event that a randomly selected hand contains the ace and king of clubs.
Let ES = the event that a randomly selected hand contains the ace and king of hearts.
For any e ∈ E, e could contain exactly one suited ace king pair, or it could contain two of the suited ace
king pairs, or it could contain three of the suited ace king pairs, or it could contain all four of the suited
ace king pairs. Therefore, we know that the event that a randomly selected hand contains at least one
suited ace king pair is

E = EH ∪ ED ∪ EC ∪ ES
Since an individual hand could have more than one suited ace king pair, EH , ED, EC , and ES are not
mutually disjoint. Therefore, to calculate P(E) = P(EH ∪ED∪EC ∪ES), we need to apply the Principle
of Inclusion-Exclusion. By the Principle of Inclusion-Exclusion, we know that

P(E) = P(EH ∪ ED ∪ EC ∪ ES) =
4∑
k=1

(
(−1)k−1

∑
i1,...,ik∈{H,D,C,S}

P(Ei1) ∩ · · · ∩ P(Eik)

)
= P(EH) + P(ED) + P(EC) + P(ES)− P(EH ∩ ED)− P(EH ∩ EC)− P(EH ∩ ES)

− P(ED ∩ EC)− P(ED ∩ ES)− P(EC ∩ ES) + P(EH ∩ ED ∩ EC) + P(EH ∩ ED ∩ ES)
+ P(EH ∩ EC ∩ ES) + P(ED ∩ EC ∩ ES)− P(EH ∩ ED ∩ EC ∩ ES) (1)

We can now calculate each of these probabilities individually:
For any e ∈ EH , we must pick 2 of the 13 cards to be the ace and king of hearts, which can be done in 1
way. We can choose the remaining 11 cards from the remaining 50 cards in the deck, which can be done
in
(
50
11

)
ways. Thus, there are a total of

(
50
11

)
13 card hands that contain the ace and king of hearts, so

|EH | =
(
50
11

)
. Since all hands are equally likely, this means that

P(EH) =
|EH |
|S|

=

(
50
11

)(
52
13

)
By the symmetry of a standard deck of playing cards, we also know

P(EH) = P(ED) = P(EC) = P(ES)

Therefore, we find that

P(EH) + P(ED) + P(EC) + P(ES) = 4P(EH) = 4

(
50
11

)(
52
13

)
For any e ∈ (EH ∩ED), we must pick 4 of the 13 cards to be the ace and king of hearts and the ace and
king of diamonds, which can be done in 1 way. We can choose the remaining 9 cards in our hand from the
remaining 48 cards in the deck, which can be done in

(
48
9

)
ways. Thus, there are a total of

(
48
9

)
13 card

hands that contain the ace and king of hearts and the ace and king of diamonds, so |EH ∩ ED| =
(
48
9

)
.

Since all hands are equally likely, this implies that

P(EH ∩ ED) =
|EH ∩ ED|

|S|
=

(
48
9

)(
52
13

)
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By the symmetry of a standard deck of playing cards, we know

P(EH ∩ ED) = P(EH ∩ EC) = P(EH ∩ ES) = P(ED ∩ EC) = P(ED ∩ ES) = P(EC ∩ ES)

Therefore, we find that

− P(EH ∩ ED)− P(EH ∩ EC)− P(EH ∩ ES)− P(ED ∩ EC)− P(ED ∩ ES)− P(EC ∩ ES)

= − 6P(EH ∩ ED) = −6

(
48
9

)(
52
13

)
For any e ∈ (EH ∩ ED ∩ EC), we must pick 6 of the 13 cards to be the ace and king of hearts, the ace
and king of diamonds, and the ace and king of clubs, which can be done in 1 way. We can choose the
remaining 7 cards in our hand from the remaining 46 cards in the deck, which can be done in

(
46
7

)
ways.

Thus, there are a total of
(
46
7

)
13 card hands that contain the ace and king of hearts, the ace and king of

diamonds, and the ace and king of clubs, so |EH ∩ ED ∩ EC | =
(
46
7

)
. Since all hands are equally likely,

this implies that

P(EH ∩ ED ∩ EC) =
|EH ∩ ED ∩ EC |

|S|
=

(
46
7

)(
52
13

)
By the symmetry of a standard deck of playing cards, we know

P(EH ∩ ED ∩ EC) = P(EH ∩ ED ∩ ES) = P(EH ∩ EC ∩ ES) = P(ED ∩ EC ∩ ES)

Therefore, we find that

P(EH ∩ ED ∩ EC) + P(EH ∩ ED ∩ ES) + P(EH ∩ EC ∩ ES) + P(ED ∩ EC ∩ ES)

= 4P(EH ∩ ED ∩ EC) = 4

(
46
7

)(
52
13

)
For any e ∈ (EH ∩ED ∩EC ∩ES), we must pick 8 of the 13 cards to be the ace and king of hearts, the
ace and king of diamonds, the ace and king of clubs, and the ace and king of spades, which can be done
in 1 way. We can choose the remaining 5 cards in our hand from the remaining 44 cards in the deck,
which can be done in

(
44
5

)
ways. Thus, there are a total of

(
44
5

)
13 card hands that contain the ace and

king of hearts, the ace and king of diamonds, the ace and king of clubs, and the ace and king of spades,
so |EH ∩ ED ∩ EC ∩ ES | =

(
44
5

)
. Therefore,

P(EH ∩ ED ∩ EC ∩ ES) =
|EH ∩ ED ∩ EC ∩ ES |

|S|
=

(
44
5

)(
52
13

)
Plugging these probabilities into (1), we find that the total probability that a randomly selected hand
of 13 cards has at least one suited ace king pair is

P(E) = P(EH ∪ ED ∪ EC ∪ ES) = 4

(
50
11

)(
52
13

) − 6

(
48
9

)(
52
13

) + 4

(
46
7

)(
52
13

) − (
44
5

)(
52
13

)
=

4
(
50
11

)
− 6
(
48
9

)
+ 4
(
46
7

)
−
(
44
5

)(
52
13

) ≈ 21.98%

(b) We will apply a similar argument as in part (a). Once again, our sample space S contains all possible
13 card hands for a total of |S| =

(
52
13

)
equally likely hands.

For this problem, we will let 1 = ace, 11 = jack, 12 = queen, and 13 = king.
Let F = the event that a randomly selected 13 card hand contains all 4 of at least 1 of the 13 denomi-
nations. Let Fi = the event that a randomly selected 13 card hand contains all 4 cards of denomination
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i, for all 1 ≤ i ≤ 13. Then the event that a randomly selected 13 card hand contains all 4 of at least 1
of the 13 denominations is

F =

13⋃
i=1

Fi

Since the Fi’s are not mutually disjoint, we apply the Principle of Inclusion-Exclusion to find

P(F ) = P(
13⋃
i=1

Fi) =

13∑
k=1

(
(−1)k−1

∑
1≤i1≤...≤ik≤13

P(Fi1 ∩ . . . ∩ Fik)

)

Note: In order to have all 4 cards of 4 distinct denominations, we would need to have 4 · 4 = 16 cards
in our hand. Since our hands only has 13 cards, the maximum number of distinct denominations that
any hand can contain all 4 of is 3. Thus, P(Fi1 ∩ · · · ∩ Fik) = 0 for all k ≥ 4. This implies that

P(F ) = P(
13⋃
i=1

Fi) =

3∑
k=1

(
(−1)k−1

∑
1≤i1≤...≤ik≤13

P(Fi1 ∩ . . . ∩ Fik)

)

=

13∑
i=1

P(Fi)−
∑

1≤i1≤i2≤13

P(Fi1 ∩ Fi2) +
∑

1≤i1≤i2≤i3≤13

P(Fi1 ∩ Fi2 ∩ Fi3) (1)

Now, let’s calculate these probabilities individually.
For any f ∈ Fi, we must pick 4 out of our 13 cards to be the 4 cards of denomination i, which can be
done in one way. We can then choose our remaining 9 cards from the remaining 48 cards in the deck,
which can be done in

(
48
9

)
equally likely ways. Thus, the total number of ways that a randomly selected

hand of 13 cards contains all 4 cards of denomination i is |Fi| =
(
48
9

)
for all 1 ≤ i ≤ 13. Since each hand

is equally likely, this implies the probability that a randomly selected 13 card hand contains all 4 cards
of denomination i is

P(Fi) =
|Fi|
|S|

=

(
48
9

)(
52
13

)
for all 1 ≤ i ≤ 13. Therefore, we know that

13∑
i=1

P(Fi) = 13P(Fi) = 13

(
48
9

)(
52
13

)
For any f ∈ (Fi∩Fj), where i ̸= j, we must pick 8 out of our 13 cards to be the 4 cards of denomination i
and the 4 cards of denomination j, which can be done in one way. We then need to choose our remaining
5 cards from the remaining 44 cards in the deck, which can be done in

(
44
5

)
equally likely ways. Thus,

the total number of ways that a randomly selected hand of 13 cards contains all 4 cards of denomination
i and all 4 cards of denomination j is |Fi ∩ Fj | =

(
44
5

)
for all 1 ≤ i, j ≤ 13 s.t. i ̸= j. Since each hand

is equally likely, this implies that the probability that a randomly selected 13 card hand contains all 4
cards of denomination i and all 4 cards of denomination j is

P(Fi ∩ Fj) =
|Fi ∩ Fj |

|S|
=

(
44
5

)(
52
13

)
This is true for all 1 ≤ i, j ≤ 13 s.t. i ̸= j due to the symmetry of a standard deck of cards. There are(
13
2

)
ways to choose which 2 denominations are guaranteed to have all 4 of their cards contained in our

hand. Thus, we know ∑
1≤i1≤i2≤13

P(Fi1 ∩ Fi2) =
(
13

2

)(44
5

)(
52
13

)
For all f ∈ (Fi ∩ Fj ∩ Fk), where i ̸= j ̸= k, we must pick 12 out of the 13 cards to be the 4 cards of
denomination i, the 4 cards of denomination j, and the 4 cards of denomination k, which can be done
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in one way. We can then choose our remaining 1 card from the remaining 40 cards in the deck, which
can be done in

(
40
1

)
= 40 ways. Therefore, the total number of ways that a randomly selected hand of

13 cards contains all 4 cards of denomination i, j, and k is |Fi ∩Fj ∩Fk| = 40 for all 1 ≤ i, j, k ≤ 13 s.t.
i ̸= j ̸= k. Since each hand is equally likely, we know

P(Fi ∩ Fj ∩ Fk) =
|Fi ∩ Fj ∩ Fk|

|S|
=

40(
52
13

)
This is true for all 1 ≤ i, j, k ≤ 13 s.t. i ̸= j ̸= k due to the symmetry of a standard deck of cards.
There are

(
13
3

)
ways to select which 3 of the denominations are guaranteed to have all 4 of their cards

contained in our hand. Thus, we know∑
1≤i1≤i2≤i3≤13

P(Fi1 ∩ Fi2 ∩ Fi3) =
(
13

3

)
40(
52
13

)
Plugging these probabilities into (1), we find that the total probability that a randomly selected 13 card
hand contains all 4 cards of at least 1 out of the 13 denominations is

P(F ) = P(
13⋃
i=1

Fi) = 13

(
48
9

)(
52
13

) − (13
2

)(44
5

)(
52
13

) + (13
3

)
40(
52
13

) =
13
(
48
9

)
−
(
13
2

)(
44
5

)
+
(
13
3

)
· 40(

52
13

) ≈ 3.42%
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10. You are playing a game with your younger brother which involves repeatedly rolling a 4-sided die. At
the start of the game, he chose 3 and you chose 1. Every turn, the die is rolled; if it is a 3 or a 1, you
or your brother gets to move, and otherwise a dragon can attack.

Your brother is doing amazingly well—he’s gotten many moves, and there have been few dragon attacks.
Perhaps he’s doing too well—you begin to suspect he is cheating with a special die! At the end of the
game, the frequency of each number rolled is as follows:

Roll Frequency

1 58
2 64
3 88
4 40

Is this strong evidence that your brother is cheating? Justify your answer.

Solution.
In the case where my brother isn’t cheating, each of the 4 values on the die should be equally likely on
each roll. Therefore, after n rolls, we would expect n

4 ones, n4 twos, n4 threes, and n
4 fours.

In our sample game, there are 58 + 64 + 88 + 40 = 250 total rolls of the die. Thus we would expect the
frequency of each possible value to be ≈ 250

4 = 62.5. To determine if we have strong evidence that our
brother is cheating, we should examine the value whose frequency differs the most from this expectation.
Of any of the individual frequencies, this frequency should provide the strongest evidence for cheating.
The differences between the expected number of rolls and the sample frequencies are:

(i) Roll value = 1: |58− 62.5| = 4.5

(ii) Roll value = 2: |64− 62.5| = 1.5

(iii) Roll value = 3: |88− 62.5| = 25.5

(iv) Roll value = 5: |40− 62.5| = 22.5

Thus, frequency that differs most from the expected frequency is the frequency of the value 3, which
occurs 25.5 times more than expected. To determine if this provides strong evidence that our brother
is cheating, we want to find the probability that a truly random sequence of 250 fair 4-sided dice rolls
results in at least 88 3’s. On any given roll, the probability of rolling a 3 is 1

4 and the probability of

not rolling a 3 is 3
4 . If exactly k 3’s are rolled, then there are

(
250
k

)
choices for which specific dice rolls

have value 3. Thus, the probability that a truly random sequence of 250 fair 4-sided dice rolls results in
exactly k 3’s is (

250

k

)(1
4

)k(3
4

)250−k
Therefore, the probability that a truly random sequence of 250 fair 4-sided dice rolls results in at least
k 3’s is

250∑
i=k

(
250

i

)(1
4

)i(3
4

)250−i
so the probability that a truly random sequence of 250 fair 4-sided dice rolls results in at least 88 3’s is

250∑
i=88

(
250

i

)(1
4

)i(3
4

)250−i
≈ 0.02%

In lecture, we discussed the convention that a result with k successes over n trials is suspiciously high if
the probability of at least k successes over n trials is ≤ 5%. Comparing this cutoff with the probability
that a truly random sequence of 250 fair 4-sided dice rolls results in at least 88 3’s, we clearly see that

0.02% < 5%
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indicates that number of 3’s rolled in our game is indeed suspiciously high. In fact, since the probability
of rolling at least 88 3’s is ≈ 0.02%, there is only a ≈ 0.02% chance of obtaining a number of 3’s as high
as what my brother got in our sample game. Since getting more 3’s directly helps my brother in the
game, and there is such a small chance of rolling as many 3’s as my brother rolled by pure chance, we
do have strong evidence that my brother is cheating.

Assignment 6

Math 407 (Swanson) – Spring 2023
Homework 1

Due Friday 1/13, 11:59pm

Name: Emerson Kahle Section: 39981

• You must upload your solutions to Gradescope as one single, high-quality PDF. You can convert
paper-based work to a high-quality PDF using a scanning app for mobile devices, such as Adobe Scan
(free, available for iOS and Android, can do multiple pages) or many others. If necessary, you can
combine or merge multiple PDF’s into a single PDF using a variety of services, such as Adobe Acrobat’s
cloud-based merge tool.

• After you upload, you must match each question with its corresponding page using Gradescope’s
interface. This allows graders to spend more time giving you feedback instead of hunting through
submissions.

• Answers without supporting work will receive no credit. Show your work.

• You are encouraged to work together on homework, but you must write up your solutions sepa-
rately in your own words. Copying from your fellow students or other sources is a serious academic
integrity violation. In particular, you may not use “tutoring” services which simply provide answers.

• You are encouraged to typeset your solutions in LATEX. Source code has been provided on Blackboard.
Overleaf is a popular cloud-based editor.

• Problem numbers refer to the course textbook, though the problems may have been modified signifi-
cantly.
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1. (Ross P3.1 and P3.2)

(a) Two fair dice are rolled. What is the conditional probability that at least one lands on 6 given that
the dice land on different numbers?

(b) If two fair dice are rolled, what is the conditional probability that the first one lands on 6 given
that the sum of the dice is i? Compute for all values of i between 2 and 12.

(c) Now compute the conditional probability that the sum of the dice is i given that the first one lands
on 6, for each i from 2 to 12. What is the sum of the resulting answers? Relate this to the Law of
Total Probability.

Solution.
(a) Let E = the event that at least one of the two dice lands on 6.
Let F = the event that the two dice land on different numbers.
Then the conditional probability that at least one lands on 6 given that the dice land on different numbers
is

P(E|F ) = P(EF )
P(F )

(1)

The sample space for a pair of dice rolls is

S = {1, 2, 3, 4, 5, 6}2 = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6),
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

where each outcome is equally likely since the dice are fair.
We can clearly see that the set of outcomes where the two dice land on different numbers is

F = S − ∪6
i=1(i, i) = {(1, 2), (1, 3), (1, 4), (1, 5), (1, 6),

(2, 1), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 1), (3, 2), (3, 4), (3, 5), (3, 6),

(4, 1), (4, 2), (4, 3), (4, 5), (4, 6),

(5, 1), (5, 2), (5, 3), (5, 4), (5, 6),

(6, 1), (6, 2), (6, 3), (6, 4), (6, 5)}

so |F | = 30. Since all outcomes are equally likely, we know the probability that the dice land on different
numbers is

P(F ) =
|F |
|S|

=
30

36
=

5

6
≈ 83.33% (2)

Also, we can see that the set of outcomes where at least one die lands on 6 and the two dice land on
different numbers is

EF =
⋃

1≤i̸=j≤6

(i, j) = {(1, 6), (2, 6), (3, 6), (4, 6), (5, 6),

(6, 5), (6, 4), (6, 3), (6, 2), (6, 1)}

so |EF | = 10. Since all outcomes are equally likely, we know the probability that the at least one die
lands on 6 and the dice land on different numbers is

P(EF ) =
|EF |
|S|

=
10

36
=

5

18
≈ 27.78% (3)
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Plugging (2) and (3) into (1), we find the conditional probability that at least one lands on 6 given that
the dice land on different numbers is

P(E|F ) = P(EF )
P(F )

=
10
36
30
36

=
10

36

36

30
=

10

30
=

1

3
≈ 33.33%

(b) Let Ei = the event that the sum of the dice is i for all 2 ≤ i ≤ 12.
Let F = the event that the first die lands on 6.
Then the conditional probability that the first one lands on 6 given that the sum of the dice is i is

P(F |Ei) =
P(FEi)
P(Ei)

(4)

Let’s calculate this for each 2 ≤ i ≤ 12.
The sample space is the same as in part (a), and all outcomes are still equally likely.
There are only 6 ways that the first die can land on 6, so

F =
6⋃
i=1

(6, i) = {(6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}

There is only one way to have a sum of 2, so

E2 = {(1, 1)}, |E2| = 1

Therefore, P(E2) =
|E2|
|S| = 1

36 ≈ 2.78%.

Clearly, for all e ∈ E2, e ̸∈ F , so FE2 = ∅, so P(FE2) = 0.
Plugging this into (4), we see that

P(F |E2) =
0
1
36

= 0 = 0%

There are two ways to have a sum of 3, so

E3 = {(2, 1), (1, 2)} |E3| = 2

Therefore, P(E3) =
|E3|
|S| = 2

36 = 1
18 ≈ 5.56%. Clearly, for all e ∈ E3, e ̸∈ F , so FE3 = ∅, so P(FE3) = 0.

Plugging this into (4), we see that

P(F |E3) =
0
1
18

= 0 = 0%

There are three ways to have a sum of 4, so

E4 = {(3, 1), (2, 2), (1, 3)} |E4| = 3

Therefore, P(E4) =
|E4|
|S| = 3

36 = 1
12 ≈ 8.33%. Clearly, for all e ∈ E4, e ̸∈ F , so FE4 = ∅, so P(FE4) = 0.

Plugging this into (4), we see that

P(F |E4) =
0
1
12

= 0 = 0%

There are four ways to have a sum of 5, so

E5 = {(4, 1), (3, 2), (2, 3)(1, 4)} |E5| = 4

Therefore, P(E5) =
|E5|
|S| = 4

36 = 1
9 ≈ 11.11%. Clearly, for all e ∈ E5, e ̸∈ F , so FE5 = ∅, so P(FE5) = 0.

Plugging this into (4), we see that

P(F |E5) =
0
1
9

= 0 = 0%
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There are five ways to have a sum of 6, so

E6 = {(5, 1), (4, 2), (3, 3), (2, 4), (1, 5)} |E6| = 5

Therefore, P(E6) =
|E6|
|S| = 5

36 ≈ 13.89%. Clearly, for all e ∈ E6, e ̸∈ F , so FE6 = ∅, so P(FE6) = 0.

Plugging this into (4), we see that

P(F |E6) =
0
5
36

= 0 = 0%

There are six ways to have a sum of 7, so

E7 = {(6, 1), (5, 2), (4, 3), (3, 4), (2, 5), (1, 6)} |E7| = 6

Therefore, P(E7) =
|E7|
|S| = 6

36 = 1
6 ≈ 16.67%. Clearly, (6, 1) is the only outcome in both E7 and F , so

FE7 = {(6, 1)}, so

P(FE7) =
|FE7|
|S|

=
1

36
≈ 2.78%

Plugging P(E7) and P(FE7) in (4), we see that

P(F |E7) =
1
36
6
36

=
1

36

36

6
=

1

6
≈ 16.67%

There are five ways to have a sum of 8, so

E8 = {(6, 2), (5, 3), (4, 4), (3, 5), (2, 6)} |E8| = 5

Therefore, P(E8) = |E8|
|S| = 5

36 ≈ 13.89%. Clearly, (6, 2) is the only outcome in both E8 and F , so

FE8 = {(6, 2)}, so

P(FE8) =
|FE8|
|S|

=
1

36
≈ 2.78%

Plugging P(E8) and P(FE8) in (4), we see that

P(F |E8) =
1
36
5
36

=
1

36

36

5
=

1

5
= 20%

There are four ways to have a sum of 9, so

E9 = {(6, 3), (5, 4), (4, 5), (3, 6)} |E9| = 4

Therefore, P(E9) =
|E9|
|S| = 4

36 = 1
9 ≈ 11.11%. Clearly, (6, 3) is the only outcome in both E9 and F , so

FE9 = {(6, 3)}, so

P(FE9) =
|FE9|
|S|

=
1

36
≈ 2.78%

Plugging P(E9) and P(FE9) in (4), we see that

P(F |E9) =
1
36
4
36

=
1

36

36

4
=

1

4
= 25%

There are three ways to have a sum of 10, so

E10 = {(6, 4), (5, 5), (4, 6)} |E10| = 3
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Therefore, P(E10) =
|E10|
|S| = 3

36 = 1
12 ≈ 8.33%. Clearly, (6, 4) is the only outcome in both E10 and F , so

FE10 = {(6, 4)}, so

P(FE10) =
|FE10|
|S|

=
1

36
≈ 2.78%

Plugging P(E10) and P(FE10) in (4), we see that

P(F |E10) =
1
36
3
36

=
1

36

36

3
=

1

3
≈ 33.33%

There are two ways to have a sum of 11, so

E11 = {(6, 5), (5, 6)} |E11| = 2

Therefore, P(E11) =
|E11|
|S| = 2

36 = 1
18 ≈ 5.56%. Clearly, (6, 5) is the only outcome in both E11 and F , so

FE11 = {(6, 5)}, so

P(FE11) =
|FE11|
|S|

=
1

36
≈ 2.78%

Plugging P(E11) and P(FE11) in (4), we see that

P(F |E11) =
1
36
2
36

=
1

36

36

3
=

1

2
= 50%

There is one way to have a sum of 12, so

E12 = {(6, 6)} |E12| = 1

Therefore, P(E12) = |E12|
|S| = 1

36 ≈ 2.78%. Clearly, (6, 6) is the only outcome in both E12 and F , so

FE12 = {(6, 6)}, so

P(FE12) =
|FE12|
|S|

=
1

36
≈ 2.78%

Plugging P(E12) and P(FE12) in (4), we see that

P(F |E12) =
1
36
1
36

=
1

36

36

1
= 1 = 100%

(c) Using the same event and sample space definitions as in the part (b), we see that the conditional
probability that the sum of the dice is i given that the first one lands on 6 is

P(Ei|F ) =
P(EiF )
P(F )

=
P(FEi)
P(F )

(5)

for all 2 ≤ i ≤ 12. We already calculated the numerator for all 2 ≤ i ≤ 12 in part (b). We also saw that
|F | = 6 in part (b), and since all outcomes are equally likely, we know

P(F ) =
|F |
|S|

=
6

36
=

1

6
≈ 16.67%

Now, we can directly calculate P(Ei|F ) for all 2 ≤ i ≤ 12 using (5).

(i)

P(E2|F ) =
P(FE2)

P(F )
=

0
1
6

= 0 = 0%
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(ii)

P(E3|F ) =
P(FE3)

P(F )
=

0
1
6

= 0 = 0%

(iii)

P(E4|F ) =
P(FE4)

P(F )
=

0
1
6

= 0 = 0%

(iv)

P(E5|F ) =
P(FE5)

P(F )
=

0
1
6

= 0 = 0%

(v)

P(E6|F ) =
P(FE6)

P(F )
=

0
1
6

= 0 = 0%

(vi)

P(E7|F ) =
P(FE7)

P(F )
=

1
36
1
6

=
1

6
≈ 16.67%

(vii)

P(E8|F ) =
P(FE8)

P(F )
=

1
36
1
6

=
1

6
≈ 16.67%

(viii)

P(E9|F ) =
P(FE9)

P(F )
=

1
36
1
6

=
1

6
≈ 16.67%

(ix)

P(E10|F ) =
P(FE10)

P(F )
=

1
36
1
6

=
1

6
≈ 16.67%

(x)

P(E11|F ) =
P(FE11)

P(F )
=

1
36
1
6

=
1

6
≈ 16.67%

(xi)

P(E12|F ) =
P(FE12)

P(F )
=

1
36
1
6

=
1

6
≈ 16.67%

Adding these probabilities up, we find that

12∑
i=2

P(Ei|F ) = 0 + 0 + 0 + 0 + 0 +
1

6
+

1

6
+

1

6
+

1

6
+

1

6
+

1

6
= 6

1

6
= 1 = 100% = P(S) (6)

This is directly related to the Law of Total Probability, which states that, for any event A, and any
mutually disjoint events B1, B2, ..., Bk s.t. S = B1 ∪B2 ∪ ... ∪Bk,

P(A) =
k∑
i=1

P(A|Bi)P(Bi)

This is essentially adding up the probabilities that an outcome o is in event A when o ∈ Bi for any
1 ≤ i ≤ k. Since S = B1 ∪ B2 ∪ ... ∪ Bk, and the Bi’s are mutually disjoint, this is just the probability
that o is in A given o is in S, which is just the probability of A, as the law states.
In our case, we have the mutually disjoint events E2, ..., E12, and we also have S = E2 ∪ ... ∪ E12.
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However, we are summing P(Ei|F ) instead of P(A|Bi), and we do not multiply by P(F ) like the Law of
Total Probability does. If we did, we would get

P(F )
12∑
i=2

P(Ei|F ) =
1

6
= P(F )

which would be the probability that we get an outcome in F (E2 ∪ ... ∪ E12) = FS = F . If not, we are
essentially restricting our point of view to the event F , then adding up the probabilities that any o ∈ F
is in some Ei for all 2 ≤ i ≤ 12. This is just the probability that any o ∈ F is in S, which is 100% as
we found in (6). Essentially, this is just reversing the direction of the condition from the Law of Total
Probability. Instead of considering the probability that an outcome is in A considering it is in S, which
is P(A), we are considering the probability that an outcome is in S considering it is in F , which is 100%.
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2. At the end of the classic American game show Let’s Make A Deal, the host, Monty Hall, would offer a
contestant a chance to win a large prize such as a new car. The prize was behind one of three doors,
#1, #2, or #3, but goats were hiding behind the other two doors!

Monty had the contestant initially choose one of the three doors. Then he would dramatically reveal
a goat behind one of the two remaining doors. Finally he gave the contestant a choice: did they want
to switch their guess to the final remaining door, or did they want to keep their original guess? The
audience helpfully screamed “switch” or “stay” at the contestant while they deliberated. The contestant
received whatever was behind the final door they chose, be it a goat or a car.

Answering Monty’s question, “‘switch’ or ‘stay’?” has become known as the “Monty Hall Problem.” So,
should the contestant switch or stay put? Justify your answer probabilistically.

Solution. The contestant should switch.
We assume there is an equal probability of the prize being behind each door. Since there are three doors,
this means there is a 1

3 probability of the prize being behind each door. Let’s call the door initially se-
lected by the contestant di. Let Di = the event that the prize is behind door di. By the previous line of
reasoning, we know

P(Di) =
1

3
=⇒ P(Dc

i ) = 1− 1

3
=

2

3

Since the prize must be behind one of the three doors, if it is not behind di, then it must be behind one
of the other two doors. Therefore, Dc

i = the event that the prize is behind a door other than di.
Note: Since Monty reveals a goat behind one of the two doors that aren’t di, if the goat is behind one
of these two doors, it will always be behind the last remaining door. Therefore, if the prize is behind
one of the two doors that aren’t di, then switching to the final remaining door will always cause the
contestant to win.
Therefore, if the contestant decides to stay, he will win if and only if the prize is behind di, so the
probability that he wins is

P(Di) =
1

3

However, if the contestant decides to switch, then he will win if and only if the prize is behind one of
the two doors other than di, so the probability he wins is

P(Dc
i ) =

2

3

We can clearly see that

P(contestant wins|stay) = P(Di) =
1

3
<

2

3
= P(Dc

i ) = P(contestant wins|switch)

So the contestant has a greater probability of winning the prize if he decides to switch, so he should
decide to switch.
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3. (Ross P3.14) Suppose that an ordinary deck of 52 cards (which contains 4 aces) is randomly divided into
4 hands of 13 cards each. We are interested in determining p, the probability that each hand has an ace.
Let Ei be the event that the ith hand has exactly one ace. Determine p = P (E1E2E3E4) by using the
multiplication rule.

Solution.
Applying the multiplication rule, we find that

p = P(E1E2E3E4) = P(E1)P(E2|E1)P(E3|E1E2)P(E4|E1E2E3) (1)

Let’s calculate the 4 probabilities in the right-hand side individually.

(i) P(E1): For the first, hand the sample space is all possible 13 card hands from a 52 card deck.
Therefore, we know that the size of our sample space, S1, is

|S1| =
(
52

13

)
where all outcomes are equally likely.
We must choose one of the 4 aces to be in the first hand. There are

(
4
1

)
ways to do this. The

remaining 12 cards in the hand must not include any more aces. Thus, we can only choose the 12
remaining cards from the 48 cards in the deck that aren’t aces (2 through King of all suits). There
are

(
48
12

)
ways to choose these 12 cards. Thus, the total number of ways that the first hand can get

exactly one ace is (
4

1

)(
48

12

)
= 4

(
48

12

)
Since all outcomes are equally likely, we can calculate that the probability the first hand gets exactly
one ace is

P(E1) =

(
4
1

)(
48
12

)
|S1|

=
4
(
48
12

)(
52
13

) ≈ 43.88%

(ii) P(E2|E1): There are only 52− 13 = 39 cards remaining in the deck from which the 13 cards in the
second hand may be selected, and exactly 3 of them are aces. Therefore, we know that the size of
our sample space, S2, is

|S2| =
(
39

13

)
where all outcomes are equally likely.
We must choose one of the 3 remaining aces to be in this second hand. There are

(
3
1

)
ways to do

this. The remaining 12 cards in the hand can only include the remaining 39− 3 = 36 cards in the
deck that aren’t aces. There are

(
36
12

)
ways to choose these 12 cards. Thus, the total number of

ways that the second hand can get exactly one ace, given that the first hand got exactly one ace is(
3

1

)(
36

12

)
= 3

(
36

12

)
Since all outcomes are equally likely, we can calculate that the probability that the second hand
gets exactly one ace given that the first hand got exactly one ace, is

P(E2|E1) =

(
3
1

)(
36
12

)
|S2|

=
3
(
36
12

)(
39
13

) ≈ 46.23%

(iii) P(E3|E1E2): There are only 39− 13 = 26 cards remaining in the deck from which the 13 cards in
the third hand may be selected, and exactly 2 of them are aces. Therefore, we know that the size
of our sample space, S3, is

|S3| =
(
26

13

)
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where all outcomes are equally likely.
We must choose one of the 2 remaining aces to be in this third hand. There are

(
2
1

)
ways to do

this. The remaining 12 cards in the hand can only include the remaining 26− 2 = 24 cards in the
deck that aren’t aces. There are

(
24
12

)
ways to choose these 12 cards. Thus, the total number of

ways that the third hand can get exactly one ace, given that the first two hands got exactly one
ace each, is (

2

1

)(
24

12

)
= 2

(
24

12

)
Since all outcomes are equally likely, we can calculate that the probability that the third hand gets
exactly one ace, given that the first two hands both got exactly one ace, is

P(E3|E1E2) =

(
2
1

)(
24
12

)
|S3|

=
2
(
24
12

)(
26
13

) = 2
24(23)...(14)(13)

12!

13!

26(25)...(15)(14)

=
24(23)...(14)(13)

(25)(24)...(15)(14)
=

13

25
= 52%

(iv) P(E4|E1E2E3): There are only 13 cards remaining in the deck from which the 13 cards in the fourth
hand may be selected, exactly one of which is an ace. Thus, the fourth hand will just consist of all
13 of the remaining cards, so the fourth hand is guaranteed to have one ace. Thus, we know that
the probability that the fourth hand has exactly one ace, given that the first three hands all have
exactly one ace each, is

P(E4|E1E2E3) = 1 = 100%

Now, we can plug the probabilities calculated in (i), (ii), (iii), and (iv) into (1), we find that the
probability that all 4 hands have exactly one ace is

p = P(E1E2E3E4) = P(E1)P(E2|E1)P(E3|E1E2)P(E4|E1E2E3)

=
4
(
48
12

)(
52
13

) ·
3
(
36
12

)(
39
13

) · 13
25

· 1 ≈ (0.4388) · (0.4623) · (0.52) · (1) ≈ 10.55%
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4. While it is not possible to randomly sample from the whole infinite set of integers, it is possible to
fix n and randomly sample from the finite set [n] = {1, 2, . . . , n}. For instance, the probability that a
randomly chosen integer from [5] is even is 2/5.

Given a subset A of the integers, the natural density of A is defined to be

lim
n→∞

#(A ∩ [n])

n
,

if the limit exists.

(a) Interpret #(A∩[n])
n probabilistically.

(b) Compute the natural density of the set 2Z>0 = {2, 4, . . .} of positive even integers.

(c) Compute the natural density of the set {1, 3, 5, . . .} of positive odd integers.

(d) Compute the natural density of the set {1, 4, 9, 16, 25, . . .} of perfect squares.

(e) Compute the the natural density of the set

{1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, . . .}

of numbers whose binary expansion ends with evenly many zeros.

Solution.

(a) We need to break down
#(A ∩ [n])

n

Note: A ∩ [n] = { all n ∈ [n] s.t. n ∈ A}, so #(A ∩ [n]) = the number of elements from [n] that
are also in A.
Since there are exactly n elements in [n], this implies

#(A ∩ [n])

n

is the probability that a randomly selected b ∈ [n] is in A. This is because randomly selecting b
from [n] ensures that all b ∈ [n] have an equal probability of being selected.

(b) We want to compute

lim
n→∞

#(2Z>0 ∩ [n])

n

So we need to find some way to express #(2Z>0 ∩ [n]) in terms of only n.
Claim: #(2Z>0 ∩ [n]) = ⌊n2 ⌋ for all n ∈ N.
Proof. We apply mathematical induction on n.
Base Case: n = 1. There are 0 positive even integers in [n] = [1], so

#(2Z>0 ∩ [n]) = 0 = ⌊1
2
⌋ = ⌊n

2
⌋

so the claim holds for the base case.
Inductive Hypothesis: Assume that #(2Z>0 ∩ [n]) = ⌊n2 ⌋ for all 1 ≤ n ≤ k.
Inductive Step: Consider n = k + 1.
Case 1: n is odd. By the inductive hypothesis, we know there were ⌊k2 ⌋ positive even integers in

[k]. Since n is odd, k is even, so ⌊k2 ⌋ =
k
2 . Also since n is odd, we know

#(2Z>0 ∩ [n]) = #(2Z>0 ∩ [k]) =
k

2
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Thus it suffices to show k
2 = ⌊n2 ⌋. Since k is even, we know ∃ s ∈ N s.t. k = 2s, which implies

n = 2s+ 1, so we know

⌊n
2
⌋ = ⌊2s+ 1

2
⌋ = s =

k

2

which completes the proof of Case 1.
Case 2: n is even. By the inductive hypothesis, we know there were ⌊k2 ⌋ positive even integers in
[k]. Since n is even, we know that

#(2Z>0 ∩ [n]) = #(2Z>0 ∩ [k]) + 1 = ⌊k
2
⌋+ 1

Since n is even, k is odd, so ⌊k2 ⌋ =
k−1
2 = k+1

2 − 1 = n
2 − 1. Therefore, we know that

#(2Z>0 ∩ [n]) = #(2Z>0 ∩ [k]) + 1 = ⌊k
2
⌋+ 1 =

n

2
− 1 + 1 =

n

2

Since n is even, we know n
2 = ⌊n2 ⌋, which completes the proof that

#(2Z>0 ∩ [n]) = ⌊n
2
⌋

for Case 2.
The conclusion that

#(2Z>0 ∩ [n]) = ⌊n
2
⌋

for all n ∈ N follows by induction.
By the definition of the floor function, we know

n− 1

2
≤ #(2Z>0 ∩ [n]) = ⌊n

2
⌋ ≤ n

2

This allows us to conclude that

lim
n→∞

n− 1

2n
≤ lim
n→∞

#(2Z>0 ∩ [n])

n
≤ lim
n→∞

n

2n

Applying L’Hopital’s rule to both the upper and lower bound limits, we find

lim
n→∞

n− 1

2n
= lim
n→∞

1

2
=

1

2
= lim
n→∞

n

2n

Therefore,
1

2
≤ lim
n→∞

#(2Z>0 ∩ [n])

n
≤ 1

2
=⇒ lim

n→∞

#(2Z>0 ∩ [n])

n
=

1

2

Thus, we have computed that the natural density of the set 2Z>0 is 1
2 .

(c) Let A = the set of positive odd integers. We want to compute

lim
n→∞

#(A ∩ [n])

n

We will do so very similarly to part (b). We need to find some way to express #(A ∩ [n]) in terms
of only n.
Claim: #(A ∩ [n]) = ⌈n2 ⌉ for all n ∈ N.
Proof. We apply mathematical induction on n.
Base Case: n = 1. There is one odd positive integer in [n] = [1], so #(A ∩ [n]) = 1 = ⌈ 1

2⌉ = ⌈n2 ⌉,
so the claim holds for the base case.
Inductive Hypothesis: Assume #(A ∩ [n]) = ⌈n2 ⌉ for all 1 ≤ n ≤ k.
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Inductive Step: Consider n = k + 1.
Case 1: n is odd. By the inductive hypothesis, we know that

#(A ∩ [k]) = ⌈k
2
⌉

Since n is odd, we know that

#(A ∩ [n]) = #(A ∩ [k]) + 1 = ⌈k
2
⌉+ 1

Also since n is odd, k is even, so ⌈k2 ⌉ =
k
2 . Therefore, we know that

#(A ∩ [n]) =
k

2
+ 1

Since n is odd, ⌈n2 ⌉ =
n+1
2 = k+2

2 = k
2 + 1. Therefore, we have shown that

#(A ∩ [n]) = ⌈n
2
⌉

which completes Case 1.
Case 2: n is even. By the inductive hypothesis, we know that

#(A ∩ [k]) = ⌈k
2
⌉

Since n is even, we know that

#(A ∩ [n]) = #(A ∩ [k]) = ⌈k
2
⌉

Also since n is even, k is odd, so we know ⌈k2 ⌉ =
k+1
2 = n

2 . Therefore, we know that

#(A ∩ [n]) =
n

2

Since n is even, ⌈n2 ⌉ =
n
2 . Therefore, we have shown that

#(A ∩ [n]) = ⌈n
2
⌉

which completes Case 2.
The conclusion that

#(A ∩ [n]) = ⌈n
2
⌉

for all n ∈ N follows by induction.
By the definition of the ceiling function, we know that

n

2
≤ #(A ∩ [n]) = ⌈n

2
⌉ ≤ n+ 1

2

This allows us to conclude that

lim
n→∞

n

2n
≤ lim
n→∞

#(A ∩ [n])

n
≤ lim
n→∞

n+ 1

2n

Applying L’Hopital’s rule to both the upper and lower bound limits, we find

lim
n→∞

n

2n
= lim
n→∞

1

2
=

1

2
= lim
n→∞

n+ 1

2n

Therefore,
1

2
≤ lim
n→∞

#(A ∩ [n])

n
≤ 1

2
=⇒ lim

n→∞

#(A ∩ [n])

n
=

1

2

Thus, we have computed that the natural density of A = the set of all positive odd integers is 1
2 .
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(d) Let B = the set of all perfect squares. Then we want to compute

lim
n→∞

#(B ∩ [n])

n

so we need to express #(B ∩ [n]) in terms of n.
Claim: #(B ∩ [n]) = ⌊

√
n⌋ for all n ∈ N.

Proof. We apply mathematical induction on n.
Base Case: n = 1. There is one perfect square in the set [n] = [1], so #(B ∩ [n]) = 1 = ⌊1⌋ =
⌊
√
1⌋ = ⌊

√
n⌋, so the claim holds for the base case.

Inductive Hypothesis: Assume #(B ∩ [n]) = ⌊
√
n⌋ for all 1 ≤ n ≤ k.

Inductive Step: Consider n = k + 1. By the inductive hypothesis, we know

#(B ∩ [k]) = ⌊
√
k⌋

Case 1: n is a perfect square. This implies that

#(B ∩ [n]) = #(B ∩ [k]) + 1 = ⌊
√
k⌋+ 1

Since n = i2 for some i ∈ N, we know

(i− 1)2 ≤ k < i2 = n =⇒ i− 1 ≤
√
k < i =⇒ ⌊

√
k⌋ = i− 1

Therefore, we know that

#(B ∩ [n]) = #(B ∩ [k]) + 1 = ⌊
√
k⌋+ 1 = i− 1 + 1 = i

Since n = i2,
√
n = i, which completes the proof that

#(B ∩ [n]) =
√
n

for Case 1.
Case 2: n is not a perfect square. This implies that

⌊
√
n− 1⌋ = ⌊

√
n⌋

Since n = k + 1, n− 1 = k, so
⌊
√
n⌋ = ⌊

√
k⌋

Combining this with the inductive hypothesis, we find that

#(B ∩ [n]) = ⌊
√
k⌋ = ⌊

√
n⌋

which completes the proof for Case 2.
The conclusion that #(B ∩ [n]) = ⌊

√
n⌋ for all n ∈ N follows by induction.

By the definition of the floor function, we know
√
n− 1 ≤ #(B ∩ [n]) = ⌊

√
n⌋ ≤

√
n

This allows us to conclude that

lim
n→∞

√
n− 1

n
≤ lim
n→∞

#(B ∩ [n])

n
≤ lim
n→∞

√
n

n

Simplifying known limits, we find that

lim
n→∞

√
n− 1

n
= lim
n→∞

1√
n
− lim
n→∞

1

n
= lim
n→∞

1√
n
= 0 = lim

n→∞

√
n

n

This implies that

lim
n→∞

#(B ∩ [n])

n
= lim
n→∞

1√
n
= 0

Thus, we have computed that the natural density of B = the set of all perfect squares is 0.
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(e) Let C = the set of all positive integers whose binary expansion ends with evenly many 0s.
We want to compute

lim
n→∞

#(C ∩ [n])

n

Let Ci = the set of all positive integers whose binary expansion ends with exactly 2i 0s for all
positive integers i.
Then

C =

∞⋃
i=0

Ci =⇒ #(C ∩ [n]) = #((

∞⋃
i=0

Ci) ∩ [n])

Since the Ci’s are all mutually disjoint, we know

#(C ∩ [n]) = #((

∞⋃
i=0

Ci) ∩ [n] =

∞∑
i=0

#(Ci ∩ [n])

This implies that

lim
n→∞

#(C ∩ [n])

n
= lim
n→∞

∞∑
i=0

#(Ci ∩ [n])

n
=

∞∑
i=0

lim
n→∞

#(Ci ∩ [n])

n
(1)

For each c ∈ Ci, the binary expansion of c ends with exactly 2i 0s, so the (2i+1)’th least significant
digit must be 1 in the binary expansion. This digit corresponds to 22i, and we know that all digits
corresponding to 2k for all k < 2i are 0s. Thus, for all c ∈ Ci,

c ≡ 22i (mod 22i+1)

The set of possible remainders when dividing by 22i+1 is {0, 1, 2, ..., 22i+1−1}. There are 22i+1 total
possible remainders, only one of which is 22i. Therefore, we know that a c ∈ Ci appears exactly
once for every 22i+1 positive integers. This implies that

#(Ci ∩ [n]) = ⌈ n

22i+1
⌉

By the definition of the ceiling function, we know

n

22i+1
≤ #(Ci ∩ [n]) = ⌈ n

22i+1
⌉ ≤ n

22i+1
+ 1

This allows us to conclude that

lim
n→∞

n

n22i+1
=

1

22i+1
≤ lim
n→∞

#(Ci ∩ [n])

n
≤ 1

22i+1
= lim
n→∞

n

n(22i+1)
+

1

n

So we know that

lim
n→∞

#(Ci ∩ [n])

n
=

1

22i+1

Plugging this into (1), we find that

lim
n→∞

#(C ∩ [n])

n
=

∞∑
i=0

lim
n→∞

#(Ci ∩ [n])

n
=

∞∑
i=0

1

22i+1
=

1

2

∞∑
i=0

1

4i
=

1

2

1

1− 1
4

=
1

2

1
3
4

=
1

2

4

3
=

2

3

Thus, we have computed that the density of C = the set of all positive integers whose binary
expansion ends with an even number of 0s is 2

3 .
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5. (Ross P3.18) In a certain community, 36 percent of the families own a dog and 22 percent of the families
that own a dog also own a cat. In addition, 30 percent of the families own a cat. What is

(a) the probability that a randomly selected family owns both a dog and a cat?

(b) the conditional probability that a randomly selected family owns a dog given that it owns a cat?

Solution.
First, we will define notation to represent the given information.
Let D = the event that a randomly selected family owns a dog.
Let C = the event that a randomly selected family owns a cat.

Then we are given the following information:


P(D) = 0.36

P(C|D) = 0.22

P(C) = 0.30

(a) We want to find P(CD). By the definition of conditional probability, we know

P(C|D) =
P(CD)

P(D)
(1)

Plugging known values into (1), we find

0.22 =
P(CD)

0.36
=⇒ P(CD) = 0.22 · 0.36 = 0.0792 = 7.92%

Therefore, the probability that a randomly selected family owns both a dog and a cat is 7.92%.

(b) We want to find P(D|C). By Bayes’ Theorem, we know that

P(D|C) = P(C|D) · P(D)

P(C)
=

0.22 · 0.36
0.30

=
0.0792

0.30
= 0.264 = 26.40%

Thus, the probability that a randomly selected family owns a dog given that it owns a cat is 26.40%.
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6. (Ross P3.24) Urn I contains 2 white and 4 red balls, whereas urn II contains 1 white and 1 red ball. A
ball is randomly chosen from urn I and put into urn II, and a ball is then randomly selected from urn
II. What is

(a) the probability that the ball selected from urn II is white?

(b) the conditional probability that the transferred ball was white given that a white ball is selected
from urn II?

Solution.

(a) The ball that is randomly selected from urn I and put into urn II can either be white or red.
Let b1 = the ball that is randomly selected from urn I and put into urn II.
Let b2 = the ball that is then randomly selected from urn II.
Let R1 = the event that b1 is red.
Let W1 = the event that b1 is white.
Let W2 = the even that b2 is white.
Since b1 is randomly selected from urn I, there is an equal probability of each ball in urn I being
selected. There are 4 + 2 = 6 total balls in urn I. Two of these are white, and there is an equal
probability of selecting each ball, so

P(W1) =
2

6
=

1

3
≈ 33.33%

The remaining four balls from urn I are red, and there is an equal probability of selecting each ball,
so

P(R1) =
4

6
=

2

3
≈ 66.67%

Since b1 must be either red or white, the Law of Total Probability guarantees that

P(W2) = P(W2|R1)P(R1) + P(W2|W1)P(W1) (1)

We already calculated P(W1) and P(R1), so we just need to compute P(W2|R1) and P(W2|W1).
For P(W2|R1), we are given that b1 is red, so we know that urn II has 2 red balls and 1 white ball.
Thus, the probability that b2 is white given that b1 is red is

P(W2|R1) =
1

3
≈ 33.33%

For P(W2|W1), we are given that b1 is white, so we know that urn II has 1 red ball and 2 white
balls. Thus, the probability that b2 is white given that b1 is white is

P(W2|W1) =
2

3
≈ 66.67%

Plugging P (W2|R1), P(W2|W1), P(W1), and P(R1) into (1), we find

P(W2) =
1

3

2

3
+

2

3

1

3
= 2

2

9
=

4

9
≈ 44.44%

(b) We will use the same definitions as in part (a). Then we want to find

P(W1|W2)

Bayes’ Theorem guarantees that

P(W1|W2) =
P(W2|W1)P(W1)

P(W2)
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In part (a), we calculated that


P(W2|W1) =

2
3

P(W1) =
1
3

P(W2) =
4
9

Therefore, we can easily compute that the

conditional probability that the transferred ball was white given that a white ball is selected from
urn II is

P(W1|W2) =
2
3
1
3
4
9

=
2

9

9

4
=

2

4
=

1

2
= 50%
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7. The Riemann zeta function is defined to be

ζ(s) =

∞∑
n=1

1

ns
.

This series converges for s > 1 (indeed, for s complex with real part > 1), though we will ignore such
technicalities here.

Leonhard Euler famously solved the Basel problem in 1734 by showing that

ζ(2) = 1 +
1

4
+

1

9
+

1

16
+ · · · = π2

6
,

a remarkable calculation which shows up in many unexpected places.

In this problem, your task is to instead justify Euler’s product formula for the zeta function. Specifically,
show that

ζ(s) =
∏
p

1

1− p−s
,

where the product is over all prime numbers p = 2, 3, 5, . . ..

Hint: Expand the fraction as a geometric series. You do not need to provide rigorous justification for
your manipulations (Euler didn’t!) so long as they are “plausible.” An appropriate course in real or
complex analysis will supply such missing details.

Solution.
We want to show that

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

1

1− p−s

Note: ∏
p

1

1− p−s
=
∏
p

1

1− 1
ps

Since p is prime and s > 1, we know 1
ps < 1, so the geometric series identity guarantees that

∏
p

1

1− 1
ps

=
∏
p

∞∑
i=0

1

(ps)i

Expanding the infinite product, we find

∏
p

1

1− 1
ps

=

∞∑
i=0

1

(2s)i
·

∞∑
i=0

1

(3s)i
·

∞∑
i=0

1

(5s)i
· · · ·

= (1 +
1

2s
+

1

(2s)2
+ · · · ) · (1 + 1

3s
+

1

(3s)2
+ · · · ) · (1 + 1

5s
+

1

(5s)2
+ · · · ) · · · · (1)

Observation 1: For each prime p and for each 0 ≤ i ∈ Z, 1
(ps)i appears exactly once in some term of the

above product. Therefore, in each term t of the infinite sum that results from expanding the product, if
1

(ps)i is a factor of t, then
∑∞
i=0

1
(ps)i must have contributed that factor.

Observation 2: For each prime p and each term t (defined above), the sum
∑∞
i=0

1
(ps)i contributes

exactly one factor to t. Therefore, if a term t has 1
(ps)i as a factor, then the term which

∑∞
i=0

1
(ps)i

contributed must be 1
(ps)i itself, not some combination of 1

(ps)j and 1
(ps)k

, where k + j = i.
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Combining these two observations, we can see that expanding the infinite product will produce ex-
actly one term t = 1

(ps1)
α1 (ps2)

α2 (ps3)
α3 ···· for all primes p and for all 0 ≤ α1, α2, α3, · · · ∈ Z.

Let

t1 =
1

(ps1)
α1(ps2)

α2(ps3)
α3 · · · ·

and

t2 =
1

(ps1)
β1(ps2)

β2(ps3)
β3 · · · ·

Then, by the Fundamental Theorem of Arithmetic, we know that

t1 = t2 ⇐⇒ αi = βi ∀i

For all αi ≥ 1, t = 1
(ps1)

α1 (ps2)
α2 (ps3)

α3 ···· = 1
(p

α1
1 )s(p

α2
2 )s(p

α3
3 )s···· =

(
1

p
α1
1 p

α2
2 p

α3
3 ····

)s
appears exactly once

in the expansion of (1), so we know that all terms t in the expansion of (1) are distinct. Since the
Fundamental Theorem of Arithmetic guarantees that all natural numbers can be written uniquely as the
product of primes, this implies that t = 1

ns appears exactly once in the expansion of (1) for all n ∈ N.
Rearranging terms in the expansion of (1), we see that

∏
p

1

1− p−s
=

∞∑
i=0

1

(2s)i
·

∞∑
i=0

1

(3s)i
·

∞∑
i=0

1

(5s)i
· · · ·

= (1 +
1

2s
+

1

(2s)2
+ · · · ) · (1 + 1

3s
+

1

(3s)2
+ · · · ) · (1 + 1

5s
+

1

(5s)2
+ · · · ) · · · ·

=
1

(203050 · · · · )s
+

1

(213050 · · · · )s
+

1

(203150 · · · · )s
+

1

(223050 · · · · )s
+

1

(20305170 · · · · )s
+ · · ·

=
1

1s
+

1

2s
+

1

3s
+

1

4s
+

1

5s
+ · · ·

=

∞∑
n=1

1

ns
= ζ(s)

This completes the proof that

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

1

1− p−s

Note: pi refers to the ith prime number, where p1 = 2.
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8. A number is squarefree if it is a product of distinct primes. The set of squarefree numbers is

S = {1, 2, 3, 5, 6, 7, 10, 11, 13, . . .}.

In this problem, you will follow an outline for a proof of the classic result that the natural density of the
squarefree numbers is 6/π2 ≈ 0.607927. Sometimes this result is informally stated as “most numbers are
squarefree.”

(a) Write pi for the ith prime number, so p1, p2, p3, . . . = 2, 3, 5, . . .. Let

Ei = {p2i , 2p2i , 3p2i , . . .}

be the set of multiples of p2i . Show that the natural density of Ei is 1/p
2
i .

Hint: Show that #Ei ∩ [n] =
⌊
n
p2i

⌋
where ⌊x⌋ is the floor of x, defined to be the unique integer

satisfying ⌊x⌋ ≤ x < ⌊x⌋+ 1.

(b) Let T = Sc = {4, 8, 9, 12, . . .} be the set of non-squarefree positive integers. Show that

T = E1 ∪ E2 ∪ · · · .

More precisely, show that

T ∩ [n] =

m⋃
i=1

Ei ∩ [n],

where m is the largest index for which p2i ≤ n.

(c) Show that

#T ∩ [n] =
∑

∅ ̸=I⊆[m]

(−1)#I−1 ·
⌊

n∏
i∈I p

2
i

⌋
.

Conclude that

#S ∩ [n] =
∑
I⊆[m]

(−1)#I ·
⌊

n∏
i∈I p

2
i

⌋
.

(d) Show that ∑
I⊆[m]

(−1)#I
1∏
i∈I p

2
i

=

m∏
i=1

(
1− 1

p2i

)
.

(e) Provide some justification for each of the following steps except (23):

lim
n→∞

#S ∩ [n]

n
= lim
n→∞

1

n

∑
I⊆[m]

(−1)#I
⌊

n∏
i∈I p

2
i

⌋
(22)

= lim
n→∞

1

n

∑
I⊆[m]

(−1)#I
n∏
i∈I p

2
i

(23)

=

∞∏
i=1

(
1− 1

p2i

)
(24)

=
1

ζ(2)
(25)

=
6

π2
. (26)

(f) Explain the result of the calculation in (e) in your own words.
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Solution.

(a) We want to show that

lim
n→∞

#(Ei ∩ [n])

n
=

1

p2i

Claim: #(Ei ∩ [n]) = ⌊ n
p2i
⌋ for all i.

Proof. We apply mathematical induction on n.
Base Case: n = 1. For all primes p, p > 1 =⇒ p2 > 1 =⇒ kp2 ̸∈ [n] = [1] for all k ∈ N. Thus,

#(Ei ∩ [n]) = #(Ei ∩ [1]) = 0

Also for all primes p, p2 > 1 =⇒ 0 ≤ 1
p2 < 1. Thus, ⌊ 1

p2 ⌋ = 0, so

#(Ei ∩ [n]) = #(Ei ∩ [1]) = 0 = ⌊ 1

p2
⌋ = ⌊ n

p2
⌋

so the claim holds for the base case.
Inductive Hypothesis: Assume #(Ei ∩ [n]) = ⌊ n

p2i
⌋ for all i and for all 1 ≤ n ≤ j.

Inductive Step: Consider n = j + 1. By the inductive hypothesis, we know

#(Ei ∩ [j]) = ⌊ j
p2i

⌋

for all i.
For any i, one of the following is true:
Case 1: n = kp2i for some k ∈ N. In this case, we know

#(Ei ∩ [n]) = #(Ei ∩ [j]) + 1 = ⌊ j
p2i

⌋+ 1 (1)

Since n = kp2i , we know n
p2i

= k ∈ N, so

⌊ n
p2i

⌋ = n

p2i

Also, by the definition of the floor function, since

n− p2i
p2i

≤ n− 1

p2i
<
n− p2i
p2i

+ 1 = ⌊ n
p2i

⌋

we know that

⌊n− 1

p2i
⌋ = ⌊ j

p2i
⌋ = n− p2i

p2i

Plugging this into (1), we find

#(Ei ∩ [n]) = #(Ei ∩ [j]) + 1 = ⌊ j
p2i

⌋+ 1 =
n− p2i
p2i

+ 1 =
n

p2i
= ⌊ n

p2i
⌋

which completes the proof for Case 1.
Case 2: n ̸= kp2i for all k ∈ N. Then we know

#(Ei ∩ [n]) = #(Ei ∩ [j]) = ⌊ j
p2i

⌋

Suppose j ≡ x (mod p2i ) and n ≡ x + 1 (mod p2i ). Then 0 ≤ x < p2i − 1 and 1 ≤ x + 1 ≤ p2i − 1.
Clearly, j−x

p2i
∈ Z, and

j − x

p2i
≤ j

p2i
=
j − x

p2i
+

x

p2i
<
j − x

p2i
+
p2i
p2i

=
j − x

p2i
+ 1
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By the definition of the floor function, this implies

⌊ j
p2i

⌋ = j − x

p2i

And we also know

j − x

p2i
=
n− (x+ 1)

p2i
≤ n

p2i
=
n− (x+ 1)

p2i
+
x+ 1

p2i
<
n− (x+ 1)

p2i
+
p2i
p2i

=
j − x

p2i
+ 1

So by the definition of the floor function, we know

⌊ n
p2i

⌋ = n− (x+ 1)

p2i
=
j − x

p2i
= ⌊ j

p2i
⌋

This completes the proof that

#(Ei ∩ [n]) = #(Ei ∩ [j]) = ⌊ j
p2i

⌋ = ⌊ n
p2i

⌋

for Case 2.
The conclusion that

#(Ei ∩ [n]) = ⌊ n
p2i

⌋

for all n ∈ N and all i follows by induction.
This implies that

n

p2i
− 1 ≤ #(Ei ∩ [n]) = ⌊ n

p2i
⌋ ≤ n

p2i

so we know that

lim
n→∞

n
p2i

− 1

n
≤ lim
n→∞

#(Ei ∩ [n])

n
≤ lim
n→∞

n

np2i

Simplifying both the upper and lower bound limits, we find that

lim
n→∞

n
p2i

− 1

n
= lim
n→∞

1

p2i
− lim
n→∞

1

n
=

1

p2i
= lim
n→∞

n

np2i

This directly implies that

lim
n→∞

#(Ei ∩ [n])

n
=

1

p2i

for all i, which completes the proof that the natural density of Ei is
1
p2i
.

(b) We want to show that

T ∩ [n] =

m⋃
i=1

Ei ∩ [n] (2)

where m is the largest index for which p2i ≤ n.
It suffices to show that for all t ∈ T ∩ [n], t ∈

⋃m
i=1Ei∩ [n], and for all e ∈

⋃m
i=1Ei∩ [n], e ∈ T ∩ [n].

Note: for all i, Ei ∩ [n] = {e ∈ Ei|e ≤ n}.
Similarly, T ∩ [n] = {t ∈ T |t ≤ n}.

First, we will show that for all t ∈ T ∩ [n], t ∈
⋃m
i=1Ei ∩ [n].

Let t = p2ys where s ∈ N and py is the largest prime whose square divides t.

p2y|t =⇒ p2y ≤ t =⇒ 1 ≤ y ≤ m
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so we know Ey ∩ [n] is a term in the union from (2). Also, since

Ey ∩ [n] = {e ∈ Ey|e ≤ n}

and p2ys = t ≤ n, we know p2ys ∈ Ey ∩ [n] for all t ∈ T ∩ [n].

Now, we will show that for all e ∈
⋃m
i=1Ei∩ [n], e ∈ T ∩ [n]. Consider an arbitrary e ∈

⋃m
i=1Ei∩ [n].

Then ∃ 1 ≤ z ≤ m s.t. e ∈ Ez ∩ [n]. Therefore, we know that 1 ≤ e ≤ n and e = ap2z, so e must be
a non-squarefree positive integer. Thus

e ∈ T

and we know e ≤ n, so we know
e ∈ T ∩ [n]

Thus, we have shown that, for all t ∈ T ∩ [n], t ∈
⋃m
i=1Ei ∩ [n], and for all e ∈

⋃m
i=1Ei ∩ [n],

e ∈ T ∩ [n].
This completes the proof that

T ∩ [n] =

m⋃
i=1

Ei ∩ [n]

where m is the largest index for which p2i ≤ n.

(c) From part (b), we know that

T ∩ [n] =

m⋃
i=1

Ei ∩ [n]

By the Principle of Inclusion Exclusion, we know that

#(T∩[n]) =
∑

1≤i1<...<ik≤m

#
(
(Ei1∩[n])∩· · ·∩(Eik∩[n])

)
=

∑
∅̸=I⊆[m]

(−1)#I−1#(
⋂
i∈I

(Ei∩[n])) (3)

From part (a), we know that

#(Ei ∩ [n]) = ⌊ n
p2i

⌋

for all i. In every p2i consecutive positive integers, exactly one of them will be divisible by p2i , so
over the n consecutive positive integers in [n], there are ⌊ n

p2i
⌋ integers which are multiples of p2i (and

thus elements of Ei).
Similarly, for any e ∈

⋂
i∈I(Ei ∩ [n]), e must be a multiple of p2i for all i ∈ I. Since all primes

p, j have gcd(p, j) = 1, such an e only appears once in every
∏
i∈I p

2
i consecutive positive integers.

Thus, over the n consecutive positive integers in [n], there are maximally n∏
i∈I p

2
i
integers which

belong to
⋂
i∈I(Ei ∩ [n]). If n ̸∈

⋂
i∈I(Ei ∩ [n]), then n∏

i∈I p
2
i
̸∈ N, so we can only have ⌊ n∏

i∈I p
2
i
⌋

elements in
⋂
i∈I(Ei ∩ [n]). Therefore, in either case, the number of elements in

⋂
i∈I(Ei ∩ [n]) is

exactly

⌊ n∏
i∈I p

2
i

⌋

Plugging this into (3), we find that

#(T ∩ [n]) =
∑

∅̸=I⊆[m]

(−1)#I−1#(
⋂
i∈I

(Ei ∩ [n])) =
∑

∅̸=I⊆[m]

(−1)#I−1⌊ n∏
i∈I p

2
i

⌋ (4)

as required. To arrive at the final conclusion for part (c), note that all integers from 1 to n are
either squarefree or are not, so

|T ∩ [n]|+ |S ∩ [n]| = n =⇒ |S ∩ [n]| = n− |T ∩ [n]
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Plugging (4) into this equation, we find that

#(S ∩ [n]) = n−
∑

∅̸=I⊆[m]

(−1)#I−1⌊ n∏
i∈I p

2
i

⌋ = n+
∑

∅̸=I⊆[m]

(−1)#I⌊ n∏
i∈I p

2
i

⌋

Note: If I = ∅, then
(−1)#I#⌊ n∏

i∈I p
2
i

⌋ = (−1)0
n

1
=
n

1
= n

Thus,

n+
∑

∅̸=I⊆[m]

(−1)#I#(
⋂
i∈I

⌊ n∏
i∈I p

2
i

⌋ =
∑
I⊆[m]

(−1)#I⌊ n∏
i∈I p

2
i

⌋

so we know
#(S ∩ [n]) =

∑
I⊆[m]

(−1)#I⌊ n∏
i∈I p

2
i

⌋

which completes part (c).

(d) We want to show ∑
I⊆[m]

(−1)#I
1∏
i∈I p

2
i

=

m∏
i=1

(
1− 1

p2i

)
(5)

We know that ∑
I⊆[m]

(−1)#I
1∏
i∈I p

2
i

= 1−
∑

∅̸=I⊆[m]

(−1)#I−1 1∏
i∈I p

2
i

The probability that a randomly selected b ∈ [n] is not squarefree is

P(b ∈ T |b ∈ [n]) = P(
m⋃
i=1

Ei)

Since the Ei’s are not mutually disjoint, we can apply the Principle of Inclusion Exclusion to find
that

P(b ∈ T |b ∈ [n]) = P(
m⋃
i=1

Ei) =

m∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤m

P(Ei1 ∩ · · · ∩ Eik) (6)

For any e ∈ Ei1 ∩ · · · ∩Eik , p2i1 · · · · · p
2
ik
|e. This only happens once for every p2i1 · · · · · p

2
ik

consecutive
positive integers, so the probability that a randomly selected b ∈ [n] is divisible by p2i1 · · · · · p

2
ik

is

P(Ei1 ∩ · · · ∩ Eik) =
1

p2i1 · · · · · p
2
ik

=
1∏k

j=1 p
2
ij

Plugging this into (6), we find

P(b ∈ T |b ∈ [n]) =

m∑
k=1

(−1)k−1
∑

1≤i1<···<ik≤m

1∏k
j=1 p

2
ij

(7)

Since we are summing over sets {i1, · · · , ik} ⊆ [m] of size k for all k from 1 → n, we are summing
over all nonempty subsets of ∅ ≠ I ⊆ [m]. Therefore, we can rewrite (7) as a singular sum over
∅ ≠ I ⊆ [m], and we find

P(b ∈ T |b ∈ [n]) =
∑

∅̸=I⊆[m]

(−1)#I−1 1∏
i∈I p

2
i
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Since S = T c, (S ∩ [n]) = (T ∩ [n])c, so P(b ∈ S|b ∈ [n]) = 1− P(b ∈ T |b ∈ [n]), so we know that

P(b ∈ S|b ∈ [n]) = 1−
∑

∅̸=I⊆[m]

(−1)#I−1 1∏
i∈I p

2
i

We already know that ∑
I⊆[m]

(−1)#I
1∏
i∈I p

2
i

= 1−
∑

∅̸=I⊆[m]

(−1)#I−1 1∏
i∈I p

2
i

so we can conclude that

P(b ∈ S|b ∈ [n]) =
∑
I⊆[m]

(−1)#I
1∏
i∈I p

2
i

Now, let’s compute this probability in a different way. For a randomly selected integer b ∈ [n] to
be squarefree, it must not have any p2i as a factor for all 1 ≤ i ≤ m. From part (a), we know
that exactly one out of every p2i consecutive positive integers has p2i as a factor. Therefore, the
probability that b has p2i as a factor is

P(p2i |b) =
1

p2i

Taking the complement, we see that the probability that b does not have p2i as a factor is

P(p2i ∤ b) = 1− 1

p2i

This is mutually independently true for all 1 ≤ i ≤ m, and so the probability that b has no p2i
factors for all 1 ≤ i ≤ m, which is the probability that b is squarefree, is

P(b ∈ S|b ∈ [n]) =

m∏
i=1

(1− 1

p2i
)

Thus, we have shown that the probability that a randomly selected integer b ∈ [n] is squarefree is

P(b ∈ S|b ∈ [n]) =
∑
I⊆[m]

(−1)#I
1∏
i∈I p

2
i

=

m∏
i=1

(
1− 1

p2i

)

which completes the proof for part (d).

(e) (1) From part (c), we know that

#(S ∩ [n]) =
∑
I⊆[m]

(−1)#I⌊ n∏
i∈I p

2
i

⌋

Multiplying both sides by 1
n , we obtain

1

n
#(S ∩ [n]) =

1

n

∑
I⊆[m]

(−1)#I⌊ n∏
i∈I p

2
i

⌋

Taking the limit as n→ ∞ of both sides, we obtain

lim
n→∞

1

n
#(S ∩ [n]) = lim

n→∞

1

n

∑
I⊆[m]

(−1)#I⌊ n∏
i∈I p

2
i

⌋

which completes the justification of step (1).
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(2) No justification requested for step (2).

(3) Simplifying the equation from step (2), we find that

lim
n→∞

1

n

∑
I⊆[m]

(−1)#I
n∏
i∈I p

2
i

= lim
n→∞

∑
I⊆[m]

(−1)#I
1∏
i∈I p

2
i

From part (d), we know that∑
I⊆[m]

(−1)#I
1∏
i∈I p

2
i

=

m∏
i=1

(
1− 1

p2i

)
Taking the limit as n→ ∞ on both sides, we obtain

lim
n→∞

∑
I⊆[m]

(−1)#I
1∏
i∈I p

2
i

= lim
n→∞

m∏
i=1

(
1− 1

p2i

)
Note: As n→ ∞,m→ ∞, as the largest prime s.t. p2m ≤ n increases as n increases. Therefore,

lim
n→∞

m∏
i=1

(
1− 1

p2i

)
=

∞∏
i=1

(
1− 1

p2i

)
Therefore, we know that

lim
n→∞

1

n

∑
I⊆[m]

(−1)#I
n∏
i∈I p

2
i

=

∞∏
i=1

(
1− 1

p2i

)
which completes the justification of step (3).

(4) Note that
∞∏
i=1

(
1− 1

p2i

)
=

∞∏
i=1

(
1− p−2

i

)
Taking the reciprocal, we find

1∏∞
i=1

(
1− 1

p2i

) =
1∏∞

i=1

(
1− p−2

i

) =

∞∏
i=1

1

1− p−2
i

From question 7, we know that

∞∏
i=1

1

1− p−2
i

=

∞∑
n=1

1

n2
= ζ(2)

Therefore,
∞∏
i=1

(
1− 1

p2i

)
=

1∏∞
i=1

1
1−p−2

i

=
1

ζ(2)

which completes the justification for step (4).

(5) From question 7, we know that

ζ(2) =
π2

6

This directly implies that
1

ζ(2)
=

1
π2

6

=
6

π2

which completes the justification for step (5).
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(f) Since #(S ∩ [n]) = the # of squarefree integers in [n], and there are n integers in [n], we can
interpret

#(S ∩ [n])

n

as the probability that a randomly selected integer b ∈ [n] is squarefree.
As n → ∞, [n] approaches the set of natural numbers, N, and S ∩ [n] approaches the set of all
squarefree natural numbers. Therefore, we can interpret

lim
n→∞

#(S ∩ [n])

n

as the probability that a randomly selected natural number is squarefree. The result of the calcu-
lation from part (e) demonstrates that

lim
n→∞

#(S ∩ [n])

n
=

6

π2

Therefore, we can explain the result of the calculation in (e) by saying that the total probability
that a randomly selected natural number is squarefree is 6

π2 ≈ 60.79%. One direct implication of
this result is that the majority of natural numbers are products of distinct prime numbers, and
thus elements of S.
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9. (Ross P3.51) Prostate cancer is the most common type of cancer found in males. As an indicator of
whether a male has prostate cancer, doctors often perform a test that measures the level of the prostate-
specific antigen (PSA) that is produced only by the prostate gland. Although PSA levels are indicative
of cancer, the test is notoriously unreliable. Indeed, the probability that a noncancerous man will have
an elevated PSA level is approximately 0.135, increasing to approximately 0.268 if the man does have
cancer. If, on the basis of other factors, a physician is 70 percent certain that a male has prostate cancer,
what is the conditional probability that he has the cancer given that

(a) the test indicated an elevated PSA level?

(b) the test did not indicate an elevated PSA level?

Repeat the preceding calculation, this time assuming that the physician initially believes that there is a
30 percent chance that the man has prostate cancer.

Solution. We will use Bayesian Inference.
Let H1 = the man has prostate cancer.
Let H2 = the man does not have prostate cancer.
Then S = H1 ∪H2, and H1 and H2 are mutually disjoint.
Let E = the test indicates an elevated PSA level. Then Ec = the test does not indicate an elevated PSA
level.

We are given that

{
P(E|H1) = 0.268

P(E|H2) = 0.135

We can easily compute that

{
P(Ec|H1) = 1− 0.268 = 0.732

P(Ec|H2) = 1− 0.135 = 0.865

Physician initially believes there is a 70% chance that a male has prostate cancer: In this case, our best

guesses at P(H1) and P(H2) are

{
P(H1) = 0.70

P(H2) = 1− 0.70 = 0.30

(a) We want to find
P(H1|E)

By Bayes’ Theorem, we know

P(H1|E) =
P(E|H1)P(H1)

P(E|H1)P(H1) + P(E|H2)P(H2)

We already know all of these values, so we can plug them in to calculate that

P(H1|E) =
0.268 · 0.70

0.268 · 0.70 + 0.135 · 0.30
=

0.1876

0.2281
≈ 82.24%

Thus, the conditional probability that the male has cancer given that the test indicated an elevated
PSA level is

P(H1|E) ≈ 82.24%

(b) This time, we want to find
P(H1|Ec)

By Bayes’ Theorem, we know

P(H1|Ec) =
P(Ec|H1)P(H1)

P(Ec|H1)P(H1) + P(Ec|H2)P(H2)

We already know all of these values, so we can plug them in to calculate that

P(H1|Ec) =
0.732 · 0.7

0.732 · 0.7 + 0.865 · 0.3
=

0.5124

0.7719
≈ 66.38%
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Thus, the probability that the male has prostate cancer given the test did not indicate elevated
PSA levels is P(H1|Ec) ≈ 66.38%.

Physician believes there is a 30% chance that a male has prostate cancer:

In this case, our best guesses at P(H1) and P(H2) are

{
P(H1) = 0.30

P(H2) = 1− 0.30 = 0.70

The other given probabilities remain the same as in the previous calculations.

(a) Once again, we want to find
P(H1|E)

Bayes’ Theorem guarantees that

P(H1|E) =
P(E|H1)P(H1)

P(E|H1)P(H1) + P(E|H2)P(H2)

We already know all of these values, so we can plug them in to calculate that

P(H1|E) =
0.268 · 0.30

0.268 · 0.30 + 0.135 · 0.7
=

0.0804

0.1749
≈ 45.97%

Thus, the probability that the male has prostate cancer given that the test did indicate elevated
PSA levels is P(H1|E) ≈ 45.97%.

(b) Once again, we want to find
P(H1|Ec)

By Bayes’ Theorem, we know

P(H1|Ec) =
P(Ec|H1)P(H1)

P(Ec|H1)P(H1) + P(Ec|H2)P(H2)

We already know all of these values, so we can plug them in to calculate that

P(H1|Ec) =
0.732 · 0.30

0.732 · 0.30 + 0.865 · 0.7
=

0.2196

0.8251
≈ 26.61%

Thus, the probability that the male has prostate cancer given that the test did not indicate elevated
PSA levels is P(H1|Ec) ≈ 26.61%.
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Assignment 7

Math 407 (Swanson) – Spring 2023
Homework 1

Due Friday 1/13, 11:59pm

Name: Emerson Kahle Section: 39981

• You must upload your solutions to Gradescope as one single, high-quality PDF. You can convert
paper-based work to a high-quality PDF using a scanning app for mobile devices, such as Adobe Scan
(free, available for iOS and Android, can do multiple pages) or many others. If necessary, you can
combine or merge multiple PDF’s into a single PDF using a variety of services, such as Adobe Acrobat’s
cloud-based merge tool.

• After you upload, you must match each question with its corresponding page using Gradescope’s
interface. This allows graders to spend more time giving you feedback instead of hunting through
submissions.

• Answers without supporting work will receive no credit. Show your work.

• You are encouraged to work together on homework, but you must write up your solutions sepa-
rately in your own words. Copying from your fellow students or other sources is a serious academic
integrity violation. In particular, you may not use “tutoring” services which simply provide answers.

• You are encouraged to typeset your solutions in LATEX. Source code has been provided on Blackboard.
Overleaf is a popular cloud-based editor.

• Problem numbers refer to the course textbook, though the problems may have been modified signifi-
cantly.
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1. (Ross P3.7) Suppose the king comes from a family of 2 children.

(a) Under agnatic primogeniture, the oldest male child of a monarch inherits the throne. In such a
system, what is the probability that the other child is the king’s sister?

(b) Under absolute primogeniture, the oldest child of a monarch, regardless of gender, inherits the
throne. In such a system, what is the probability that the other child is the king’s sister?

Solution.

(a) Consider the sample space, S, which is the set of all possible sequences of genders for the two
children. Then

S = {(boy, boy), (boy, girl), (girl, boy), (girl, girl)}

where all outcomes are equally likely. Since we know a king comes from the two children, we know
that at least one of the two children is a boy. Since the oldest male child becomes king, we know
that under agnatic primogeniture, if at least one of the two children is a boy, one of the two children
will become king. Therefore, we know there is a king from a family of 2 children under agnatic
primogeniture ⇐⇒ at least one of the two children is a boy. Let B = at least one of the two
children is a boy. Then

B = {(boy, boy), (boy, girl), (girl, boy)}

We want to find the probability, given that at least one of the children is a boy, the other child
is a girl (and thus the king’s sister). Let G = one of the two children is a boy and the other is a
girl. Then, if we are given that the king comes from one of the two children, we know that the
other child will be the king’s sister ⇐⇒ one child is a boy and the other is a girl. Therefore, the
probability that the other child is the king’s sister given that the king comes from a family of 2
children (under agnatic primogeniture) is P(G|B). We have

G = {(boy, girl), (girl, boy)}

By the definition of conditional probability, we know

P(G|B) =
P(GB)

P(B)
(1)

Comparing G and B, we see that they only share (girl, boy) and (boy, girl), so

GB = {(girl, boy), (boy, girl)}

Since all outcomes in S are equally likely, we know that

P(GB) =
|GB|
|S|

=
2

4
=

1

2
= 50%

Similarly, since all outcomes in S are equally likely, we know that

P(B) =
|B|
|S|

=
3

4
= 75%

Plugging these values into (1), we find that the probability (under agnatic primogeniture) that the
other child is the king’s sister given that the king comes from a family of two children is

P(G|B) =
P(GB)

P(B)
=

2
4
3
4

=
2

3
≈ 66.67%
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(b) Our sample space, S, remains unchanged from part (a), and all outcomes are still equally likely.
However, since the oldest child, regardless of gender inherits the throne under absolute primogen-
iture, the king will come from a family of two children ⇐⇒ the oldest of those two children is a
boy. Let B′ = the even that the oldest of the two children is a boy. Then

B′ = {(boy, boy), (boy, girl)}

and, since all outcomes are equally likely, we know

P(B′) =
|B′|
|S|

=
2

4
=

1

2
= 50%

Given that the oldest child is a boy (and thus the king comes from the two children under absolute
primogeniture), we want to find the probability that the other child is a girl (and thus the king’s
sister). Let G′ = the event that the oldest child is a boy and the other child is a girl. Then the
probability that the other child is the king’s sister given that the king comes from a family of two
children under absolute primogeniture is

P(G′|B′) =
P(G′B′)

P(B′)
(2)

and we have
G′ = {(boy, girl)}

Comparing G′ and B′, we see that they only share (boy, girl), so we know

G′B′ = {(boy, girl)}

Since all outcomes are equally likely, we know

P(G′B′) =
|G′B′|
|S|

=
1

4
= 25%

Plugging P(B′) and P(G′B′) into (2), we find that the probability that the other child is the king’s
sister, given that the king comes from a family of two children under absolute primogeniture, is

P(G′|B′) =
P(G′B′)

P(B′)
=

1
4
1
2

=
2

4
=

1

2
= 50%
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2. (Ross P3.12) Suppose distinct values are written on each of 3 cards, which are then randomly given the
designations A, B, and C. Given that card A’s value is less than card B’s value, find the probability it
is also less than card C’s value.

Solution.
Let c denote a card and v(c) denote that cards value. Let’s order the values of the cards before assigning
the designations A, B, and C. Since the values are all distinct, we know that we can always order the
cards c1, c2, c3 s.t. v(c1) < v(c2) < v(c3). There are 3! = 6 possible ways to permute the designations A,
B, and C among these three cards c1, c2, c3 such that each card receives exactly one designation, and all
designations are assigned to exactly one card. The list of such possible permutations forms our sample
space, S. We have

S = {(v(A = c1) < v(B = c2) < v(C = c3)), (v(A = c1) < v(C = c2) < v(B = c3)),

(v(B = c1) < v(A = c2) < v(C = c3)), (v(B = c1) < v(C = c2) < v(A = c3)),

(v(C = c1) < v(A = c2) < v(B = c3)), (v(C = c1) < v(B = c2) < v(A = c3))}

where all outcomes are equally likely since the designations are assigned randomly.
Let AB = the event that card A’s value is less than card B’s value.
Let AC = the event that card A’s value is less than card C’s value.
Then

AB = {(v(A = c1) < v(B = c2) < v(C = c3)), (v(A = c1) < v(C = c2) < v(B = c3)),

(v(C = c1) < v(A = c2) < v(B = c3))}

and

AC = {(v(A = c1) < v(B = c2) < v(C = c3)), (v(A = c1) < v(C = c2) < v(B = c3)),

(v(B = c1) < v(A = c2) < v(C = c3))}

We want to find the probability that v(A) < v(C) given that v(A) < v(B), so we need to compute

P(AC |AB) =
P(ACAB)
P(AB)

(1)

Since all outcomes are equally likely, we know that

P(AB) =
|AB |
|S|

=
3

6
=

1

2
= 50%

Comparing AB and AC , we see they only share (v(A = c1) < v(B = c2) < v(C = c3)) and (v(A = c1) <
v(C = c2) < v(B = c3)), so we know

ACAB = {(v(A = c1) < v(B = c2) < v(C = c3)), (v(A = c1) < v(C = c2) < v(B = c3))}

Since all outcomes are equally likely, this implies that

P(ACAB) =
|ACAB |

|S|
=

2

6
=

1

3
≈ 33.33%

Plugging P(AB) and P(ACAB) into (1), we find that the probability that card A’s value is less than card
C’s value, given that it is less than card B’s value, is

P (AC |AB) =
P(ACAB)
P(AB)

=
1
3
1
2

=
2

3
≈ 66.67%
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3. (Ross P3.14) There are 15 tennis balls in a box, of which 9 have not previously been used. Three of
the balls are randomly chosen, played with, and then returned to the box. Later, another 3 balls are
randomly chosen from the box. Find the probability that none of these balls has ever been used.

Solution.
Let Ui = the event that exactly i of the three tennis balls we first randomly select are previously used.
Since there are 6 > 3 previously used balls and 9 > 3 new balls, we could first select 0 previously used
balls, or 1 previously used ball, or 2 previously used balls, or 3 previously used balls. Since we are only
first selecting three balls, these are the only possible numbers of previously used balls which we could

select. Therefore, we know that P(Ui)

{
̸= 0 if 0 ≤ i ≤ 3

= 0 otherwise
and S =

⋃3
i=0 Ui.

We want to compute the probability that none of the three balls later chosen from the box has been
previously used.
Let N = the event that none of the three balls later chosen from the box has been previously used.
Since for all ui ∈ Ui, ui ̸∈ Uj for all 0 ≤ j ̸= i ≤ 3, we know the Ui’s are mutually disjoint. Combining

this with the fact that S =
⋃3
i=0 Ui, we can apply the Law of Total Probability to conclude that the

probability that none of the three balls later chosen from the box has been previously used is

P(N) = P(N |U0)P(U0) + P(N |U1)P(U1) + P(N |U2)P(U2) + P(N |U3)P(U3) (1)

First, let’s compute P(Ui) for all 0 ≤ i ≤ 3.
For all such i, since we are first selecting three balls randomly from a set of 15, the sample space, S, has

|S| =
(
15

3

)
equally likely outcomes.

(i) P(U0): Since we first select exactly 0 previously used balls, we know all three of the balls we first
select are new. There are only 9 new balls, which gives us

|U0| =
(
9

3

)
equally likely ways to do this. Since all outcomes are equally likely, the probability we first select
exactly 0 previously used balls is

P(U0) =
|U0|
|S|

=

(
9
3

)(
15
3

) ≈ 18.46%

(ii) P(U1): Since we first select exactly 1 previously used ball, we know exactly 2 of the three balls we
first select are new. There are 6 previously used balls, from which we must select exactly 1. There
are

(
6
1

)
equally likely ways to do this. For each of these selections, we must choose 2 of the 9 new

balls, which can be done in
(
9
2

)
ways. Thus, we know that U1 has

|U1| =
(
6

1

)(
9

2

)
elements. Since all outcomes are equally likely, the probability that we first select exactly 1 previ-
ously used ball is

P(U1) =
|U1|
|S|

=

(
6
1

)(
9
2

)(
15
3

) ≈ 47.47%

(iii) P(U2): Since we first select exactly 2 previously used balls, we know exactly 1 of the three balls we
first select is new. There are 6 previously used balls, from which we must select exactly 2. There
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are
(
6
2

)
equally likely ways to do this. For each of these combinations of 2 previously used balls, we

must choose 1 of the 9 new balls, which can be done in
(
9
1

)
ways. Thus, we know that U2 has

|U2| =
(
6

2

)(
9

1

)
elements. Since all outcomes are equally likely, the probability that we first select exactly 2 previ-
ously used balls is

P(U2) =
|U2|
|S|

=

(
6
2

)(
9
1

)(
15
3

) ≈ 29.67%

(iv) P(U3): Since we first select exactly 3 previously used balls, we know none of the three balls we first
select is new. There are 6 previously used balls, from which we must select exactly 3. There are
|U3| =

(
6
3

)
ways to do this. Since all outcomes are equally likely, the probability that we first select

exactly 3 previously used balls is

P(U3) =
|U3|
|S|

=

(
6
3

)(
15
3

) ≈ 4.40%

Now, lets calculate P(N |Ui) for all 0 ≤ i ≤ 3. Since we are still just selecting three balls from a set of 15
balls, the size of the sample space is still |S| =

(
15
3

)
as defined above.

(i) P(N |U0): Since none of the first three balls we select is previously used, we first select three new
balls, so when we later select three balls, 6 + 3 = 9 of them are previously used, and 9 − 3 = 6 of
them are new. At this point, to select no previously used balls, we need to later select 3 new balls
from the 6 remaining new balls, which can be done in

(
6
3

)
ways. Since there are |S| =

(
15
3

)
ways to

later select the three balls, the probability that we later select no previously used balls given that
we first select no previously used balls is

P(N |U0) =

(
6
3

)(
15
3

) ≈ 4.40%

(ii) P(N |U1): Since exactly 1 of the first three balls we select is previously used, we first select exactly
2 new balls. When we later select three balls, 6 + 2 = 8 of them are previously used and 9− 2 = 7
of them are new. At this point, to select no previously used balls, we need to later select 3 balls
from the 7 remaining new balls, which can be done in

(
7
3

)
ways. Since there are |S| =

(
15
3

)
ways to

later select the three balls, the probability that we later select no previously used balls given that
we first select exactly 1 previously used ball is

P(N |U1) =

(
7
3

)(
15
3

) ≈ 7.69%

(iii) P(N |U2): Since exactly 2 of the first three balls we select are previously used, we first select exactly
1 new ball. When we later select three balls, 6 + 1 = 7 of them are previously used and 9− 1 = 8
of them are new. At this point, to select no previously used balls, we need to later select 3 balls
from the 8 remaining new balls, which can be done in

(
8
3

)
ways. Since there are |S| =

(
15
3

)
ways to

later select the three balls, the probability that we later select no previously used balls given that
we first select exactly 1 previously used ball is

P(N |U2) =

(
8
3

)(
15
3

) ≈ 12.31%

(iv) P(N |U3): Since exactly 3 of the first three balls we select is previously used, we first select exactly
0 new balls. When we later select three balls, 6 + 0 = 6 of them are previously used and 9− 0 = 0
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of them are new. At this point, to select no previously used balls, we need to later select 3 balls
from the 9 remaining new balls, which can be done in

(
9
3

)
ways. Since there are |S| =

(
15
3

)
ways to

later select the three balls, the probability that we later select no previously used balls given that
we first select exactly 1 previously used ball is

P(N |U3) =

(
9
3

)(
15
3

) ≈ 18.46%

Plugging all of these probabilities into (1), we find the probability that none of the three balls later
chosen from the box has been previously used is

P(N) = P(N |U0)P(U0) + P(N |U1)P(U1) + P(N |U2)P(U2) + P(N |U3)P(U3)

=

(
6
3

)(
15
3

) (93)(
15
3

) + (
7
3

)(
15
3

) (61)(92)(
15
3

) +

(
8
3

)(
15
3

) (62)(91)(
15
3

) +

(
9
3

)(
15
3

) (63)(
15
3

) ≈ 8.93%
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4. (Ross P3.39)

(a) A gambler has a fair coin and a two-headed coin in his pocket. He selects one of the coins at
random; when he flips it, it shows heads. What is the probability that it is the fair coin?

(b) Suppose that he flips the same coin a second time and, again, it shows heads. Now what is the
probability that it is the fair coin?

(c) Suppose that he flips the same coin a third time and it shows tails. Now what is the probability
that it is the fair coin?

Solution.

(a) Let F = the event that the gambler selects the fair coin.
Let H = the event that the gambler selects the two-headed coin.
Since the gambler selects one of these two coins at random, we know that P(F ) = P(H). Also,
since the gambler selects only one of the coins, we know H and F are mutually disjoint. Since the
gambler must either select the fair or the two-headed coin, we know that S = F ∪H.
Let A = the even that the gambler’s randomly selected coin lands on heads.
We want to find P(F |A). Applying Bayes’ Theorem, we find

P(F |A) = P(A|F )P(F )
P(A)

(1)

We can quickly compute the two probabilities in the numerator.
For P(A|F ), we know that the gambler selected the fair coin, so there is a 50% chance of heads and
a 50% chance of tails. Thus, the probability that the gambler’s randomly selected coin lands on
heads, given that the gambler selected the fair coin is

P(A|F ) = 1

2
= 50%

For P(F ), since P(F ) = P(H), F and H are mutually disjoint, and S = H ∪ F , we know that

P(S) = 1 = P(H) + P(F ) = 2P(F ) =⇒ P(F ) =
1

2
= 50%

We can also use the fact that H and F are mutually disjoint events whose union contains the entire
sample space to calculate P(A). This allows us to apply the Law of Total Probability and find that

P(A) = P(A|F )P(F ) + P(A|H)P(H) (2)

We already found P(A|F ) and P(F ).
For P(A|H), we know that the gambler selected the two-headed coin, so there is a 100% chance
that the coin lands on heads. Thus the probability that the gambler’s randomly selected coin lands
on heads, given that the gambler selected the two-headed coin is

P(A|H) = 1 = 100%

For P(H), we know that P(F ) = 50% and P(F ) = P(H). This allows us to conclude that the
probability that the gambler’s randomly selected coin is the two-headed coin is

P(H) =
1

2
= 50%

Plugging these values into (2), we find that the probability that the gambler’s randomly selected
coin lands on heads is

P(A) = P(A|F )P(F ) + P(A|H)P(H) =
1

2

1

2
+ (1)

1

2
=

1

4
+

1

2
=

3

4
= 75%
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Plugging this into (1), we find that the probability that the gambler selected the fair coin given
that it shows heads is

P(F |A) = P(A|F )P(F )
P(A)

=
1
2
1
2
3
4

=
1

4

4

3
=

1

3
≈ 33.33%

(b) Let B = the event that the gambler’s randomly selected coin lands on head twice in a row.
We want to find P(F |B). Applying Bayes’ Theorem, we find

P(F |B) =
P(B|F )P(F )

P(B)
(3)

We already computed P(F ) = 1
2 = 50% and we can quickly compute the other probability in the

numerator.
For P(B|F ), we know that the gambler selected the fair coin, so there is a 50% chance of heads and
a 50% chance of tails on each coin flip. Thus, the probability that the gambler’s randomly selected
coin lands on heads twice in a row, given that the gambler selected the fair coin is

P(A|F ) =
(1
2

)2
=

1

2

1

2
=

1

4
= 25%

Similar to part (a), we can use the Law of Total Probability to calculate P(B), which tells us that
the probability that the gambler’s randomly selected coin lands on heads twice in a row is

P(B) = P(B|F )P(F ) + P(B|H)P(H) (4)

We already found P(B|F ), P(F ), and P(H).
For P(B|H), we know that the gambler selected the two-headed coin, so there is a 100% chance
that the coin lands on heads on every coin toss. Thus, the probability that the gambler’s randomly
selected coin lands on heads twice in a row, given that the gambler selected the two-headed coin, is

P(B|H) = 12 = 1 = 100%

Plugging these values into (4), we find that the probability hat the gambler’s randomly selected
coin lands on heads twice in a row is

P(B) = P(B|F )P(F ) + P(B|H)P(H) =
1

4

1

2
+ (1)

1

2
=

1

8
+

1

2
=

1

8
+

4

8
=

5

8
= 62.5%

Plugging this into (3), we find that the probability that the gambler selected the fair coin given
that it lands on heads twice in a row is

P(F |B) =
P(B|F )P(F )

P(B)
=

1
4
1
2
5
8

=
1

8

8

5
=

1

5
= 20%

(c) Let C = the event that the gambler’s randomly selected coin lands on heads twice and then tails.
We want to find P(F |C). Applying Bayes’ Theorem, we find

P(F |C) = P(C|F )P(F )
P(C)

(5)

We already found P(F ), and we can easily compute P(C|F ). Since we know the gambler’s randomly
selected coin is the fair coin, we know there is a 1

2 = 50% chance of the coin landing on heads and
a 1

2 = 50% chance of the coin landing on tails for all coin tosses. Therefore, the probability that
the gambler’s randomly selected coin lands on heads twice and then tails, given that the gambler
selected the fair coin is

P(C|F ) =
(1
2

)3
=

1

2

1

2

1

2
=

1

8
= 12.5%
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Similar to parts (a) and (b), we can apply the Law of Total Probability to calculate P(C), which
tells us that the probability that the gambler’s randomly selected coin lands on heads twice and
then tails is

P(C) = P(C|F )P(F ) + P(C|H)P(H) (6)

We already computed P(C|F ), P(F ), and P(H), so we just need to find P(C|H). Since we know the
gambler selected the two-headed coin, we know there is a 0% chance that the coin lands on tails
on each toss. Thus, the probability that the gambler’s randomly selected coin lands on heads twice
and then tails is

P(C|H) = 12 · 0 = 0 = 0%

Plugging these values into (6), we find that the probability that the gambler’s randomly selected
coin lands on heads twice and then tails is

P(C) = P(C|F )P(F ) + P(C|H)P(H) =
1

8

1

2
+ 0 · 1

2
=

1

16

Plugging this into (5), we find that the probability that the gambler’s randomly selected coin is fair
given that it lands on heads twice and then tails is

P(F |C) = P(C|F )P(F )
P(C)

=
1
8
1
2
1
16

=
1

16

16

1
= 1 = 100%

This result follows basic intuition, as it is impossible for the two-headed coin to ever land on tails.
Thus, as soon as we know that the gambler’s randomly selected coin lands on tails once, we know
that it is the fair coin.
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5. (Ross P3.46) Three prisoners are informed by their jailer that one of them has been chosen at random to
be executed and the other two are to be freed. Prisoner A asks the jailer to tell him privately which of
his fellow prisoners will be set free, claiming that there would be no harm in divulging this information
because he already knows that at least one of the two will go free. The jailer refuses to answer the
question, pointing out that if A knew which of his fellow prisoners were to be set free, then his own
probability of being executed would rise from 1

3 to 1
2 because he would then be one of two prisoners.

What do you think of the jailer’s reasoning?

Solution.
Let EA = the event that Prisoner A is to be executed.
Let EB = the event that Prisoner B is to be executed.
Let EC = the event that Prisoner C is to be executed.
Note that, since only one prisoner is to be executed, EA, EB , and EC are all mutually disjoint. Since
one of Prisoners A, B, and C is guaranteed to be executed, S = EA ∪EB ∪EC . Let TB = the event that
Prisoner A is told that Prisoner B is to be executed.
Let TC = the event that Prisoner A is told that Prisoner C is to be executed.
Then we can interpret the jailer’s reasoning as

P(EA|TB) = P(EA|TC) =
1

2
>

1

3
= P(EA) (1)

Let’s calculate these probabilities individually to see if we agree with the jailer.
For P(EA), since there are three prisoners, one of whom is randomly selected to be executed, we find
that

P(EA) = P(EB) = P(EC) =
1

3
≈ 33.33%

For P(EA|TB), we can apply Bayes’ Theorem to find that

P(EA|TB) =
P(TB |EA)P(EA)

P(TB)

Since EA, EB , and EC are mutually disjoint events whose union is the sample space, we can apply the
Law of Total Probability to find that

P(EA|TB) =
P(TB |EA)P(EA)

P(TB)
=

P(TB |EA)P(EA)
P(TB |EA)P(EA) + P(TB |EB)P(EB) + P(TB |EC)P(EC)

(2)

We already computed P(EA), P(EB), and P(EC), so we just need to compute P(TB |EA), P(TB |EB), and
P(TB |EC).
For P(TB |EA), since Prisoner A is to be executed, the jailer has two options for which prisoner he tells
Prisoner A is to be freed. One of these options is Prisoner B, so assuming the jailer randomly selects one
of the two options, the probability that the jailer tells Prisoner A that Prisoner B is to be freed, given
that Prisoner A is to be executed, is

P(TB |EA) =
1

2
= 50%

For P(TB |EB), since Prisoner B is to be executed, the jailer cannot tell Prisoner A that Prisoner B is to
be freed, assuming the jailer is truthful. Therefore, the probability that the jailer tells Prisoner A that
Prisoner B is to be freed, given that Prisoner B is to be executed, is

P(TB |EB) = 0 = 0%

For P(TB |EC), since Prisoner C is to be executed, the jailer cannot tell Prisoner A that Prisoner C is to
be freed, so the jailer must tell Prisoner A that Prisoner B is to be freed. Thus, the probability that the
jailer tells Prisoner A that Prisoner B is to be freed, given that Prisoner C is to be executed, is

P(TB |EB) = 1 = 100%
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Plugging these values into (2), we find that the probability that Prisoner A is executed given that the
jailer tells Prisoner A that Prisoner B is to be freed is

P(EA|TB) =
P(TB |EA)P(EA)

P(TB |EA)P(EA) + P(TB |EB)P(EB) + P(TB |EC)P(EC)

=
1
2
1
3

1
2
1
3 + 0 · 1

3 + 1 · 1
3

=
1
6

1
6 + 1

3

=
1
6
3
6

=
1

6

6

3
=

1

3
≈ 33.33%

By the symmetry of the problem, we can apply the exact same process to find that the probability that
Prisoner A is executed given that the jailer tells Prisoner A that Prisoner C is to be freed is

P(EA|TC) =
P(TC |EA)P(EA)

P(TC |EA)P(EA) + P(TC |EB)P(EB) + P(TC |EC)P(EC)

=
1
2
1
3

1
2
1
3 + 1 · 1

3 + 0 · 1
3

=
1
6

1
6 + 1

3

=
1
6
3
6

=
1

6

6

3
=

1

3
≈ 33.33%

To summarize our results, we found that

P(EA) =
1

3
= P(EA|TB) = P(EA|TC) (3)

Therefore, the probability that Prisoner A is executed does not rise from 1
3 to 1

2 by the jailer telling
Prisoner A that one of the other prisoners will be set free. In fact, it doesn’t change at all. Comparing
(1) and (3), we see that our results directly contradict the implications of the jailer’s reasoning.
Therefore, I do not agree with the jailer’s reasoning.

Page 346



6. (Ross P3.48) In any given year, a male automobile policyholder will make a claim with probability pm
and a female policyholder will make a claim with probability pf , where pf ̸= pm. The fraction of the
policyholders that are male is α, where 0 < α < 1. A policyholder is randomly chosen. If Ai denotes
the event that this policyholder will make a claim in year i, show that

P (A2 | A1) > P (A1)

Give an intuitive explanation of why the preceding inequality is true.

Solution.
Let M = the event that the randomly selected policyholder is male.
We are given that

P(M) = α

Let F = the event that the randomly selected policyholder is female.
Since the randomly selected policyholder is either male or female, we know S = F ∪M . Therefore, we
know

P(S) = 1 = P(M) + P(F ) = α+ P(F ) =⇒ P(F ) = 1− α

Also, since the policyholder cannot be both male and female, we know that F and M are mutually
disjoint. This allows us to apply the Law of Total Probability to find that

P(A1) = P(A1|M)P(M) + P(A1|F )P(F )

We are given that P(A1|M) = pm and P(A1|F ) = pf , which allows us to directly compute that the
probability that the randomly selected policyholder makes a claim in year 1 is

P(A1) = P(A1|M)P(M) + P(A1|F )P(F ) = pm · α+ pf · (1− α)

For P(A2|A1), we can apply the definition of conditional probability to find that the probability that the
randomly selected policyholder makes a claim in year 2, given that they made a claim in year 1, is

P(A2|A1) =
P(A2A1)

P(A1)
=

P(A2A1)

pm · α+ pf · (1− α)
(1)

We can use the Law of Total Probability once again to find that the probability that the randomly
selected policyholder makes a claim on year 1 and year 2 is

P(A2A1) = P(A2A1|M)P(M) + P(A2A1|F )P(F )

For P(A2A1|M), we know that the policyholder is a male, so we know there is a pm probability of him
making a claim on each year, so the probability that he makes a claim on both year 1 and year 2 is

P(A2A1|M) = p2m

Similarly, for P(A2A1|F ), we know that the policyholder is a female, so we know there is a pf probability
of her making a claim on each year, so the probability that she makes a claim on both year 1 and year
2 is

P(A2A1|F ) = p2f

This allows us to directly compute that the probability that the randomly selected policyholder makes
a claim on both year 1 and year 2 is

P(A2A1) = P(A2A1|M)P(M) + P(A2A1|F )P(F ) = p2m · α+ p2f · (1− α)

Plugging this into (1), we find that the probability that the randomly selected policyholder makes a
claim in year 2, given that they made a claim in year 1, is

P(A2|A1) =
P(A2A1)

pm · α+ pf · (1− α)
=
p2m · α+ p2f · (1− α)

pm · α+ pf · (1− α)
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Now that we have computed P(A1) and P(A2|A1), we want to show that

P(A2|A1) =
p2m · α+ p2f · (1− α)

pm · α+ pf · (1− α)
> pm · α+ pf · (1− α) = P(A1)

It suffices to show that
p2m · α+ p2f · (1− α) >

(
pm · α+ pf · (1− α)

)2
so it suffices to show

p2m · α+ p2f · (1− α)−
(
pm · α+ pf · (1− α)

)2
> 0 (2)

Expanding and simplifying (2), we find that

p2m · α+ p2f · (1− α)−
(
pm · α+ pf · (1− α)

)2
= p2m · α+ p2f − p2f · α− 2pmpf · α · (1− α)− p2m · α2

− p2f + 2α · p2f − p2f · α2

= α(p2m + p2f − p2m · α− p2f · α)− 2pmpf · α · (1− α)

= α(1− α)(p2m + p2f )− 2pmpfα(1− α)

= α(1− α)(p2m − 2pmpf + p2f )

= α(1− α)(pm − pf )
2

Since 0 < α < 1, we know 0 < 1− α < 1, so α(1− α) > 0.
Also, since pm ̸= pf , we know that pm − pf ̸= 0 =⇒ (pm − pf )

2 > 0.
This implies that

α(1− α)(pm − pf )
2 > 0

Therefore, we know that

p2m · α+ p2f · (1− α)−
(
pm · α+ pf · (1− α)

)2
= α(1− α)(pm − pf )

2 > 0

which completes the proof that

P(A2|A1) =
p2m · α+ p2f · (1− α)

pm · α+ pf · (1− α)
> pm · α+ pf · (1− α) = P(A1)

The intuition behind the solution relies on the facts that pm ̸= pf and 0 < α < 1. Since 0 < α < 1, we
know that at least one policyholder is male and at least one policyholder is female. Since pm ̸= pf , we
know either pm > pf or pf > pm.
If pm > pf , then male policyholders are more likely to make claims in a given year than female policy-
holders. Therefore, if we know the randomly selected policyholder makes a claim in year 1, we can intuit
that they are more likely to be a man than they would be if we did not know that information. Since
we know the policyholder is more likely to be a man since they made a claim in year 1, we can intuit
they are more likely to make a claim in year 2 since pm > pf .
Similarly, if pf > pm, then female policyholders are more likely to make claims in a given year than male
policyholders. Therefore, if we know the randomly selected policyholder makes a claim in year 1, we can
intuit that they are more likely to be a woman than they would be if we did not know that information.
Since we know the policyholder is more likely to be a woman since they made a claim in year 1, we can
intuit they are more likely to make a claim in year 2 since pf > pm.
This is the intuition behind the result

P(A2|A1) > P (A1)
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7. (Ross P3.57) In a 7 game series played with two teams, the first team to win a total of 4 games is the
winner. Suppose that each game played is independently won by team A with probability p.

(a) Given that one team leads 3 to 0, what is the probability that it is team A that leads?

(b) Given that one team leads 3 to 0, what is the probability that team wins the series?

Solution.

(a) Let EA = the event that team A leads 3 to 0.
Call the other team team B, and let EB = the event that team B leads 3 to 0.
Let E3 = the event that one team leads 3 to 0.
Since team A and team B are the only two teams, E3 = EA ∪ EB .
We want to find P(EA|E3). Applying the definition of conditional probability, we find the probability
that team A leads 3 to 0 given one team leads 3 to 0 is

P(EA|E3) =
P(EAE3)

P(E3)
(1)

Since team A cannot lead 3 to 0 if team B leads 3 to 0, and vice versa, we know that EA and EB
are mutually disjoint, so

EAE3 = EA(EA ∪ EB) = EA ∪ EAEB = EA =⇒ P(EAE3) = P(EA)

Now, we just need to compute P(EA) and P(E3).
For P(EA), we note that there is an independent probability of p that team A wins the game for
each of the first three games. Therefore, the probability that team A wins all of the first three
games (and thus leads 3 to 0) is

P(EA) = p3

For P(E3), we note that P(E3) = P(EA ∪ EB) = P(EA) + P(EB) since EA and EB are mutually
disjoint. We already know P(EA) = p3, so we just need to calculate P(EB). The probability that
team A wins a given game is independently p for each game. Since team B must win for team
A to lose, the probability that team B wins a given game is independently 1 − p for each game.
Therefore, the probability that team B wins all of the first three games (and thus leads 3 to 0) is

P(EB) = (1− p)3

Therefore, the total probability that one team leads 3 to 0 is

P(E3) = P(EA) + P(EB) = p3 + (1− p)3

Plugging P(EA) and P(E3) into (1), we find that the probability that team A leads 3 to 0 given
that one team leads 3 to 0 is

P(EA|E3) =
P(EAE3)

P(E3)
=

P(EA)
P(E3)

=
p3

p3 + (1− p)3

(b) If one team leads 3 to 0 then wins the series, it could either be team A or team B.
Let WA = team A leads 3 to 0 then wins the series.
Let WB = team B leads 3 to 0 then wins the series.
If team A leads 3 to 0 then wins the series, team B cannot lead 3 to 0 then win the series, so we
know WA and WB are mutually disjoint.
Let W3 = one team leads 3 to 0 then wins the series. Then

W3 =WA ∪WB
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We want to find P(W3|E3). Applying the definition of conditional probability, we find that the
probability that one team leads 3 to 0 then wins the series, given that one team leads 3 to 0, is

P(W3|E3) =
P(W3E3)

P(E3)

For all w ∈ W3, one team leads 3 to 0 after three games, so w ∈ E3. Therefore, we know that
W3E3 =W3, so we just need to find

P(W3|E3) =
P(W3)

P(E3)
(2)

In part (a), we found that the probability that one team leads 3 to 0 after three games is

P(E3) = p3 + (1− p)3

so we just need to find P(W3).
Since WA and WB are mutually disjoint, we know

P(W3) = P(WA ∪WB) = P(WA) + P(WB) (3)

so we need to find P(WA) and P(WB).
For P(WA), we know that team A needs to win the first 3 games, then Team B cannot win all 4 of
the remaining games. The probability that team A wins the first 3 games is

P(EA) = p3

as calculated in part (a). The probability that team B wins a given game is independently 1 − p,
so the probability that team B wins all 4 of the remaining games is

(1− p)4

Taking the complement, we find that the probability that team B does not win all 4 of the remaining
games is

1− (1− p)4

The results of the first 3 games are independent from the results of the last 4, so we can multiply
these probabilities together to find that the total probability that team A leads 3 to 0 then wins
the series is

P(WA) = p3(1− (1− p)4)

Similarly, for P(WB), we know that team B needs to win the first 3 games, then team A cannot
win all 4 of the remaining games. The probability that team B wins the first 3 games is

P(EB) = (1− p)3

since there is an independent probability of 1 − p that team B wins each game. The probability
that team A wins a given game is independently p, so the probability that team A wins all 4 of the
remaining games is

p4

Taking the complement, we find that the probability that team A does not win all 4 of the remaining
games is

1− p4

The results of the first 3 games are independent from the results of the last 4, so we can multiply
these probabilities together to find that the total probability that team B leads 3 to 0 then wins
the series is

P(WB) = (1− p)3(1− p4)
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Plugging P(WB) and P(WA) into (3), we find

P(W3) = P(WA) + P(WB) = p3(1− (1− p)4) + (1− p)3(1− p4)

Plugging this into (2), we find that, given that one team leads 3 to 0, the probability that team
wins the series is

P(W3|E3) =
P(W3)

P(E3)
=
p3(1− (1− p)4) + (1− p)3(1− p4)

p3 + (1− p)3
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8. (Ross P3.60) In a class, there are 4 first-year boys, 6 first-year girls, and 6 sophomore boys. How many
sophomore girls must be present if gender and class are to be independent when a student is selected at
random?

Solution.
Let G = the event that the randomly selected student is a girl.
Let H = the event that the randomly selected student is a sophomore.
Let k = the number of sophomore girls in the class.
Then for gender and class to be independent when a student is selected at random, we need

P(GH) = P(G)P(H) (1)

The sample space, S, is the set of all students in the class. There are 4 first-year boys, 6 first-year girls,
6 sophomore boys, and k sophomore girls, for a total of

|S| = 4 + 6 + 6 + k = 16 + k

students in the class. Since we are selecting one student randomly, there is an equal likelihood that each
of these 16 + k students is selected.
Now, we can calculate each of the probabilities from (1) in terms of k, then plug them into (1) to solve
for k.
For P(GH), note that GH = { all students that are girls and sophomores}, and we know that exactly
|GH| = k of the students in the class are sophomore girls. Therefore, the probability that a randomly
selected student is a sophomore and a girl is

P(GH) =
|GH|
|S|

=
k

16 + k

For P(G), we have k sophomore girls and 6 first-year girls, for a total of |G| = k + 6 girls in the class.
Since we are equally likely to select each of these girls, the probability that a randomly selected student
is a girl is

P(G) =
|G|
|S|

=
6 + k

16 + k

For P(H), we have k sophomore girls and 6 sophomore boys for a total of |H| = k+6 sophomores in the
class. Since we are equally likely to select each of these sophomores, the probability that a randomly
selected student is a sophomore is

P(H) =
|H|
|S|

=
6 + k

16 + k

Plugging P(GH), P(G), and P(H) into (1), we find that

k

16 + k
=

6 + k

16 + k
· 6 + k

16 + k

This is true ⇐⇒
k(16 + k)2 = (16 + k)(6 + k)2

This is true ⇐⇒
256k + 32k2 + k3 = 576 + 228k + 28k2 + k3

This is true ⇐⇒
4k2 + 28k − 576 = 4(k2 + 7k − 144) = 4(k + 16)(k − 9) = 0

This is true ⇐⇒ k = −16 or k = 9.
Since we cannot have a negative number of sophomore girls in the class, this means we must have exactly
k = 9 sophomore girls in the class for gender and class to be independent when a student is selected at
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random.
We can verify that, when plugging in k = 9 into (1), the equality holds:

P(GH) =
9

25
=

3 · 3
25

=
3 · 3
25

5 · 5
5 · 5

=
3 · 5
25

3 · 5
25

=
15

25

15

25
= P(G)P(H)

as expected.
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Assignment 8

Math 407 (Swanson) – Spring 2023
Homework 1

Due Friday 1/13, 11:59pm

Name: Emerson Kahle Section: 39981

• You must upload your solutions to Gradescope as one single, high-quality PDF. You can convert
paper-based work to a high-quality PDF using a scanning app for mobile devices, such as Adobe Scan
(free, available for iOS and Android, can do multiple pages) or many others. If necessary, you can
combine or merge multiple PDF’s into a single PDF using a variety of services, such as Adobe Acrobat’s
cloud-based merge tool.

• After you upload, you must match each question with its corresponding page using Gradescope’s
interface. This allows graders to spend more time giving you feedback instead of hunting through
submissions.

• Answers without supporting work will receive no credit. Show your work.

• You are encouraged to work together on homework, but you must write up your solutions sepa-
rately in your own words. Copying from your fellow students or other sources is a serious academic
integrity violation. In particular, you may not use “tutoring” services which simply provide answers.

• You are encouraged to typeset your solutions in LATEX. Source code has been provided on Blackboard.
Overleaf is a popular cloud-based editor.

• Problem numbers refer to the course textbook, though the problems may have been modified signifi-
cantly.
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1. (Ross P3.63) Suppose that we want to generate the outcome of the flip of a fair coin, but that all we
have at our disposal is a biased coin that lands on heads with some unknown probability p that need
not equal to 1

2 . Consider the following procedure for accomplishing our task:

1. Flip the coin.

2. Flip the coin again.

3. If both flips land on heads or both land on tails, return to step 1.

4. Let the result of the last flip be the result of the experiment.

(a) Show that the result is equally likely to be either heads or tails.

(b) Could we use a simpler procedure that continues to flip the coin until the last two flips are different
and then lets the result be the outcome of the final flip?

Solution.
Note: Under instruction from Professor Swanson, we assume that, although the coin may have p ̸= 1

2 ,
the outcomes of any two flips are still independent, and p ̸= 0, 1.

(a) Since we always flip the coin twice at one time, we can consider each pair of flips instead of indi-
vidual flips.
Let TH = the event that a pair of flips is a tails followed by a heads.
Let HT = the event that a pair of flips is a heads followed by a tails.
HT and TH are mutually disjoint because once a pair is a heads followed by a tails, the result is
tails, so there must not be any pair which is a tails followed by a heads, and vice versa.
In order for the experiment to have a result, we need to end on a pair which is either a heads
followed by a tails (heads-tails) or a tails followed by a heads (tails-heads).
In order for that result to be heads, the last pair needs to be a (tails-heads) pair. Therefore,
result of the experiment is heads ⇐⇒ we end on a (tails-heads) pair given that we get ei-
ther a (tails-heads) pair or a (heads-tails) pair, so the probability that the result is heads is
P(result = heads) = P(TH|TH ∪HT ).
Similarly, the result of the experiment is tails ⇐⇒ we end on a (heads-tails) pair given that we
get either a (tails-heads) pair or a (heads-tails) pair, so the probability that the result is tails is
P(result = tails) = P(HT |TH ∪HT ).
Now, we can calculate P(TH) and P(HT ) to prove they are equal.

P(result = heads): Applying the definition of conditional probability, we find

P(TH|TH ∪HT ) = P(TH ∩ (TH ∪HT ))
P(TH ∪HT )

Since TH and HT are mutually disjoint, P(TH∩(TH∪HT )) = P(TH∩TH∪TH∩HT ) = P(TH)
and P(TH ∪HT ) = P(TH) + P(HT ). This implies that

P(TH|TH ∪HT ) = P(TH)

P(TH) + P(HT )

Since each coin flip is independent of the others,

P(TH) = P(T )P(H) = (1− p)p = P(H)P(T ) = P(HT )

where T = the event that a given flip is tails and H = the event that a given flip is heads. Therefore,

P(result = heads) = P(TH|TH ∪HT ) = (1− p)p

(1− p)p+ p(1− p)
=

(1− p)p

2(1− p)p
=

1

2
= 50%
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with the last step relying on p ̸= 0, 1.

P(result = tails): Similarly applying the definition of conditional probability, we find

P(HT |TH ∪HT ) = P(HT ∩ (TH ∪HT ))
P(TH ∪HT )

Using the same implications of the independence of coin flips, we find

P(result = tails) = P(HT |TH ∪HT ) = P(HT )
P(TH) + P(HT )

=
p(1− p)

(1− p)p+ p(1− p)

=
p(1− p)

2p(1− p)
=

1

2
= 50%

Therefore, we have shown that

P(result = heads) =
1

2
= 50% = P(result = tails)

so the result is equally likely to be either heads or tails.

(b) No.
Under this simpler procedure, the result is heads ⇐⇒ the last coin flip is heads and all of the
previous coin flips are tails. Therefore,

P(result = heads) = P({T iH : i ≥ 1} = P(TH ∪ T 2H ∪ ...)

All of these outcomes T iH are mutually disjoint, so

P(result = heads) =

∞∑
i=1

P(T iH)

Since the coin flips are all mutually independent, we know P(T iH) = P(T )iP(H) = (1− p)ip, so

P(result = heads) =

∞∑
i=1

(1− p)ip = p(1− p)

∞∑
i=0

(1− p)i = p(1− p)
1

1− (1− p)
=
p(1− p)

p
= 1− p

We can note that this result is the same as P(T ), since as soon as we flip tails on our first flip, the
result in any finite game will be heads.

Similarly, the result under this simpler procedure is tails ⇐⇒ the last coin flip is tails and
all of the previous coin flips are heads. Therefore,

P(result = tails) = P({HiT : i ≥ 1} = P(HT ∪H2T ∪ ...)

All of these outcomes HiT are mutually disjoint, so

P(result = tails) =

∞∑
i=1

P(HiT )

Since the coin flips are all mutually independent, we know P(HiT ) = P(H)iP(T ) = pi(1− p), so

P(result = tails) =

∞∑
i=1

pi(1− p) = p(1− p)

∞∑
i=0

pi = p(1− p)
1

1− p
= p

This result similarly is the same as P(H), since as soon as we flip heads on the first flip, the result
in any finite game must be tails.
Therefore, if we have a biased coin with p ̸= 1

2 , then, under this simpler procedure,

P(result = heads) = 1− p ̸= p = P(result = tails)

so the results of heads and tails are not equally likely with a biased coin under the simpler procedure.
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2. (Ross P3.76) Suppose that each child born to a couple is equally likely to be a boy or a girl, independently
of the sex distribution of the other children in the family. For a couple having 5 children, compute the
probabilities of the following events:

(a) All children are of the same sex.

(b) The 3 oldest are boys and the others girls.

(c) Exactly 3 are boys.

(d) The 2 oldest are girls.

(e) There is at least 1 girl.

Solution.
Since there are two choices (boy or girl) for the gender of each of the 5 children, and these choices are
all independent of each other, the sample space, S, has a size of

|S| = 25 = 32

Since each child is equally likely to be a boy or a girl, each of these 32 outcomes is equally likely.

(a) For all children to be of the same sex, they must either all be girls or all be boys. There is exactly
one outcome in which all 5 children are girls, which is (G,G,G,G,G). Similarly, there is exactly
one outcome in which all 5 children are boys, which is (B,B,B,B,B).
Let A = the event that all 5 children are of the same sex. Then |A| = 2. Since all outcomes are
equally likely, the probability that all 5 children are of the same sex is

P(A) =
|A|
|S|

=
2

32
=

1

16
= 6.25%

(b) For the oldest 3 children to be boys and the others to be girls, we must have exactly 3 boys followed
by exactly 2 girls. The only outcome in which this happens is (B,B,B,G,G), as changing the
gender of any of the eldest three children will violate the condition that the eldest three are boys,
and changing the gender of one of the youngest two children will violate the condition that the
others are girls.
Let O = the event that the oldest three are boys and the others girls. Then |O| = 1, so the
probability that the oldest three are boys and the others are girls is

P(O) =
|O|
|S|

=
1

32
= 3.125%

(c) For exactly 3 of the 5 children to be boys, we can select any 3 out of the 5 children to be boys,
leaving the remaining 2 to be girls. This can be done in exactly

(
5
3

)
= 10 ways.

Let T = the event that exactly 3 of the 5 children are boys. Then |T | = 10, so the probability that
exactly 3 of the 5 children are boys is

P(T ) =
|T |
|S|

=
10

32
=

5

16
= 31.25%

(d) For the oldest 2 to be girls, the youngest 3 can have any sequence of genders. Since there are 2
independent, equally likely choices for the gender of each of these youngest 3, there are exactly
23 = 8 equally likely ways for the oldest 2 to be girls. We could encode these as (G,G, {G,B}3).
Let L = the event that the 2 oldest children are girls. Then |L| = 8, so the probability that the
oldest 2 are girls is

P(L) =
|L|
|S|

=
8

32
=

1

4
= 25%
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(e) Let F = the event that there is at least one girl. Then F c = the event that there are exactly 0 girls
among the 5 children. The only outcome in which this takes place is (B,B,B,B,B), so |F c| = 1
and the probability that there are exactly 0 girls is

P(F c) =
|F c|
|S|

=
1

32

Since P(F ) = 1− P(F c), we know the probability that there is at least 1 girl is

P(F ) = 1− P(F c) = 1− 1

32
=

31

32
= 96.875%
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3. (Ross P3.89) Let S = {1, 2, . . . , n} and suppose that A and B are, independently, equally likely to be
any of the 2n subsets (including the null set and S itself) of S.

(a) Show that

P (A ⊆ B) =

(
3

4

)n
.

Hint: Let N(B) denote the number of elements in B. Use

P (A ⊆ B) =

n∑
i=0

P (A ⊆ B | N(B) = i)P (N(B) = i).

(b) Show that P (A ∩B = ∅) =
(
3
4

)n
.

Solution.

(a) Applying the hint, we find that

P(A ⊆ B) =

n∑
i=0

P(A ⊆ B | N(B) = i)P(N(B) = i) (1)

Now, let’s calculate P(A ⊆ B | N(B) = i) and P(N(B) = i) for all 0 ≤ i ≤ n.

P(N(B) = i): Since B must be a subset of S, and there are 2n subsets of S, there are 2n equally
likely possibilities for B. For N(B) = i, we need B to have exactly i elements from the n elements
in S. There are exactly

(
n
i

)
equally likely ways to choose which i of the n elements in S are also in

B, so |N(B) = i| =
(
n
i

)
. Therefore, for all 0 ≤ i ≤ n, the probability that B has exactly i elements

is

P(N(B) = i) =
|N(B) = i|

2n
=

(
n
i

)
2n

P(A ⊆ B|N(B) = i): Since A and B are, independently, equally likely to be any of the 2n subsets
of S, there are 2n equally likely possibilities for A. For A to be a subset of B, all elements in A must
also be in B. Since we are given N(B) = i, we know that A cannot have more than i elements,
so A must have j elements, where 0 ≤ j ≤ i. Since there are i elements in B from which we
choose elements in A, for each j, there are exactly

(
i
j

)
ways to form A s.t. A ⊆ B when N(B) = i.

Therefore, (A ⊆ B|N(B) = i) is a set with exactly

|A ⊆ B|N(B) = i| =
i∑

j=0

(
i

j

)
=

i∑
j=0

(
i

j

)
· 1j · 1i−j = (1 + 1)i = 2i

elements for all 0 ≤ i ≤ n, with the second to last step following from the Binomial Theorem.
Therefore, the probability that A is a subset of B given that N(B) = i is

P(A ⊆ B|N(B) = i) =
2i

2n

Now, we can plug P(N(B) = i) and P(A ⊆ B|N(B) = i) into (1) to find that the total probability
that A is a subset of B is

P(A ⊆ B) =

n∑
i=0

P(A ⊆ B | N(B) = i)P(N(B) = i) =

n∑
i=0

2i

2n

(
n
i

)
2n

=
1

(2n)2

n∑
i=0

(
n

i

)
· 2i · 1n−i = 1

22n
(2 + 1)n =

3n

4n
=
(3
4

)n
with the third to last step following from the Binomial Theorem. This completes the proof that

P(A ⊆ B) =
(3
4

)n
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(b) Since A and B are selected independently and are both equally likely to be any of the 2n subsets of
S, we know there are 2n equally likely possibilities for A for each of 2n equally likely possibilities for
B. This leaves 2n ·2n = (2n)2 = 22n = 4n equally likely possibilities for the combination of A and B.

Without loss of generality, suppose A has exactly i elements, where 0 ≤ i ≤ n. There are
(
n
i

)
equally likely ways to choose the i elements that form A from the n elements in S. In order for
A ∩B = ∅, we can only form B by selecting from the remaining n− i elements in S −A. Suppose
B consists of exactly j of these n− i remaining items, where 0 ≤ j ≤ n− i. Then there are

(
n−i
j

)
equally likely ways to choose which j elements from S − A are in B. Summing over all possible
values of j, we find there are

n−i∑
j=0

(
n− i

j

)
=

n−i∑
j=0

(
n− i

j

)
· 1j · 1n−i−j = (1 + 1)n−i = 2n−i

total ways to choose B such that A ∩ B = ∅, given that N(A) = i, with the second to last step
following from the Binomial Theorem. Summing over all possible values of i, we find there are

n∑
i=0

(
n

i

)
2n−i =

n∑
i=0

(
n

i

)
· 2n−i · 1i = (2 + 1)n = 3n

total equally likely ways to choose A and B such that A ∩ B = ∅, with the second to last step
following from the Binomial Theorem.
Since there are 4n equally likely ways to choose A and B, the probability that A ∩B = ∅ is

P(A ∩B = ∅) = 3n

4n
=
(3
4

)n
as required.
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4. (Ross P4.7-4.8) Suppose that a die is rolled twice.

(a) What are the possible values that the following random variables can take on:

(1) the maximum value to appear in the two rolls;

(2) the minimum value to appear in the two rolls;

(3) the sum of the two rolls;

(4) the value of the first roll minus the value of the second roll?

(b) If the dice are fair, calculate the probabilities associated with the first and last random variables
above.

(c) Calculate the expected values of the first and last random variables above.

(d) Calculate the variances of the first and last random variables above.

Solution.
For all parts of this problem, we have the sample space S = {1, 2, 3, 4, 5, 6}2, so |S| = 62 = 36.
Also for all parts of this problem, if a ∈ {1, 2, 3, 4, 5, 6} is rolled first and b ∈ {1, 2, 3, 4, 5, 6} is rolled
second, then we denote the result of the two rolls ab.

(a) (1) Let X = the maximum value to appear in the two rolls.
Then X : S → R where, if the result of the two rolls is ab, then

X(ab) = max(a, b)

We know that, for any outcome ab ∈ S, X(ab) ∈ {1, 2, 3, 4, 5, 6} because the maximum value of
the two rolls must be the value of one of the rolls, which must be some element in {1, 2, 3, 4, 5, 6}.
We can quickly see that X can in fact take on all values of {1, 2, 3, 4, 5, 6}:

X(11) = 1 X(12) = 2 X(13) = 3 X(14) = 4 X(15) = 5 X(16) = 6

Therefore, the possible values of the maximum value to appear in the two rolls are all elements
in {1, 2, 3, 4, 5, 6}

(2) Let Y = the minimum value to appear in the two rolls.
Then Y : S → R where, if the result of the two rolls is ab, then

Y (ab) = min(a, b)

We know that, for any outcome ab ∈ S, Y (ab) ∈ {1, 2, 3, 4, 5, 6} because the minimum value of
the two rolls must be the value of one of the rolls, which must be some element in {1, 2, 3, 4, 5, 6}.
We can quickly see that Y can in fact take on all values of {1, 2, 3, 4, 5, 6}:

Y (16) = 1 Y (26) = 2 Y (36) = 3 Y (46) = 4 Y (56) = 5 Y (66) = 6

Therefore, the possible values of the minimum value to appear in the two rolls are all elements
in {1, 2, 3, 4, 5, 6}

(3) Let C = the sum of the two rolls.
Then C : S → R where, if the result of the two rolls is ab, C(ab) = a+ b.
The minimum value of C occurs when both dice rolls are minimal, so C is always at least
1 + 1 = 2. The maximum value of C occurs when both dice rolls are maximal, so C is always
at most 6 + 6 = 12.
We can easily show that C can take on all integer values in {2, 3, ..., 11, 12}. Consider the
result 11. C(11) = 2. Until the second coin has value 6, add one to the second coin. This will
increase the value of C by 1 each time, and shows the possibility of all integer values of C from
2 → 7. Once the second coin has value 6, add one to the first coin until it has value 6. This
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will continue to increase C by 1 each time until C = 12, showing that C can indeed take all
values from {2, 3, ..., 11, 12}:

C(11) = 2 C(12) = 3 C(13) = 4 C(14) = 5 C(15) = 6 C(16) = 7

C(26) = 8 C(36) = 9 C(46) = 10 C(56) = 11 C(66) = 12

Therefore, the possible values of the sum of the two rolls are all elements in {2, 3, ..., 11, 12}
(4) Let M = the value of the first roll minus the value of the second roll.

Then M : S → R where, if the result of the two rolls is ab, then M(ab) = a− b.
The minimum value of M occurs when a is minimal and b is maximal, so M is always at least
1 − 6 = −5. The maximum value of M occurs when a is maximal and b is minimal, so M is
always at most 6− 1 = 5.
We can easily show that M can take on all integer values in {−5,−4, ..., 4, 5}. Consider the
minimal result 16. Until the second coin has value 1, subtract one from the second coin. This
will increase the value of M by one each time, and shows the possibility of all integer values of
M from −5 → 0. Once the second coin has value 1, add 1 to the first coin until it has value
6. This will continue to increase M by 1 each time until M = 6− 1 = 5, showing that M can
indeed take all values from {−5,−4, ..., 4, 5}:

M(16) = −5 M(15) = −4 M(14) = −3 M(13) = −2 M(12) = −1 M(11) = 0

M(21) = 1 M(31) = 2 M(41) = 3 M(51) = 4 M(61) = 5

Therefore, the possible values of the first roll minus the second roll are all elements in {−5,−4, ..., 4, 5}
(b) We need to calculate P(X = x) for all x ∈ {1, 2, 3, 4, 5, 6} and P(M = m) for allm ∈ {−5,−4, ..., 4, 5}.

P(X):

(i) If X = 1, then both rolls must be 1, so (X = 1) = {11}. Since all outcomes are equally likely,
the probability that the maximum value to appear in the two rolls is 1 is

P(X = 1) =
|X = 1|

|S|
=

1

36
≈ 2.78%

(ii) If X = 2, then one roll must be a 2, and the other can be no larger than 2, so (X = 2) =
{12, 21, 22}. Since all outcomes are equally likely, the probability that the maximum value to
appear in the two rolls is 2 is

P(X = 2) =
|X = 2|

|S|
=

3

36
=

1

12
≈ 8.33%

(iii) If X = 3, then one roll must be a 3, and the other can be no larger than 3, so (X = 3) =
{13, 31, 23, 32, 33}. Since all outcomes are equally likely, the probability that the maximum
value to appear in the two rolls is 3 is

P(X = 3) =
|X = 3|

|S|
=

5

36
≈ 13.89%

(iv) If X = 4, then one roll must be a 4, and the other can be no larger than 4, so (X = 4) =
{14, 41, 24, 42, 34, 43, 44}. Since all outcomes are equally likely, the probability that the maxi-
mum value to appear in the two rolls is 4 is

P(X = 4) =
|X = 4|

|S|
=

7

36
≈ 19.44%

(v) If X = 5, then one roll must be a 5, and the other can be no larger than 5, so (X = 5) =
{15, 51, 25, 52, 35, 53, 45, 54, 55}. Since all outcomes are equally likely, the probability that the
maximum value to appear in the two rolls is 5 is

P(X = 5) =
|X = 5|

|S|
=

9

36
=

1

4
= 25%
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(vi) If X = 6, then one roll must be a 6, and the other can be no larger than 6, so (X = 6) =
{16, 61, 26, 62, 36, 63, 46, 64, 56, 65, 66}. Since all outcomes are equally likely, the probability
that the maximum value to appear in the two rolls is 6 is

P(X = 6) =
|X = 6|

|S|
=

11

36
≈ 30.56%

We can plot these results to show the probability distribution of X.
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P(M):

(i) IfM = −5, then the first roll must be a 1 and the second roll must be a 6, so (M = −5) = {16}.
Since all outcomes are equally likely, the probability that the value of the first roll minus the
value of the second roll is −5 is

P(M = −5) =
|M = −5|

|S|
=

1

36
≈ 2.78%

(ii) If M = −4, then the value of the first roll minus the value of the second roll has to be −4, so
(M = −4) = {15, 26}. Since all outcomes are equally likely, the probability that the value of
the first roll minus the value of the second roll is −4 is

P(M = −4) =
|M = −4|

|S|
=

2

36
=

1

18
≈ 5.56%

(iii) If M = −3, then the value of the first roll minus the value of the second roll has to be −3, so
(M = −3) = {14, 25, 36}. Since all outcomes are equally likely, the probability that the value
of the first roll minus the value of the second roll is −3 is

P(M = −3) =
|M = −3|

|S|
=

3

36
=

1

12
≈ 8.33%

(iv) If M = −2, then the value of the first roll minus the value of the second roll has to be −2,
so (M = −2) = {13, 24, 35, 46}. Since all outcomes are equally likely, the probability that the
value of the first roll minus the value of the second roll is −2 is

P(M = −2) =
|M = −2|

|S|
=

4

36
=

1

9
≈ 11.11%

(v) If M = −1, then the value of the first roll minus the value of the second roll has to be −1, so
(M = −1) = {12, 23, 34, 45, 56}. Since all outcomes are equally likely, the probability that the
value of the first roll minus the value of the second roll is −1 is

P(M = −1) =
|M = −1|

|S|
=

5

36
≈ 13.89%
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(vi) If M = 0, then the value of the first roll must equal the value of the second roll, so (M = 0) =
{11, 22, 33, 44, 55, 66} Since all outcomes are equally likely, the probability that the value of the
first roll minus the value of the second roll is 0 is

P(M = 0) =
|M = 0|

|S|
=

6

36
=

1

6
≈ 16.67%

(vii) If M = 1, we can simply flip the order of all outcomes from M = −1, and then a − b = −1
becomes b− a = 1, so (M = 1) = {21, 32, 43, 54, 65}. Since all outcomes are equally likely, the
probability that the value of the first roll minus the value of the second roll is 1 is

P(M = 1) =
|M = 1|

|S|
=

5

36
≈ 13.89%

(viii) If M = 2, we can simply flip the order of all outcomes from M = −2, and then a − b = −2
becomes b − a = 2, so (M = 2) = {31, 42, 53, 64}. Since all outcomes are equally likely, the
probability that the value of the first roll minus the value of the second roll is 2 is

P(M = 2) =
|M = 2|

|S|
=

4

36
=

1

9
≈ 11.11%

(ix) If M = 3, we can simply flip the order of all outcomes from M = −3, and then a − b = −3
becomes b − a = 3, so (M = 3) = {41, 52, 63}. Since all outcomes are equally likely, the
probability that the value of the first roll minus the value of the second roll is 3 is

P(M = 3) =
|M = 3|

|S|
=

3

36
=

1

12
≈ 8.33%

(x) If M = 4, we can simply flip the order of all outcomes from M = −4, and then a − b = −4
becomes b−a = 4, so (M = 4) = {51, 62}. Since all outcomes are equally likely, the probability
that the value of the first roll minus the value of the second roll is 4 is

P(M = 4) =
|M = 4|

|S|
=

2

36
=

1

18
≈ 5.56%

(xi) If M = 5, then the first flip must be 6, and the second flip must be 1, so (M = 5) = {61}.
Since all outcomes are equally likely, the probability that the value of the first roll minus the
value of the second roll is 5 is

P(M = 5) =
|M = 5|

|S|
=

1

36
≈ 2.78%

We can plot these results to show the probability distribution of M :

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

4 · 10−2

8 · 10−2

0.12

0.16

0.2

M

P(
M

)
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(c) We will use the fact that, for any event X with values in I, we have

E[X] =
∑
k∈I

kP(X = k) (1)

Applying (1) to X, we find that the expected value for the maximum value to appear in the two
dice rolls is

E[X] =

6∑
k=1

kP(X = k) = 1 · 1

36
+ 2 · 3

36
+ 3 · 5

36
+ 4 · 7

36
+ 5 · 9

36
+ 6 · 11

36

=
1 + 6 + 15 + 28 + 45 + 66

36
=

161

36
≈ 4.47

Applying (1) to M , we find that the expected value for the value of the first roll minus the value of
the second roll is

E[M ] =

5∑
k=−5

kP(M = k)

= − 5 · 1

36
− 4 · 2

36
− 3 · 3

36
− 2 · 4

36
− 1 · 5

36
+ 0 · 6

36

+ 1 · 5

36
+ 2 · 4

36
+ 3 · 3

36
+ 4 · 2

36
+ 5 · 1

36

=
−5− 8− 9− 8− 5 + 0 + 5 + 8 + 9 + 8 + 5

36
=

0

36
= 0

(d) We will use the fact that, for any event X with values in I,

V ar(X) = E[X2]− (E[X])2 =
∑
k∈I

k2P(X = k)− (E[X])2 (2)

V ar(X): We can directly compute that∑
k∈I

k2P(X = k) =

6∑
k=1

k2P(X = k)

= 12 · 1

36
+ 22 · 3

36
+ 32 · 5

36
+ 42 · 7

36
+ 52 · 9

36
+ 62 · 11

36

=
1 + 4 · 3 + 9 · 5 + 16 · 7 + 25 · 9 + 36 · 11

36

=
1 + 12 + 45 + 112 + 225 + 396

36
=

791

36

Combining this result with our result for E[X] from part (c) and plugging into (2), we find that
the variance of X is

V ar(X) =
791

36
− (

161

36
)2 =

28476− 25921

1296
=

2555

1296
≈ 1.97

V ar(M): We can directly compute that∑
k∈I

k2P(M = k) =

5∑
k=−5

k2P(M = k)

= (−5)2 · 1

36
+ (−4)2 · 2

36
+ (−3)2 · 3

36
+ (−2)2 · 4

36
+ (−1)2 · 5

36
+ 02 · 6

36

+ 12 · 5

36
+ 22 · 4

36
+ 32 · 3

36
+ 42 · 2

36
+ 52 · 1

36

=
25 + 32 + 27 + 16 + 5 + 0 + 5 + 16 + 27 + 32 + 25

36
=

210

36
=

35

6
≈ 5.83
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Combining this result with our result for E[M ] from part (c) and plugging into (2), we find that
the variance of M is

V ar(M) =
35

6
− 02 =

35

6
≈ 5.83
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5. The October 1st, 2022 drawing of the Philippine Grand Lotto jackpot had an astonishing 433 winners.
The jackpot was worth roughly $4 million USD.

(a) To play the game, “LOTTO 6-55,” you buy a ticket and pick 6 distinct numbers from 1, 2, . . . , 55.
The lottery officials randomly do the same on the night of the drawing and come up with their own
set of 6 distinct numbers from 1, 2, . . . , 55. You win the jackpot if your set of 6 numbers matches
the lottery officials’ set. Compute the probability that you win the jackpot if you buy a single
ticket.

(b) Suppose n people played. What is the probability of getting exactly 433 winners? Be sure to state
any assumptions that go into your calculation.

(c) Suppose that n = 10,000,000 people played. Use the Poisson approximation to compute the prob-
ability that there were 433 winners.

(d) Dr. Guido David of the University of the Philippines posted an analysis of the situation online.
See Figure 1. Do you agree with the analysis presented? What probabilistic notions are behind
Dr. David’s calculations?

(e) According to the New York Post, “Philippine Senate Minority Leader Aquilino ‘Koko’ Pimentel
called for official hearings into the ‘strange and unusual’ result.” Do you believe hearings are
warranted given the available evidence?

Solution.

(a) Let W = the event that you win the jackpot after buying a single ticket.
There are exactly

(
55
6

)
equally likely ways to randomly select 6 distinct numbers from 1, 2, ..., 55.

Only one of these
(
55
6

)
distinct combinations of 6 numbers is identical to the combination drawn by

the lottery officials. Therefore, since all outcomes are equally likely, the probability that you win
the jackpot if you buy a single ticket is

P(E) =
1(
55
6

) ≈ 0.00000345%

(b) Let X = the number of people that win the jackpot when n people each buy one ticket. We want
to find P(X = 433)
We assume that the choices of 6 distinct numbers are independent for each of the n people playing the
game, and that each of the n people randomly choose their combinations of 6 numbers. Then we can
consider n people playing the game as n independent Bernoulli trials, where p = P(success) = 1

(556 )
and q = P(failure) = 1−p. Then X ∼ Binomial(n, p), so we know that the probability that exactly
433 out of the n people win the jackpot is

P(X = 433) = p(433) =

(
n

433

)( 1(
55
6

))433(1− 1(
55
6

))n−433

(c) Since X ∼ Binomial(n, p), n = 10, 000, 000 is very large, and p = 1

(556 )
is very small, the Poisson

approximation guarantees that, with λ = np = 10,000,000

(556 )
,

P(X = 433) ≈ e−λ
λ433

433!
= e

− 10,000,000

(556 )

(
10,000,000

(556 )

)433
433!

≈ 0 = 0%

Thus, using Poisson approximation, the probability that there were exactly 433 winners if n =
10, 000, 000 people played the game is approximately 0%.
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(d) I agree with Dr. David’s analysis.
Dr. David’s result for the probability that you win the jackpot if you buy one ticket matches my
result from part (a). This result relies on the assumption that you randomly select the numbers on
your ticket.
I also agree with Dr. David’s calculation of the probability that you do not win the jackpot with your
ticket, which relies on the probabilistic notion of complements, specifically that P(Ec) = 1− P(E).
Dr. David’s calculation of the likelihood that at least one person wins the jackpot out of N people
also relies on complements, as well as the assumption that all N people choose their numbers ran-
domly and independently of one another.
Dr. David’s line of reasoning for why randomly choosing 9, 18, 27, 36, 45, 54 is just as likely/unlikely
as choosing 3, 14, 15, 9, 26, 54 is sound, but only under the assumption that the numbers are ran-
domly chosen. Dr. David addresses this in the last paragraph of the analysis, recognizing how
human behavior could make people more likely to choose a nice pattern like 9, 18, 27, 36, 45, 54 than
a random combination like 14, 3, 8, 43, 44, 36.
Dr. David’s calculation of the extremely low likelihood of exactly 433 jackpot winners out of 10
million randomly chosen tickets also matches my result from part (c). Dr. David sets the calcula-
tion up like my result from part (b), using the binomial theorem and representing the number of
jackpot winners out of n tickets as a binomial random variable. Similar to how we use Poissant
approximation in part (c), Dr. David uses an approximation on the size of

(
10,000,000

433

)
to estimate to

calculate the probability of exactly 433 jackpot winners out of 10,000,000 randomly chosen tickets.

(e) Given the available evidence, I believe the hearings are warranted. Since the upper limit on the
estimates for the number of tickets was 10,000,000, the probability that exactly 433 people win the
jackpot out of 10,000,000 tickets should be an upper bound on the probability of the event that
actually occurred, assuming that the tickets are selected randomly. Therefore, since my result from
part (c) shows that this probability is approximately 0%, the result of the October 1st drawing
is indeed quite ‘strange and unusual.’ However, as Dr. David addresses and we address in part
(d), the assumption that all tickets are selected randomly underlies this probability calculation.
Since humans tend to prefer patterns to randomness, it is not entirely safe to assume that the
10,000,000 tickets were chosen randomly. Since the winning combination happened to be such
a nice combination, 9, 18, 27, 36, 45, 54, it is quite possible that significantly more than 1

(556 )
of

the lottery tickets chose this combination without any corruption or cheating. However, since the
specific ticket-choosing behavior of the population cannot be determined, the only way to accurately
calculate the probability of a certain number of jackpot winners is to assume randomly selected
tickets. Therefore, since the probability calculation of the observed outcome, which is valid under
its assumptions, is so incredibly low, the hearings are warranted. However, since one of these
underlying assumptions is not entirely safe, more evidence must be collected to determine with
certainty whether the observed outcome of 433 winners involved cheating or happened by chance
legitimately. It is also important to note that the calculated probability of 433 winners does not
consider the possibility of more than 433 winners, so the probability of an outcome at least as
extreme as the one observed on October 1st is slightly higher than the probability calculated in
part (c). However, this cumulative probability is still ≈ 0, so the hearings are still warranted to
collect further evidence.
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Figure 1: Dr. Guido David’s analysis of the 433 LOTTO 6-55 winners.
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6. (a) Suppose X is a discrete random variable with probability generating function GX(t). Show that

GX(t) = E[tX ].

(b) Suppose A is a randomly chosen subset of [n], where each subset is equally likely. Let X = #A and
let Y be the number of subsets of A. Compute the expected value of Y .

Solution.

(a) By the definition of the probability generating function, we know that if I is the set of values for
which the discrete random variable X has nonzero probabilities, then

GX(t) =
∑
k∈I

p(k)tk (1)

where p(k) is a valid probability mass function.

Now, let’s think about the right hand side of the identity we want to prove. By the definition
of expected value, we know that

E[X] =
∑
k∈I

kp(k)

For each possible value of X, we multiply that value by its corresponding probability and add up
the results to find the expected value of X as a whole.
We want to compute E[tX ]. Now, for each k ∈ I, the value of tX is tk instead of k. However,
since t is constant with respect to X, P(tX = tk) still equals p(k), so the probability mass function
of tX is the same as that of X itself. Therefore, by multiplying each possible value of tX by its
corresponding probability and adding up the results, just like we did to find E[X], we find

E[tX ] =
∑
k∈I

p(k)tk (2)

Comparing (1) and (2), we find they are equivalent, which completes the proof that

GX(t) = E[tX ]

We could also note that

E[tX ] =
∑
i

P(tX = i) =
∑
i

∑
k s.t. g(k)=i

P(X = k) =
∑
k∈I

∑
i=tk

iP(X = k)

=
∑
k∈I

tkP(X = k) =
∑
k∈I

p(k)tk = GX(t)

for a more direct, computational proof.

(b) First, we need to determine all values for which Y has nonzero probabilities. For any X, there are
2X subsets of A. This follows from the fact that there are

(
X
i

)
subsets of size X for all 0 ≤ i ≤ X,

for a total of
X∑
i=0

(
X

i

)
=

X∑
i=0

(
X

i

)
· 1i · 1X−i = (1 + 1)X = 2X

subsets, with the second to last step following from the Binomial Theorem.
Since A is a randomly chosen subset of [n], we know 0 ≤ X = |A| ≤ n. Therefore, we know the
values for which Y has nonzero probabilities are {2i|0 ≤ i ≤ n}.
By the definition of expected value, we know that

E[Y ] =

n∑
k=0

2kP(X = k) (3)
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There are exactly
(
n
k

)
equally likely ways to choose a subset of size k from [n]. Since there are 2n

total subsets of [n], the probability that A, a randomly selected one, has exactly k elements is

P(X = k) =

(
n
k

)
2n

for all 0 ≤ k ≤ n. Plugging this into (3), we find the expected number of subsets of A is

E[Y ] =

n∑
k=0

2k
(
n
k

)
2n

=
1

2n

n∑
k=0

(
n

k

)
· 2k · 1n−k

=
(2 + 1)n

2n
=
(3
2

)n
with the second to last step following from the Binomial Theorem.
Thus, the expected value of Y is

E[Y ] =
(3
2

)n
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7. Use calculations with probability generating functions to complete the following table.

Distribution Parameter(s) PMF PGF µ σ2

Binomial n, p np np(1− p)(
n
k

)
· pk (pt+

·(1− p)n−k (1− p))n

Geometric p 1
p

1−p
p2

(1− p)k−1p pt
1−(1−p)t

Negative binomial r, p
(
k−1
r−1

)
( pt
1−(1−p)t )

r r
p

(1−p)r
p2

·(1− p)k−r

·pr

Poisson λ e−λ λ
k

k! e(t−1)λ λ λ

Discrete uniform a, b 1
b−a+1

ta

b−a+1
a+b
2

(b−a+1)2−1
12

· 1−t
b−a+1

1−t

Solution.

(i) Binomial: From lecture, we know the probability mass function of a random variableX ∼ Binomial(n, p)
is

p(k) = P(X = k) =

(
n

k

)
· pk · (1− p)n−k

This directly implies that the probability generating function of X ∼ Binomial(n, p) is

GX(t) = G(t) =

n∑
k=0

p(k)tk =

n∑
k=0

(
n

k

)
· pktk · (1− p)n−k = (pt+ (1− p))n

with the last step following from the Binomial Theorem.
Since E[X] = G′(1), and the derivative of the PGF is

d

dt
(pt+ (1− p))n = n(pt+ (1− p))n−1p

we can evaluate at t = 1 to find that the expected value of X ∼ Binomial(n, p) is

µX = E[X] = n(p(1) + (1− p))n−1p = np(1)n−1 = np

We know that σ2 = V ar(X) = E[X2]− E[X]2, and we already found E[X] = np, so we just need
to compute E[X2]. Note that

E[Xi] =

n∑
k=0

(
n

k

)
kipk(1− p)n−k =

n∑
k=1

(
n

k

)
kipk(1− p)n−k
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Applying the fact that k
(
n
k

)
= n

(
n−1
k−1

)
, we find

E[Xi] = n

n∑
k=1

(
n− 1

k − 1

)
ki−1pk(1− p)n−k

= np

n∑
k=1

(
n− 1

k − 1

)
ki−1pk−1(1− p)n−k

= np

n−1∑
j=0

(
n− 1

j

)
(j + 1)i−1pj(1− p)n−1−j

= npE[(Y + 1)i−1]

where Y ∼ Binomial(n− 1, p). Therefore, setting i = 2, we find

E[X2] = npE[Y + 1] = np((n− 1)p+ 1)

since E[Y + 1] = E[Y ] + 1. Plugging this into the equation for σ2 = V ar(X), we find

σ2 = V ar(X) = E[X2]− E[X]2 = np((n− 1)p+ 1)− n2p2

= np(np− p+ 1)− n2p2 = n2p2 − np2 + np− n2p2

= np− np2 = np(1− p)

(ii) Geometric: From lecture, we know that the probability mass function of a random variable T ∼
Geometric(p) is

p(k) = P(T = k) = (1− p)k−1p

This directly implies that the probability generating function of T ∼ Geometric(p) is

GT (t) = G(t) =

∞∑
k=1

(1− p)k−1tkp = pt

∞∑
k=0

(1− p)ktk

= pt
1

1− (1− p)t
=

pt

1− (1− p)t
= pt(1− (1− p)t)−1

We know that E[T ] = G′(1). We can take the derivative of GT (t) to find

d

dt

pt

1− (1− p)t
= p · (1− (1− p)t)− (p− 1)t

(1− (1− p)t)2
=

p

(1− (1− p)t)t

Plugging in t = 1, we find that the expected value of T ∼ Geometric(p) is

E[T ] = µ =
p

(1− (1− p))2
=

p

p2
=

1

p

We know that σ2 = V ar(T ) = E[T 2] − E[T ]2, and we already found E[T ], so we just need to
compute E[T 2]. Note that

E[T 2] =

∞∑
k=1

k2p(k) =

∞∑
k=1

k2(1− p)k−1p

=

∞∑
k=1

(k − 1 + 1)2(1− p)k−1p

=

∞∑
k=1

(k − 1)2(1− p)k−1p+

∞∑
k=1

2(k − 1)(1− p)k−1p+

∞∑
k=1

(1− p)k−1p

=

∞∑
j=1

j2(1− p)jp+ 2

∞∑
j=1

j(1− p)jp+ 1

= (1− p)E[T 2] + 2(1− p)E[T ] + 1
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This directly implies that

pE[T 2] = 2(1− p)E[T ] + 1 =
2(1− p)

p
+ 1

so

E[T 2] =
2(1− p) + p

p2
=

2− p

p2

Plugging this into the equation for σ2 = V ar(T ), we find that the variance of T ∼ Geometric(p) is

σ2 = V ar(T ) =
2− p

p2
− 1

p2
=

1− p

p2

(iii) Negative Binomial: From, lecture, we know the probability mass function of aN ∼ NegativeBinomial(r, p)
is

p(k) = P(N = k) =

(
k − 1

r − 1

)
(1− p)k−rpr

We also found in lecture that the probability generating function of anyN ∼ NegativeBinomial(r, p)
is

GN (t) = G(t) =
∑
k≥r

(
k − 1

r − 1

)
(1− p)k−rprtk = (pt)r(1− (1− p)t)−r

=
(pt)r

(1− (1− p))r
= (

pt

1− (1− p)t
)r

To find E[N ], we will first find E[Nk] using generating functions.

E[Nk] =

∞∑
i=r

(
i− 1

r − 1

)
ik(1− p)i−rpr

=
r

p

∞∑
i=r

(
i

r

)
ik−1(1− p)n−rpr+1 using i

(
i− 1

r − 1

)
= r

(
i

r

)

=
r

p

∞∑
m=r+1

(
m− 1

r

)
(m− 1)k−1(1− p)m−(r+1)pr+1

=
r

p
E[(M − 1)k−1]

where M ∼ NegativeBinomial(1 + r, p).
Plugging in k = 1, we find that the expected value of N ∼ NegativeBinomial(r, p) is

E[N ] =
r

p
E[(M − 1)0] =

r

p

We could also note that, since E[N ] = G′(1), and the derivative of the PGF is

d

dt
(

pt

1− (1− p)t
)r =

r( pt
1−(1−p)t )

r

(p− 1)t2 + t

evaluating at t = 1 yields

E[N ] = G′(1) =
r( p

1−(1−p) )
r

(p− 1) + 1
=
r(pp )

r

p
=
r

p

as expected.
We know σ2 = V ar(N) = E[N2] − E[N ]2, and we already calculated E[N ], so we just need to
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compute E[N2].
Plugging k = 2 into the equation for E[Nk], we find

E[N2] =
r

p
E[(Y − 1)] =

r

p
(
r + 1

p
− 1) =

r

p

r + 1− p

p
=
r2 + r − rp

p2

Plugging this into the equation for V ar(N), we find that the variance ofN ∼ NegativeBinomial(r, p)
is

σ2 = V ar(N) =
r2 + r − rp

p2
− r2

p2
=
r − rp

p2
=

(1− p)r

p2

(iv) Poisson: By the definition of a Poisson random variable, the probability mass function for any
P ∼ Poisson(λ) is

p(k) = P(P = k) = e−λ
λk

k!

for all k ∈ {0, 1, 2, ...}. This directly implies that the probability generating function of P ∼
Poisson(λ) is

GP (t) = G(t) =

∞∑
k=0

e−λ
λk

k!
tk = e−λ

∞∑
k=0

(λ · t)k

k!

Note: Using the Taylor Series expansion of ex, we find

ex =

∞∑
k=0

xk

k!

So we know the probability generating function of P ∼ Poisson(λ) is

G(t) = e−λeλ·t =
eλ·t

eλ
= e(t−1)λ

By the definition of expected value, we know that

µ = E(P ) =

∞∑
k=0

kp(k) =

∞∑
k=0

ke−λλk

k!

Pulling out a factor of λ, cancelling the common factor of k, and discarding the k = 0 term which
contributes 0 to the sum, we find that the expected value of P ∼ Poisson(λ) is

µ = E(P ) = λ

∞∑
k=1

e−λλk−1

(k − 1)!
= λe−λ

∞∑
j=0

λj

(j)!
= λ · e−λ · eλ = λ

with the second to last step following from the Taylor Series expansion of eλ.
We could also note that, since E[P ] = G′(1) and the derivative of the PGF is

d

dt
e(t−1)λ = λe(t−1)λ

evaluating at t = 1 yields
E[P ] = λe1−1 = λe0 = λ

as expected.
We know that σ2 = V ar(P ) = E[P 2]− E[P ]2, and we already calculated E[P ], so we just need to
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calculate E[P 2]. Note that, by the definition of expected value

E[P 2] =

∞∑
k=0

k2e−λλk

k!
= λ

∞∑
k=1

ke−λλk−1

(k − 1)!

= λ

∞∑
j=0

(j + 1)e−λλj

j!
= λ

( ∞∑
j=0

je−λλj

j!
+

∞∑
j=0

e−λλj

j!

)
= λ(E[P ] +G(1)) = λ(λ+ 1) = λ2 + λ

Plugging this into the equation for σ2 = V ar(P ), we find that the variance of P ∼ Poission(λ) is

σ2 = V ar(P ) = E[P 2]− E[P ]2 = λ2 + λ− λ2 = λ = E[P ]

Thus, both the variance and expected value of P ∼ Poisson(λ) equal λ.

(v) Discrete Uniform: Since all outcomes are equally likely, and there are b − a + 1 outcomes in
a, a+ 1, .., b, we know that the probability mass function of any D ∼ DiscreteUniform(a, b) is

p(k) = P(D = k) =
1

b− a+ 1

for all k ∈ {a, a+ 1, ..., b} and p(k) = 0 for all other k.
This directly implies that the probability generating function of D ∼ DiscreteUniform(a, b) is

GD(t) = G(t) =

b∑
k=a

tk

b− a+ 1
=

1

b− a+ 1

b∑
k=a

tk =
1

b− a+ 1

b−a∑
k=0

tk+a

=
ta

b− a+ 1

b−a∑
k=0

tk =
ta

b− a+ 1
· 1− tb−a+1

1− t

By the definition of expected value, we know that

µ = E[D] =

b∑
k=a

k

b− a+ 1

Moving the 1
b−a+1 outside the sum, we find that the expected value of D ∼ DiscreteUniform(a, b)

is

µ = E[D] =
1

b− a+ 1

b∑
k=a

k

For all a, b ∈ Z,
b∑

k=a

k = a+ (a+ 1) + ...+ (b− 1) + b

= b+ (b− 1) + ...+ (a+ 1) + a

By adding vertically, each a+ i is paired with b− i such that a+ i+b− i = a+b. There are b−a+1
such pairs, so

2

b∑
k=a

k = (b− a+ 1)(a+ b) =⇒
b∑

k=a

k =
(b− a+ 1)(a+ b)

2

Therefore, the expected value of D ∼ DiscreteUniform(a, b) is

µ = E[D] =
1

b− a+ 1

b∑
k=a

k =
1

b− a+ 1
· (b− a+ 1)(a+ b)

2
=
a+ b

2
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We could also note that, since E[D] = G′(1), and the derivative of the PGF is

d

dt

ta

b− a+ 1
· 1− tb−a+1

1− t
=

ta(1− tb−a+1)

(b− a+ 1)(1− t)2
+
ata−1(1− tb−a+1)

(b− a+ 1)(1− t)
− tb

1− t

evaluating at t = 1 yields

E[D] = G′(1) = lim
t→1

ta(1− tb−a+1)

(b− a+ 1)(1− t)2
+
ata−1(1− tb−a+1)

(b− a+ 1)(1− t)
− tb

1− t

= lim
t→1

ata−1(1− tb−a+1) + ta(−(b− a+ 1)tb−a)

−2(b− a+ 1)(1− t)

+
a(a− 1)ta−2(1− tb−a+1) + ata−1(−(b− a+ 1)tb−a)

−(b− a+ 1)
− btb−1

−1

= lim
t→1

a(a− 1)ta−2(1− tb−a+1) + ata−1(−(b− a+ 1)tb−a)− btb−1(b− a+ 1)

2(b− a+ 1)
+ a+ b

=
−a− b

2
+ a+ b =

−a− b+ 2a+ 2b

2
=
a+ b

2

as expected.
We know that σ2 = V ar(D) = E[D2]− E[D]2.
Since σ2(D) = σ2(D+ x), where x is a constant, we can add −a+ 1 to all integers in {a,a+1,...,b}
such that a becomes a − a + 1 = 1 and b becomes b − a + 1. Then we can let n = b − a + 1, and
our possible values of D − a + 1 range from 1 → n. Now, we have n possibilities for the value of
D − a+ 1, each with equal probability 1

n , so our expected value is

E[D − a+ 1] =

n∑
k=1

k

n
=

1

n

n∑
k=1

k =
1

n

n(n+ 1)

2
=
n+ 1

2

Now, we just need to calculate E[(D − a+ 1)2]. By the definition of expected value, we know that

E[(D − a+ 1)2] =

n∑
k=1

k2

n
=

1

n

n∑
k=1

k2 =
1

n

n(n+ 1)(2n+ 1)

6

=
2n2 + 3n+ 1

6

Plugging this into the equation for σ2 = V ar(D) = V ar(D − a+ 1), we find

σ2 = V ar(D) = V ar(D − a+ 1) =
2n2 + 3n+ 1

6
− n+ 1

2

2

=
4n2 + 6n+ 2− 3n2 − 6n− 3

12
=
n2 − 1

12

This is true for all a and b, so we know the variance of any D ∼ DiscreteUniform(a, b) is

σ2 = V ar(D) =
(b− a+ 1)2 − 1

12
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Assignment 9

Math 407 (Swanson) – Spring 2023
Homework 1

Due Friday 1/13, 11:59pm

Name: Emerson Kahle Section: 39981

• You must upload your solutions to Gradescope as one single, high-quality PDF. You can convert
paper-based work to a high-quality PDF using a scanning app for mobile devices, such as Adobe Scan
(free, available for iOS and Android, can do multiple pages) or many others. If necessary, you can
combine or merge multiple PDF’s into a single PDF using a variety of services, such as Adobe Acrobat’s
cloud-based merge tool.

• After you upload, you must match each question with its corresponding page using Gradescope’s
interface. This allows graders to spend more time giving you feedback instead of hunting through
submissions.

• Answers without supporting work will receive no credit. Show your work.

• You are encouraged to work together on homework, but you must write up your solutions sepa-
rately in your own words. Copying from your fellow students or other sources is a serious academic
integrity violation. In particular, you may not use “tutoring” services which simply provide answers.

• You are encouraged to typeset your solutions in LATEX. Source code has been provided on Blackboard.
Overleaf is a popular cloud-based editor.

• Problem numbers refer to the course textbook, though the problems may have been modified signifi-
cantly.
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1. Fill in the final column of the table in HW 8, question 7. That is, give explicit formulas for the vari-
ances of binomial, geometric, negative binomial, Poisson, and discrete uniform random variables, using
probability generating function arguments.

Solution. The completed table from HW 8 is as follows:

Distribution Parameter(s) PMF PGF µ σ2 /
V ariance

Binomial n, p np np(1− p)(
n
k

)
· pk (pt+

·(1− p)n−k (1− p))n

Geometric p 1
p

1−p
p2

(1− p)k−1p pt
1−(1−p)t

Negative binomial r, p
(
k−1
r−1

)
( pt
1−(1−p)t )

r r
p

(1−p)r
p2

·(1− p)k−r

·pr

Poisson λ e−λ λ
k

k! e(t−1)λ λ λ

Discrete uniform a, b 1
b−a+1

ta

b−a+1
a+b
2

(b−a+1)2−1
12

· 1−t
b−a+1

1−t

Now, we will show the probability generating function arguments for the rightmost column in the table.
We use the fact that

V ar(X) = G”(1) +G′(1)(1−G′(1))

for each distribution.

Binomial: Suppose X ∼ Binomial(n, p). Then GX(t) = (pt+ (1− p))n, so

G′
X(t) = n(pt+ (1− p))n−1p

and
G”X(t) = n(n− 1)(pt+ (1− p))n−2p2

so

V ar(X) = n(n− 1)(p+ (1− p))n−2p2 + n(p+ (1− p))n−1p(1− n(pt+ (1− p))n−1p)

= n(n− 1)p2 + np(1− np) = n2p2 − np2 + np− n2p2 = np− np2 = np(1− p)

Geometric: Suppose Y ∼ Geometric(p). Then GY (t) =
pt

1−(1−p)t , so

G′
Y (t) = p · (1− (1− p)t)− (p− 1)t

(1− (1− p)t)2
=

p

(1− (1− p)t)2

and

G”Y (t) = p · −2(1− (1− p)t)−3(p− 1) =
−2p(p− 1)

(1− (1− p)t)3
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so

V ar(Y ) =
−2p(p− 1)

(1− (1− p))3
+

p

(1− (1− p))2
(1− p

(1− (1− p))2
) =

−2p(p− 1)

p3
+

p

p2
(1− p

p2
)

=
−2

p
+

2

p2
+

1

p
(1− 1

p
) =

−2

p
+

2

p2
+

1

p
− 1

p2
=

1

p2
− 1

p
=

1

p2
− p

p2
=

1− p

p2

Negative Binomial: Suppose N ∼ NegativeBinomial(r, p). Then GN (t) =
(

pt
1−(1−p)t

)r
, so

G′
N (t) =

rp( pt
1−(1−p)t )

r−1

(1− (1− p)t)2

which means

G′
N (1) =

rp(pp )
r−1

p2
=
rp

p2
=
r

p

and

G”N (t) =
r(r − 1)p

(
pt

1−(1−p)t
)r−2 p

(1−(1−p)t)2 (1− (1− p)t)2 − rp( pt
1−(1−p)t )

r−1 · 2(1− (1− p)t)(p− 1)

(1− (1− p)t)4

=
r(r − 1)p2

(
pt

1−(1−p)t
)r−2 − rp( pt

1−(1−p)t )
r−1 · 2(1− (1− p)t)(p− 1)

(1− (1− p)t)4

which means

G”N (1) =
r(r − 1)p2

(
p
p

)r−2 − rp(pp )
r−1 · 2(p)(p− 1)

(p)4
=
r(r − 1)p2 − 2rp2(p− 1)

p4

=
r(r − 1)− 2r(p− 1)

p2
=
r2 − r − 2rp+ 2r

p2
=
r2 + r − 2rp

p2
=
r2 + r(1− 2p)

p2

so

V ar(N) =
r2 + r(1− 2p)

p2
+
r

p
(1− r

p
) =

r2

p2
+

r

p2
− 2r

p
+
r

p
− r2

p2
=

r

p2
− 2r

p
+
r

p
=
r − 2rp+ rp

p2

=
r − rp

p2
=
r(1− p)

p2

Poisson: If P ∼ Poisson(λ), then GP (t) = e(t−1)λ, so

G′
P (t) = λe(t−1)λ

and
G”P (t) = λ2e(t−1)λ

so
V ar(P ) = λ2 + λ(1− λ) = λ2 + λ− λ2 = λ

Discrete Uniform: IF D ∼ DiscreteUniform(a, b), then GD(t) =
ta

b−a+1 · 1−tb−a+1

1−t . Since V ar(D) =
V ar(D+k) for any constant k, we can let k = −a and the values of D+k range from a−a = 0 to b−a.
Let n = b− a, and then (D + k) = (D − a) ∼ DiscreteUniform(0, n). Now, we can calculate G′

D−a(t)
and G”D−a(t) to compute V ar(D−a) = V ar(D). For D−a, we have the probability generating function

GD−a(t) =
t0

n+ 1

1− tn+1

1− t
=

1

n+ 1

1− tn+1

1− t
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Therefore,

G′
Da

(t) =
1

n+ 1

−(n+ 1)tn+1(1− t) + (1− tn+1)

(1− t)2

which means

G′
D−a(1) =

1

n+ 1
lim
t→1

−(n+ 1)tn(1− t) + (1− tn+1)

(1− t)2

=
1

n+ 1
lim
t→1

−(n+ 1)ntn−1(1− t) + (n+ 1)tn − (n+ 1)tn

−2(1− t)

=
1

n+ 1
lim
t→1

−(n+ 1)n(n− 1)tn−2(1− t) + (n+ 1)ntn−1

2
=

1

n+ 1

n(n+ 1)

2
=
n

2

and

G”D−a(t) =

−(n+ 1)ntn−1(1− t) + (n+ 1)tn − (n+ 1)tn)(1− t)2 + 2(1− t)(−(n+ 1)tn(1− t) + 1− tn+1)

(n+ 1)(1− t)4

=
−(n+ 1)ntn−1(1− t)3 + 2(1− t)(−(n+ 1)tn(1− t) + 1− tn+1)

(n+ 1)(1− t)4

Applying L’Hopital’s Rule 4 times, we find that

G”D−a(1) = lim
t→1

−(n+ 1)ntn−1(1− t)3 + 2(1− t)(−(n+ 1)tn(1− t) + 1− tn+1)

(n+ 1)(1− t)4

=
8n(n2 − 1)

24(n+ 1)
=
n(n− 1)

3
=
n2 − n

3

Plugging G”D−a(1) and G
′
D−a(1) into the equation for variance, we find

V ar(D − a) =
n2 − n

3
+
n

2
(1− n

2
) =

4n2 − 4n

12
+

6n

12
− 3n2

12
=
n2 + 2n

12
=

(n+ 1)2 − 1

12

Since V ar(D) = V ar(D − a), we know

V ar(D) = V ar(D − a) =
(n+ 1)2 − 1

12

Since n = b− a, n+ 1 = b− a+ 1, so

V ar(D) =
(b− a+ 1)2 − 1

12
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2. (Ross P4.39) If E[X] = 1 and Var(X) = 5, find

(a) E[(2 +X)2]

(b) Var(4 + 3X)

Solution.

(a) Note that E[cX] = cE[x] and E[X + Y ] = E[X] + E[Y ]. We can apply these two properties of
expectation directly to find

E[(2 +X)2] = E[(X2 + 4X + 4)] = E[(X2)] + E[4X] + E[4] = E[X2] + 4E[X] + 4

= E[X2] + 4 + 4 = E[X2] + 8 (1)

so we just need to compute E[X2]. By definition, V ar(X) = E[X2] − E[X]2, and we are given
V ar(X) = 5, so we can easily compute that

E[X2] = V ar(X) + E[X]2 = 5 + 12 = 5 + 1 = 6

Plugging 6 in for E[X2] in (1), we find

E[(2 +X)2] = 6 + 8 = 14

(b) Note that V ar(c +X) = V ar(X) and V ar(cX) = c2V ar(X). We can apply these two properties
of variance directly to find

V ar(4 + 3X) = V ar(3x) = 32V ar(X) = 9V ar(X) (2)

We are given that V ar(X) = 5, so we can plug this value into (2) to find

V ar(4 + 3X) = 9 · 5 = 45
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3. (a) Suppose X and Y are independent discrete random variables. Show that

E[XY ] = E[X]E[Y ].

(b) Give an explicit example of random variables for which E[XY ] ̸= E[X]E[Y ].

Solution.

(a) Suppose K is the set of possible values of XY . Then by the definition of expected value,

E[XY ] =
∑
k∈K

kP(k) (1)

Suppose I is the set of possible values of X and J is the set of possible values of Y . Then

XY = k =⇒ X = i ∈ I, Y = j ∈ J s.t. i · j = k

so
P(XY = k) = P(X = i ∈ I, Y = j ∈ J s.t. i · j = k)

There could be multiple combinations, (i1, j1), (i2, j2), ... such that ia · ja = k, and all outcomes
are mutually disjoint (since if X = a, we know X ̸= b for all b ̸= a, and the same holds for Y ).
Therefore, we know that

P(XY = k) =
∑

i∈I,j∈Js.t.i·j=k

P(X = i, Y = j)

We can now rewrite (1) in terms of i and j:

E[XY ] =
∑
k∈K

k
∑

i∈I,j∈Js.t.i·j=k

P(X = i, Y = j) (2)

Since we are summing over all possible values of k, we are also summing over all possible combina-
tions of i and j, and we know k = i · j for each combination, so we can rewrite (2) as

E[XY ] =
∑

i∈I,j∈J
i · jP(X = i, Y = j) (3)

Since X and Y are independent, we know P(X = i, Y = j) = P(X = i)P(Y = j) for all i ∈ I, j ∈ J ,
so we can rewrite (3) as

E[XY ] =
∑

i∈I,j∈J
i · jP(X = i)P(Y = j) =

∑
i∈I

∑
j∈J

i · jP(X = i)P(Y = j)

=
(∑
i∈I

iP(X = i)
)(∑
j∈J

jP(Y = j)
)
= E[X]E[Y ]

with the last equality following from the definition of expected value. This concludes the proof that
if X and Y are independent discrete random variables, E[XY ] = E[X]E[Y ].

(b) Let X = the value of a single roll of a fair six-sided die. Let Y = X − 1.
Then X ∼ DiscreteUniform(1, 6) and Y ∼ DiscreteUniform(0, 5), so

E[X] =
6 + 1

2
=

7

2
= 3.5

and

E[Y ] =
5 + 0

2
=

5

2
= 2.5
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so

E[X]E[Y ] =
7

2

5

2
=

35

4
= 8.75

Suppose K is the set of all possible values of XY . Then by the definition of expected value,

E(XY ) =
∑
k∈K

kP(XY = k) (4)

If X = 1, Y = 1− 1 = 0, so XY = 0 ∈ K.
If X = 2, Y = 2− 1 = 1, so XY = 2(1) = 2 ∈ K.
If X = 3, Y = 3− 1 = 2, so XY = 3(2) = 6 ∈ K.
If X = 4, Y = 4− 1 = 3, so XY = 4(3) = 12 ∈ K.
If X = 5, Y = 5− 1 = 4, so XY = 5(4) = 20 ∈ K.
If X = 6, Y = 6− 1 = 5, so XY = 6(5) = 30 ∈ K.
Since X only takes values from 1 to 6, and Y ’s value depends entirely on the value of X, this means

K = {0, 2, 6, 12, 20, 30}

Furthermore, since X ∼ DiscreteUniform(1, 6), we know that

P(X = i) =
1

6− 1 + 1
=

1

6

for all 1 ≤ i ≤ 6.
Note: X = i ⇐⇒ XY = i(i− 1) for all 1 ≤ i ≤ 6, so

P(XY = k) = P(XY = i(i− 1)) = P(X = i) =
1

6

for all 1 ≤ i ≤ 6 and all k ∈ K. Plugging in 1
6 for P(XY = k) in (4), we find

E[XY ] =
∑
k∈K

k
1

6
=

1

6

∑
k∈K

k =
0 + 2 + 6 + 12 + 20 + 30

6
=

70

6
=

35

3
̸= 35

4
= E[X]E[Y ]

Thus, X and Y serve as an explicit example of random variables for which E[XY ] ̸= E[X]E[Y ]
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4. (a) Suppose X and Y are independent discrete random variables. Show that

Var(X + Y ) = Var(X) + Var(Y ).

(b) Give an explicit example of random variables for which Var(X + Y ) ̸= Var(X) + Var(Y ).

Solution.

(a) By the definition of variance, we know that

V ar(X + Y ) = E[(X + Y )2]− E[(X + Y )]2 (1)

Expanding and applying linearity of expectation to (1), we find

V ar(X + Y ) = E[(X2 + 2XY + Y 2)]− (E[X] + E[Y ])2

= E[X2] + 2E[XY ] + E[Y 2]− (E[X]2 + 2E[X]E[Y ] + E[Y ]2)

= E[X2] + 2E[XY ] + E[Y 2]− E[X]2 − 2E[X]E[Y ]− E[Y ]2 (2)

Since X and Y are independent, we know that

E[XY ] = E[X]E[Y ]

Plugging E[X]E[Y ] in for E[XY ] in (2), we find

V ar(X + Y ) = E[X2] + 2E[X]E[Y ] + E[Y 2]− E[X]2 − 2E[X]E[Y ]− E[Y ]2

= E[X2] + E[Y 2]− E[X]2 − E[Y ]2

= (E[X2]− E[X]2) + (E[Y 2]− E[Y 2]

= V ar(X) + V ar(Y )

with the final equality following from the definition of variance. This concludes the proof that if X
and Y are independent discrete random variables, V ar(X + Y ) = V ar(X) + V ar(Y ).

(b) We will use the same variables X and Y as in part (b) of question 3.
That is,X = the value of a single roll of a fair six-sided die, Y = X−1. SinceX ∼ DiscreteUniform(1, 6),
we know

V ar(X) =
(6− 1 + 1)2 − 1

12
=

35

12

and since Y ∼ DiscreteUniform(0, 5), we know

V ar(Y ) =
(5− 0 + 1)2 − 1

12
=

35

12
= V ar(X)

Therefore, we can easily compute that

V ar(X) + V ar(Y ) =
35

12
+

35

12
=

70

12
=

35

6

By the definition of variance, we know

V ar(X + Y ) = E[(X + Y )2]− E[(X + Y )]2

Expanding and applying linearity of expectation, we find

V ar(X + Y ) = E[X2 + 2XY + Y 2]− E[(X + Y )]2

= E[X2] + 2E[XY ] + E[Y 2]− E[X + Y ]2
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Since E[(X + Y )] = E[X] + E[Y ], and E[X] = 7
2 , E[Y ] = 5

2 , we know

V ar(X + Y ) = E[X2] + 2E[XY ] + E[Y 2]− (
7

2
+

5

2
)2

= E[X2] + 2E[XY ] + E[Y 2]− 62

= E[X2] + 2E[XY ] + E[Y 2]− 36 (3)

In part (b) of question 3, we already calculated that E[XY ] = 35
3 , so we just need to compute

E[X2] and E[Y 2].
By the definition of expected value, we know

E[X2] =

6∑
k=1

k2P(X = k)

Since X ∼ DiscreteUniform(1, 6), we know P(X = k) = 1
6−1+1 = 1

6 for all 1 ≤ k ≤ 6, which
implies that

E[X2] =

6∑
k=1

k2
1

6
=

1

6

6∑
k=1

k2 =
12 + 22 + 32 + 42 + 52 + 62

6
=

91

6

Similarly, by the definition of expected value, we know

E[Y 2] =

5∑
k=0

k2P(Y = k)

since Y ∼ DiscreteUniform(0, 5), we know P(Y = k) = 1
5−0+1 = 1

6 for all 0 ≤ k ≤ 5, which
implies that

E[Y 2] =

5∑
k=0

k2
1

6
=

1

6

5∑
k=0

k2 =
02 + 12 + 22 + 32 + 42 + 52

6
=

55

6

Plugging E[X2], E[XY ], and E[Y 2] into (3), we find that

V ar(X + Y ) =
91

6
+ 2

35

3
+

55

6
− 36

=
91 + 140 + 55

6
− 36

=
286

6
− 216

6

=
70

6
̸= 35

6
= V ar(X) + V ar(Y )

Thus, X and Y serve as an explicit example of random variables for which V ar(X+Y ) ̸= V ar(X)+
V ar(Y ).
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5. (Ross P4.47) Suppose that it takes at least 9 votes from a 12-member jury to convict a defendant. Sup-
pose also that the probability that a juror votes a guilty person innocent is 0.2, whereas the probability
that the juror votes an innocent person guilty is 0.1. If each juror acts independently and if 65 percent of
the defendants are guilty, find the probability that the jury renders a correct decision. What percentage
of defendants are convicted?

Solution.
Let JG = the event that the jury finds the defendant guilty.
Let JI = JcG = the event that the jury finds the defendant innocent.
Let I = the event that the defendant is innocent.
Let G = Ic the event that the defendant is guilty.
Then JG ∩ JI = ∅, so JG and JI are mutually disjoint.
Similarly, G ∩ I = ∅, so G and I are mutually disjoint.
Let C = the event that the jury renders a correct decision.
We need to find P(C) and P(JG).

Note that C = (JG ∩ G) ∪ (JI ∩ I). If the defendant is guilty and the jury finds the defendant guilty,
then the defendant cannot be innocent, and the jury cannot find the defendant innocent. Therefore,
(JG ∩G) ∩ (JI ∩ I) = ∅, so (JG ∩G) and (JI ∩ I) are mutually disjoint, which means

P(C) = P((JG ∩G) ∪ (JI ∩ I)) = P(JG ∩G) + P(JI ∩ I)

Since P(X ∩ Y ) = P(X|Y )P(Y ), we know

P(C) = P(JG|G)P(G) + P(JI |I)P(I) (1)

Number the jurors from 1 to 12. Let Ni =

{
1 if the i’th juror votes guilty

0 if the i’th juror votes innocent

and let N =
∑12
k=1Ni = the total number of jurors that vote guilty.

We are given that, if the defendant is guilty, the probability that a given juror votes the defendant
innocent is

P(Ni = 0|G) = 0.2

for all 1 ≤ i ≤ 12. This implies the probability that a given juror votes the defendant guilty (if the
defendant is actually guilty) is

P(Ni = 1|G) = 1− P(Ni = 0|G) = 1− 0.2 = 0.8

Therefore, if the defendant is guilty, we can treat N as a Binomial random variable with p = 0.8 and
n = 12.
Since at least 9 of the 12 jurors must vote guilty for a conviction, we know that

P(JG|G) = P(N ≥ 9|G) =
12∑
i=9

(
12

i

)
(0.8)i(0.2)12−i

Similarly, if the defendant is innocent, we are given that the probability that a given juror votes the
defendant guilty is

P(Ni = 1|I) = 0.1

for all 1 ≤ i ≤ 12. This implies the probability that a given juror votes the defendant innocent (if the
defendant is actually innocent) is

P(Ni = 0|I) = 1− P(Ni = 1|I) = 1− 0.1 = 0.9

Therefore, if the defendant is innocent, we can treat N as a Binomial random variable with p = 0.1 and
n = 12.
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Since at least 9 of the 12 jurors must vote guilty for a conviction, if the defendant is innocent, the jury
only makes the correct decision if ≤ 8 jurors vote guilty. This implies the probability that the jury votes
a defendant innocent, given that they are actually innocent, is

P(JI |I) =
8∑
i=0

(
12

i

)
(0.1)i(0.9)12−i

We are given that
P(G) = 0.65

which, since I = Gc, implies that
P(I) = 1− 0.65 = 0.35

Plugging these computed and given values for P(JG|G), P(G), P(JI |I), and P(I) into (1), we find that

P(C) =
12∑
i=9

(
12

i

)
(0.8)i(0.2)12−i · 0.65 +

8∑
i=0

(
12

i

)
(0.1)i(0.9)12−i · 0.35

≈ 0.79457 · 0.65 + 0.99999983 · 0.35 ≈ 0.8665 = 86.65%

Thus, the probability that the jury renders a correct decision is P(C) ≈ 0.8665 = 86.65%.

For P(JG), we can apply the Law of Total Probability to find that

P(JG) = P(JG|G)P(G) + P(JG|I)P(I) (2)

We already computed P(JG|G)P(G), and we are given P(I), so we just need to compute P(JG|I). To do
so, we can once again treat N as a Binomial random variable with n = 12 and p = 0.1. Since at least 9
of the 12 jurors must vote guilty for the defendant to be convicted, we know that

P(JG|I) = P(N ≥ 9|I) =
12∑
i=9

(
12

i

)
(0.1)i(0.9)12−i

Plugging this into (2), we find

P(JG) =
12∑
i=9

(
12

i

)
(0.8)i(0.2)12−i · 0.65 +

12∑
i=9

(
12

i

)
(0.1)i(0.9)12−i · 0.35

≈ 0.79457 · 0.65 + 000000165 · 0.35 ≈ 0.5165 = 51.65%

Thus, approximately 51.65% of defendants are convicted.
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6. Consider a sequence of independent Bernoulli trials each with success probability p. Let Y be the number
of trials until the rth success. Let X1 be the number of trials until the first success, let X2 be the number
of trials after the first success until the second success, and in general let Xi+1 be the number of trials
after the ith success until the (i+ 1)st success. By definition, Y ∼ NegativeBinomial(r, p).

(a) Show that Y = X1 +X2 + · · ·+Xr.

(b) Show that X1, X2, . . . , Xr are i.i.d. Geometric(p) random variables.

(c) How do the probability generating functions of Y and Xi relate to each other?

Solution.

(a) Claim: Y =
∑r
k=1Xk for all r ∈ N.

Proof. We induct on r
Base Case:
r = 1. It takes X1 trials until the first success, so Y = X1 =

∑r
k=1Xk, so the claim holds for the

base case.
Inductive Hypothesis:
Assume Y =

∑r
k=1Xk for all 1 ≤ r ≤ j.

Inductive Step:
Consider r = j + 1. By the inductive hypothesis, we know it takes

∑j
k=1Xk trials until the jth

success. By the definition of Xj+1, we know it takes j + 1 more trials after the jth success until
the j + 1th success. Therefore, it takes a total of

Y =

j∑
k=1

Xk +Xj+1 =

j+1∑
k=1

Xk

trials until the (j + 1)th success. The conclusion that

Y = X1 +X2 + · · ·+Xr

follows by induction.

(b) Since each Xi only counts the number of trials after the (i− 1)th success until the ith success, the
set of Bernoulli trials that determines Xi is mutually disjoint from the sets of Bernoulli trials that
determineXj for all j ̸= i. Therefore, theXi’s are all mutually independent random variables. Since
each Xi counts the number of independent Bernoulli trials, each with probability p, until exactly
one success occurs, each Xi ∼ Geometric(p) by definition of the Geometric random variable. Since
the X1, · · · , Xr are mutually independent, we know X1, · · · , Xr are i.i.d. Geometric(p) random
variables. For each Xi, if Xi = k, there must have been k − 1 failure trials followed by 1 success
trial. Therefore, the probability mass function for each Xi is

P(Xi = k) = (1− p)k−1p

which also shows that X1, X2, · · ·Xr are i.i.d Geometric(p) random variables.

(c) Let GY (t) = the probability generating function of Y .
Let GXi

(t) = the probability generating function of Xi.
Since Y ∼ NegativeBinomial(r, p), we know it has probability generating function

GY (t) =
( pt

1− (1− p)t

)r
Since X1, X2, · · · , Xr are i.i.d Geometric(p), we know they each have probability generating func-
tion

GXi
(t) =

pt

1− (1− p)t
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Therefore,
GY (t) = (GXi(t))

r

so the probability generating function of Y is just the probability generating function of Xi raised
to the rth power.
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7. Suppose X ∼ Poisson(λ1), Y ∼ Poisson(λ2) are independent. Show that X + Y ∼ Poisson(λ1 + λ2).

Since X ∼ Poisson(λ1) and Y ∼ Poisson(λ2), we know X has probability mass function

P(X = k) = e−λ1
λk1
k!

and Y has probability mass function

P(Y = k) = e−λ2
λk2
k!

We want to show that X + Y has probability mass function

P(X + Y = k) = e−λ1−λ2
(λ1 + λ2)

k

k!

If X + Y = k, then X = i ∈ {0, 1, ..., k} and Y = k − i. Therefore,

P(X + Y = k) = P(X = i ∈ {0, 1, ..., k}, Y = k − i)

= P((X = 0, Y = k) ∪ (X = 1, Y = k − 1) ∪ · · · ∪ (X = k), (Y = 0))

Since (X = i, Y = k − i) and (X = j, Y = k − j) are mutually disjoint for all i ̸= j, we know

P(X + Y = k) =

k∑
i=0

P(X = i, Y = k − i)

Since X and Y are mutually disjoint, we know

P(X = i, Y = k − i) = P(X = i)P(Y = k − i)

for all i. This implies

P(X + Y = k) =

k∑
i=0

P(X = i)P(Y = k − i) =

k∑
i=0

e−λ1
λi1
i!
e−λ2

λk−i2

(k − i)!

=

k∑
i=0

e−λ1−λ2
λi1λ

k−i
2

i!(k − i)!
(1)

Note that the denominator in the fraction is the same as the denominator in
(
k
i

)
. This suggests we

should multiply both sides of (1) by 1 = k!
k! to find

P(X + Y = k) = 1 · P(X + Y = k) =
k!

k!

k∑
i=0

e−λ1−λ2
λi1λ

k−i
2

i!(k − i)!

=
1

k!

k∑
i=0

e−λ1−λ2λi1λ
k−i
2

k!

i!(k − i)!

=
e−λ1−λ2

k!

k∑
i=0

λi1λ
k−i
2

(
k

i

)
Applying the Binomial Theorem, we find

P(X + Y = k) =
e−λ1−λ2

k!
(λ1 + λ2)

k = e−λ1−λ2
(λ1 + λ2)

k

k!

which is exactly what we want to show. This concludes the proof that, if X ∼ Poisson(λ1) and
Y ∼ Poission(λ2), then X + Y ∼ Poisson(λ1 + λ2).
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8. (Ross P4.60) Suppose that the number of accidents occurring on a highway each day is a Poisson random
variable with parameter λ = 3.

(a) Find the probability that 3 or more accidents occur today.

(b) Repeat part (a) under the assumption that at least 1 accident occurs today.

Solution.

(a) Let X = the number of accidents occurring on a highway each day. Then X ∼ Poisson(3).
Note that (X ≥ 3) = (X ≤ 2)c, so

P(X ≥ 3) = 1− P(X ≤ 2) (1)

Since (X ≤ 2) = (X = 0)∪ (X = 1)∪ (X = 2), and (X = 0), (X = 1), and (X = 2) are all mutually
disjoint, we know

P(X ≤ 2) = P((X = 0) ∪ (X = 1) ∪ (X = 2)) = P(X = 0) + P(X = 1) + P(X = 2)

Since X ∼ Poisson(3), we know X has probability mass function

P(X = k) = e−3 3
k

k!
so

P(X = 0) = e−3 3
0

0!
= e−3 1

1
= e−3

and

P(X = 1) = e−3 3
1

1!
= e−3 3

1
= 3e−3

and

P(X = 2) = e−3 3
2

2!
= e−3 9

2
Therefore, we know that

P(X ≤ 2) = e−3 + 3e−3 +
9

2
e−3 =

2 + 6 + 9

2
e−3 =

17

2
e−3

Plugging this into (1), we find

P(X ≥ 3) = 1− 17

2
e−3 ≈ 0.5768 = 57.68%

Thus, the probability that 3 or more accidents occur today is approximately 57.68%

(b) The probability that 3 or more accidents occur today under the assumption that at least 1 accident
occurs today is

P((X ≥ 3)|(X ≥ 1)) =
P((X ≥ 3) ∩ (X ≥ 1))

P(X ≥ 1)
(2)

Since (X ≥ 3) ∩ (X ≥ 1) = (X ≥ 3), we know

P((X ≥ 3) ∩ (X ≥ 1)) = P((X ≥ 3) = 1− 17

2
e−3

Since (X ≥ 1) = (X = 0)c, we know

P(X ≥ 1) = 1− P(X = 0) = 1− e−3

Plugging these values into (2), we find

P((X ≥ 3)|(X ≥ 1)) =
1− 17

2 e
−3

1− e−3
≈ 0.6070 = 60.70%

Thus, the probability that at least 3 accidents occur today, under the assumption that at least 1
accident occurs today, is approximately 60.70%.
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9. Suppose X is Z-valued and there is a constant α for which E[Q(X)] = Q(α) for all polynomials Q. Show
that P (X = x) = δx,α.

Solution.
We want to show that

P(X = x) =

{
0 if x ̸= α

1 if x = α

Since E[Q(X)] = Q(α) for all polynomials Q, if we let Q1(c) = c and Q2(c) = c2, then we have

E[Q1(X)] = E[X] = Q1(α) = α

and
E[Q2(X)] = E[X2] = Q2(α) = α2

This implies that
V ar(X) = E[X2]− E[X]2 = α2 − α2 = 0

Since V ar(X) = 0, we know X must be a constant, so

X = c

for some c ∈ Z. This implies
E[X] = c

and we are given
E[X] = α

so we know c = α, which implies
X = c = α

Since X = α, we know
P(X = α) = 1

and
P(X = x) = 0

for all x ̸= α. This completes the proof that

P(X = x) =

{
0 if x ̸= α

1 if x = α
= δx,α
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10. In Python, we can simulate a fair die roll using the random library’s randint function. For example, the
following simulates rolling 20 dice:

> import random

> def roll_dice(n):

> return [random.randint(1, 6) for i in range(n)]

> print(roll_dice(20))

[4, 6, 3, 2, 3, 6, 1, 2, 3, 1, 6, 3, 2, 2, 4, 4, 3, 1, 6, 1]

Recall that the true mean and variance of a six-sided die roll are µ = 7/2 = 3.5 and σ2 = 35/12 =
2.9166 . . .. The sample average

X =
1

20

20∑
i=1

Xi

of the preceding simulation is given by

> def average(L):

> return sum(x for x in L)/float(len(L))

> print(average(roll_dice(20)))

3.15

This single sample average is not a particularly accurate estimate of the true mean. However, we may
repeat the experiment many times and average the sample averages to increase the accuracy! The
following code does this by averaging 10000 such sample averages:

> print(average([average(roll_dice(20)) for i in range(10000)]))

3.49593

Note that the result is indeed quite close to the true mean of 3.5.

(a) Modify the preceding code to estimate σ2 by averaging

Y =
1

20

20∑
i=1

(Xi − µ)2,

over 10000 samples. (Note: x2 is written as x**2 in Python. If you are not familiar with Python,
you may wish to discuss this problem with a classmate who is.)

(b) Now estimate σ2 using the naive sample standard deviation,

s2 =
1

20

20∑
i=1

(Xi −X)2,

over 10000 samples.

(c) Finally estimate σ2 using Bessel’s corrected sample standard deviation,

S2 =
1

19

20∑
i=1

(Xi −X)2,

over 10000 samples.

(d) Discuss the accuracy of the above three estimates for σ2. Do they agree with the theoretical
considerations from lecture?
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Solution.

(a) The modified code is as follows:

> def sigma_squared(L):

> return sum((l-3.5)**2 for l in L)/float(len(L))

> print(average([sigma_squared(roll_dice(20)) for i in range (10000)]))

2.91558

so the estimate for σ2 over 10000 samples is 2.91558.
Note that this result is very close to the population variance of

σ2 =
35

12
≈ 2.9167

(b) The modified code is as follows:

> def sample_SD(L):

> return sum((l-average(L))**2 for l in L)/float(len(L))

> print(average([sample_SD(roll_dice(20)) for i in range(10000)]))

2.78145

so the estimate for σ2 over 10000 samples using naive sample standard deviation is 2.78145.
Note that this result is significantly further from the population variance than the estimate using
the population mean µ = 3.5.

(c) The modified code is as follows:

> def bessel(L):

> return sum((l-average(L))**2 for l in L)/float(len(L)-1)

> print(average([bessel(roll_dice(20)) for i in range(10000)]))

2.92236

so the estimate for σ2 over 10000 samples using Bessel’s corrected sample standard deviation is
2.92236.
Note that this result is very close to the population variance, much closer than the estimate using
the naive sample standard deviation.

(d) The accuracy of the above three estimates for σ2 do agree with the theoretical considerations from
lecture.
The estimate using the population mean µ = 3.5 is the most accurate of the three, as the magnitude
of its error is only

|35
12

− 2.91558| ≈ 0.00109

This is to be expected, as

E[Y ] = E[
1

20

20∑
i=1

(Xi − µ)2] =
1

20

20∑
i=1

E[(Xi − µ)2] =
V ar(X1) + · · ·+ V ar(X20

20
=

20σ2

20
= σ2

. Therefore, using the population mean provides an unbiased estimator for σ2, which explains why
the estimate has such little error. The estimate using the naive sample standard deviation is the
least accurate of the three, as the magnitude of its error is

|35
12

− 2.78145| ≈ 0.13522
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, so it underestimated σ2 by approximately 0.13522. This is also to be expected, as the naive
sample standard deviation is a biased-down estimator which underestimates σ2. This explains why
the estimate using naive sample standard deviation is the least accurate and underpredicts σ2.
The estimate using Bessel’s corrected sample standard deviation is almost as accurate as the esti-
mate using µ = 3.5, as the magnitude of its error is only

|35
12

− 2.92236| ≈ 0.00569

This also aligns with the theoretical considerations from lecture, as Bessel’s corrected sample stan-
dard deviation, like the estimate using µ, is an unbiased estimator of σ2. Therefore, E[S2] = σ2,
so, over many samples, we expect the estimate using Bessel’s corrected sample standard deviation
to approach σ2. This explains why this estimate has such little error over 10000 samples.
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Assignment 10

Math 407 (Swanson) – Spring 2023
Homework 1

Due Friday 1/13, 11:59pm

Name: Emerson Kahle Section: 39981

• You must upload your solutions to Gradescope as one single, high-quality PDF. You can convert
paper-based work to a high-quality PDF using a scanning app for mobile devices, such as Adobe Scan
(free, available for iOS and Android, can do multiple pages) or many others. If necessary, you can
combine or merge multiple PDF’s into a single PDF using a variety of services, such as Adobe Acrobat’s
cloud-based merge tool.

• After you upload, you must match each question with its corresponding page using Gradescope’s
interface. This allows graders to spend more time giving you feedback instead of hunting through
submissions.

• Answers without supporting work will receive no credit. Show your work.

• You are encouraged to work together on homework, but you must write up your solutions sepa-
rately in your own words. Copying from your fellow students or other sources is a serious academic
integrity violation. In particular, you may not use “tutoring” services which simply provide answers.

• You are encouraged to typeset your solutions in LATEX. Source code has been provided on Blackboard.
Overleaf is a popular cloud-based editor.

• Problem numbers refer to the course textbook, though the problems may have been modified signifi-
cantly.
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1. (Ross T4.28) If X is a geometric random variable, show computationally that

P (X = n+ k | X > n) = P (X = k).

Using the interpretation of a geometric random variable, give a verbal argument as to why the preceeding
equation is true.

Solution.
First, we will prove the identity computationally.
Proof. We can apply the definition of conditional probability to find that

P(X = n+ k|X > n) =
P(X = n+ k ∩X > n)

P(X > n)
(1)

Since geometric random variables only take on integer values, X > n = X ≥ n+ 1, so

P(X = n+ k|X > n) =
P(X = n+ k ∩X ≥ n+ 1)

P(X ≥ n+ 1)

If X ≥ n+ 1, X ∈ {n+ 1, n+ 2, ...}. Since X = i and X = j are mutually disjoint for all n+ 1 ≤ i ̸= j,
the probability that X ≥ n+ 1 is

P(X ≥ n+ 1) = P(X ∈ {n+ 1, n+ 2, ...}) =
∞∑

i=n+1

P(X = i)

Since X is a geometric variable, we know P(X = k) = (1− p)k−1p for all k ∈ N, so

P(X ≥ n+ 1) =

∞∑
i=n+1

(1− p)i−1p = p

∞∑
j=n

(1− p)j = p
( ∞∑
j=0

(1− p)j −
n−1∑
j=0

(1− p)j
)

= p
( 1

1− (1− p)
− 1− (1− p)n

1− (1− p)

)
=
p(1− 1 + (1− p)n)

p
= (1− p)n

Now, let’s compute P(X = n+ k ∩X > n). If X = n+ k for any k ∈ N, then X = n+ k ≥ n+ 1 > n,
so (X = n+ k ∩X > n) = (X = n+ k), so

P(X = n+ k ∩X > n) = P(X = n+ k) = p(1− p)n+k−1

Plugging the computed values for P(X = n+ k ∩X > n) and P(X > n) into (1), we find

P(X = n+ k|X > n) =
p(1− p)n+k−1

(1− p)n
= p(1− p)n+k−1−n = p(1− p)k−1 = P(X = k)

for all k ∈ N.
For k ≤ 0, P(X = n+ k|X > n) = 0 = P(X = k). The first equality follows because it is impossible for
X = n + k ≤ n if we are given that X > n. The second equality follows since P(X = k) = 0 for k ̸∈ N
for all geometric random variables. This concludes the computational proof for all integers k.

We will now prove the identity using the interpretation of a geometric random variable X as the number
of independent Bernoulli trials until the first success, where the probability of success on each trial is
independently p.
This provides the interpretation that P(X = k) = the probability that it takes exactly k trials until the
first success. We have X = k if and only if the first k − 1 trials are all failures and the kth trial is a
success.
Now, let’s consider P(X = n+ k|X > n). We can interpret this as the probability that it takes exactly
n+ k trials until the first success, given that it takes more than n trials until the first success. We can
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also interpret this as the probability that it takes k trials after the nth trial until the first success, given
that it takes more than n trials until the first success. Since we know it takes more than n trials until
the first success, we can count only the trials after the nth trial until the first success. For there to be
exactly k such trials until the first success, the first k − 1 such trials must all be failures, and the kth
such trial must be a success.
Therefore, both P(X = k) and P(X = n + k|X > n) can be interpreted as the probability that, in a
sequence of k independent Bernoulli trials, the first k − 1 independent Bernoulli will result in failures
and the kth will result in the first success. This concludes the verbal proof that

P(X = n+ k|X > n) = P(X = k)

for all k ∈ N and a geometric random variable X.
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2. (Ross P7.6) A fair die is rolled 10 times. Calculate the expected sum of the 10 rolls.

Solution.
Let X1, X2, ..., X10 be random variables, where Xi = the value of the ith roll of the die.
Let Y = X1 + · · ·+X10 =

∑10
i=1Xi = the sum of the 10 rolls of the die.

Then we want to calculate

E[Y ] = E[

10∑
i=1

Xi]

Applying the fact that E[A+B] = E[A] + E[B] for all random variables A and B, we find

E[Y ] =

10∑
i=1

E[Xi]

Since Xi ∼ DiscreteUniform(1, 6) for all 1 ≤ i ≤ 10, each of the 10 rolls of the die should have the
same expected value. That is,

E[Xi] = E[X1] = · · · = E[X10]

This implies that

E[Y ] =

10∑
i=1

E[X1] = 10E[X1]

We can calculate E[X1] directly using the definition of expected value. SinceX1 ∼ DiscreteUniform(1, 6),
we know P(X = k) = 1

6−1+1 = 1
6 for all k ∈ {1, 2, 3, 4, 5, 6}. This implies that

E[X1] =
∑
k

kP(X = k) =

6∑
k=1

1

6
k =

1

6

6∑
k=1

k =
1 + 2 + 3 + 4 + 5 + 6

6
=

21

6
=

7

2
= 3.5

We could also note that, since X1 ∼ DiscreteUniform(1, 6), it has an expected value of

E[X1] =
6 + 1

2
=

7

2
= 3.5

Plugging in E[X1] = 3.5 into the above equation for E[Y ], we find

E[Y ] = 10E[X1] = 10(3.5) = 35

Therefore, the expected sum of the 10 rolls of the die is 35.
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3. (Ross P7.7) Suppose that A and B each randomly and independently choose 3 of 10 objects. Find the
expected number of objects

(a) chosen by both A and B;

(b) not chosen by either A or B;

(c) chosen by exactly one of A and B.

Solution.

(a) Let X = the number of objects chosen by both A and B. Since A and B both only choose 3 objects,
they can choose maximally 3 of the same objects. Furthermore, since there are 10 objects to choose
from, it is possible that A chooses 3 objects and B chooses 3 objects from the 7 objects which A
did not choose. In this case, the number of objects chosen by both A and B is 0. Thus, X can take
on any value in {0, 1, 2, 3}. By the definition of expected value,

E[X] =

3∑
k=0

kP(X = k) =

3∑
k=1

kP(X = k) (1)

There are
(
10
3

)
ways A can choose its objects and

(
10
3

)
ways B can choose its objects, for a total of(

10

3

)(
10

3

)
=

(
10

3

)2

total possible ways in which A and B can select their objects, where all outcomes are equally likely.
For P(X = 3) A can choose its 3 objects in

(
10
3

)
ways, and B must choose the exact same subset of

3 objects that A chooses, which can be done in exactly 1 way. This yields
(
10
3

)
total possible ways

for the number of objects chosen by both A and B to be 3. Since all outcomes are equally likely,
this yields

P(X = 3) =

(
10
3

)(
10
3

)2 =
1(
10
3

)
For P(X = 2), A can once again choose its 3 objects in

(
10
3

)
ways, but B must now choose 2 out of

the three objects chosen by A and 1 out of the 7 objects not chosen by A. There are
(
3
2

)(
7
1

)
ways

for B to do this. This yields
(
10
3

)(
3
2

)(
7
1

)
total ways for the number of objects chosen by both A and

B to be 2. Since all outcomes are equally likely, this yields

P(X = 2) =

(
10
3

)(
7
1

)(
3
2

)(
10
3

)2 =

(
7
1

)(
3
2

)(
10
3

)
For P(X = 1), A can once again choose its 3 objects in

(
10
3

)
ways, but B must now choose 1 of

those 3 objects and 2 of the 7 objects not chosen by A. B can do this in
(
3
1

)(
7
2

)
ways. This yields(

10
3

)(
7
2

)(
3
1

)
total ways for the number of objects chosen by both A and B to be 1. Since all outcomes

are equally likely, this yields

P(X = 1) =

(
10
3

)(
7
2

)(
3
1

)(
10
3

)2 =

(
7
2

)(
3
1

)(
10
3

)
Plugging these results into (1), we find

E[X] = 1 ·
(
7
2

)(
3
1

)(
10
3

) + 2 ·
(
7
1

)(
3
2

)(
10
3

) + 3 · 1(
10
3

) =

(
7
2

)(
3
1

)
+ 2
(
7
1

)(
3
2

)
+ 3(

10
3

) = 0.90

Thus, the expected number of objects chosen by both A and B is 0.90.
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Note: We could also note that the probability that any individual object is chosen by A is P(
chosen by A) = 3

10 and the probability that any individual object is chosen by B is P( chosen by
B) = 3

10 . These probabilities are independent, so the probability that an individual object is chosen
by both A and B is P( chosen by A and B) = 3

10
3
10 = 9

100 . There are 10 total objects, each with a
9

100 probability of being chosen by both A and B, which yields 10 · 9
100 = 90

100 = 9
10 = 0.90 for the

expected number of objects chosen by both A and B.

(b) Let Y = the number of objects not chosen by either A or B. If A and B choose the same 3 objects,
then the number of objects not chosen by either A or B is 10− 3 = 7. If A and B choose mutually
disjoint sets of 3 objects, then the number of objects not chosen by A or B is 10− 6 = 4. Thus, Y
can take on any values in {4, 5, 6, 7}. By the definition of expected value, we know

E[Y ] =

7∑
k=4

kP(Y = k) (2)

For P(Y = 4), A can pick its objects in
(
10
3

)
ways, but B must choose all 3 of its objects from the

7 objects not chosen by A. There are
(
7
3

)
ways for B to do this. This yields(

10

3

)(
7

3

)
total ways for the number of objects not chosen by either A or B to be 4. Since all outcomes are
equally likely, this yields

P(Y = 4) =

(
10
3

)(
7
3

)(
10
3

)2 =

(
7
3

)(
10
3

)
For P(Y = 5), A can pick its objects in

(
10
3

)
ways, but B must choose 2 of its objects from the 7

objects not chosen by A and 1 object from the 3 objects chosen by A. There are
(
7
2

)(
3
1

)
ways for B

to do this. This yields (
10

3

)(
7

2

)(
3

1

)
total ways for the number of objects not chosen by either A or B to be 5. Since all outcomes are
equally likely, this yields

P(Y = 5) =

(
10
3

)(
7
2

)(
3
1

)(
10
3

)2 =

(
7
2

)(
3
1

)(
10
3

)
For P(Y = 6), A can pick its objects in

(
10
3

)
ways, but B must choose 1 of its objects from the 7

objects not chosen by A and 2 objects from the 3 objects chosen by A. There are
(
7
1

)(
3
2

)
ways for

B to do this. This yields (
10

3

)(
7

1

)(
3

2

)
total ways for the number of objects not chosen by either A or B to be 6. Since all outcomes are
equally likely, this yields

P(Y = 6) =

(
10
3

)(
7
1

)(
3
2

)(
10
3

)2 =

(
7
1

)(
3
2

)(
10
3

)
For P(Y = 7), A can pick its objects in

(
10
3

)
ways, but B must choose all 3 of its objects from the

3 objects chosen by A. There is 1 way for B to do this. This yields(
10

3

)
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total ways for the number of objects not chosen by either A or B to be 7. Since all outcomes are
equally likely, this yields

P(Y = 7) =

(
10
3

)(
10
3

)2 =
1(
10
3

)
Plugging these values into (2), we find

E[Y ] = 4 ·
(
7
3

)(
10
3

) + 5 ·
(
7
2

)(
3
1

)(
10
3

) + 6 ·
(
7
1

)(
3
2

)(
10
3

) + 7 · 1(
10
3

) =
4
(
7
3

)
+ 5
(
7
2

)(
3
1

)
+ 6
(
7
1

)(
3
2

)
+ 7(

10
3

) = 4.9

Thus, the expected number of objects not chosen by either A or B is 4.9.

Note: We could also note that the probability that an individual object is not chosen by A is
P( not chosen by A ) = 1 − P( chosen by A ) = 1 − 3

10 = 7
10 . The probability that an individual

object is not chosen by B is also P( not chosen by B ) = 1 − P( chosen by B ) = 1 − 3
10 = 7

10 .
These probabilities are independent, so P( not chosen by either A or B ) = 7

10
7
10 = 49

100 . There are
10 objects in total, each with a 49

100 probability of not being chosen by either A or B, which yields
10 · 49

100 = 490
100 = 49

10 = 4.9 for the expected number of objects not chosen by either A or B.

(c) Let Z = the number of objects chosen by exactly one of A and B. If A and B select the same set
of three objects, then the number of objects chosen by exactly one of A and B is 0. If 2 of the
numbers are chosen by both A and B, then the number of objects chosen by exactly one of A and
B is 2. If 1 of the objects is chosen by both A and B, then the number of objects chosen by exactly
one of A and B is 4. If A and B select mutually disjoint sets of 3 objects, then the number of
objects chosen by exactly one of A and B is 6. Thus, Z can take on any values in I = {0, 2, 4, 6}.
By the definition of expected value,

E[Z] =
∑
k∈I

kP(Z = k) =
∑

k∈(I−{0})

kP(Z = k) (3)

For P(Z = 6), A can pick its objects in
(
10
3

)
ways, but B must choose all 3 of its objects from the

7 objects not chosen by A. There are
(
7
3

)
ways for B to do this. This yields(

10

3

)(
7

3

)
total ways for the number of objects chosen by exactly one of A and B to be 6. Since all outcomes
are equally likely, this yields

P(Z = 6) =

(
10
3

)(
7
3

)(
10
3

)2 =

(
7
3

)(
10
3

)
For P(Z = 4), A can pick its objects in

(
10
3

)
ways, but B must pick 2 objects from the 7 objects

not chosen by A and 1 object from the three chosen by A. There are
(
7
2

)(
3
1

)
ways for B to do this.

This yields (
10

3

)(
7

2

)(
3

1

)
total ways for the number of objects chosen by exactly one of A and B to be 4. Since all outcomes
are equally likely, this yields

P(Z = 4) =

(
10
3

)(
7
2

)(
3
1

)(
10
3

)2 =

(
7
2

)(
3
1

)(
10
3

)
For P(Z = 2), A can pick its objects in

(
10
3

)
ways, but B must pick 1 objects from the 7 objects

not chosen by A and 2 objects from the three chosen by A. There are
(
7
1

)(
3
2

)
ways for B to do this.

This yields (
10

3

)(
7

1

)(
3

2

)
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total ways for the number of objects chosen by exactly one of A and B to be 2. Since all outcomes
are equally likely, this yields

P(Z = 2) =

(
10
3

)(
7
1

)(
3
2

)(
10
3

)2 =

(
7
1

)(
3
2

)(
10
3

)
Plugging these values into (3), we find

E[Z] = 2 ·
(
7
1

)(
3
2

)(
10
3

) + 4 ·
(
7
2

)(
3
1

)(
10
3

) + 6 ·
(
7
3

)(
10
3

) =
2
(
7
1

)(
3
2

)
+ 4
(
7
2

)(
3
1

)
+ 6
(
7
3

)(
10
3

) = 4.2

Thus, the expected number of objects chosen by exactly 1 of A and B is 4.2.

Note 1: We could also note that the probability of any individual object being chosen by A
and not B is P( chosen by A but not B ) = P( chosen by A )P( not chosen by B ) = 3

10
7
10 = 21

100 .
Similarly, the probability of an individual object being chosen by B but not A is P( chosen by B but
not A ) = P( chosen by B )P( not chosen by A ) = 3

10
7
10 = 21

100 . Therefore, the probability of an in-
dividual object being chosen by exactly one of A and B is P( chosen by A but not B )+P( chosen by
B but not A) = 21

100 +
21
100 = 42

100 . This is true for all objects, and there are 10 objects in total, which
yields 10· 42

100 = 420
100 = 42

10 = 4.2 for the expected number of objects chosen by exactly one of A and B.

Note 2: We can also note that the expected number of total objects is 10. Any object must
be chosen by both A and B, be chosen by exactly one of A and B, or not be chosen by either A or
B. Therefore, 10 = E[X] + E[Y ] + E[Z]. From parts (a) and (b), we calculated that E[X] = 0.90
and E[Y ] = 4.90. This implies that the expected number of objects chosen by exactly one of A and
B is E[Z] = 10− E[X]− E[Y ] = 10− 4.90− 0.90 = 10− 5.80 = 4.20.
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4. (Ross P7.18) Cards from an ordinary deck of 52 playing cards are turned face up one at a time. If the 1st
card is an ace, or the 2nd is a deuce, or the 3rd a three, or ..., or the 13th a king, or the 14th an ace, and
so on, we say that a match occurs. Note that we do not require that the (12n+1) card be any particular
ace for a match to occur but only that it be an ace. Compute the expected number of matches that occur.

Solution.

Let X1, ..., X52 be random variables where Xi =

{
1 if the ith card is a match

0 otherwise.

Let Y = X1 + · · ·+X52 =
∑52
i=1Xi. Then Y = the number of matches that occur in the entire 52 card

deck. We want to compute

E[Y ] = E[X1 + · · ·+X52] = E[

52∑
i=1

Xi]

Applying linearity of expectation, we find

E[Y ] =

52∑
i=1

E[Xi] (1)

Consider the ith card in the deck. It could be any of the 52 cards in the deck. Of these 52 cards, exactly
4 of them result in the ith card having a match. Assuming the cards in the deck are arranged randomly,
this yields P(Xi = 1) = 4

52 = 1
13 for all 1 ≤ i ≤ 52. Applying the definition of expected value, we find

E[Xi] =

1∑
k=0

kP(Xi = k) =

1∑
k=1

kP(Xi = k) = P(Xi = 1) =
1

13

for all 1 ≤ i ≤ 52. Plugging 1
13 in for E[Xi] in (1), we find

E[Y ] =

52∑
i=1

1

13
= 52 · 1

13
=

52

13
= 4

Thus, the expected number of matches that occur in the entire deck is 4.
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5. (Ross T5.7) The standard deviation of X, denoted SD(X), is given by

SD(X) =
√
Var(X).

Find SD(aX + b) if X has variance σ2.

Solution.
By the definition of standard deviation, we know

SD(aX + b) =
√
V ar(aX + b) (1)

Claim: V ar(X + b) = V ar(X) for all constants b.
Proof.
By the definition of variance,

V ar(X + b) = E[(X + b)2]− E[X + b]2 = E[X2 + 2bX + b2]− (E[X] + b)2

= E[X2] + 2bE[X] + E[b2]− (E[X]2 + 2bE[X] + b2)

= E[X2]− E[X]2 + (2bE[X]− 2bE[X]) + (b2 − b2) = E[X2]− E[X]2 = V ar(X)

This directly implies that
V ar(aX + b) = V ar(aX)

We know from lecture that V ar(cX) = c2V ar(X) for all constants c, which implies

V ar(aX + b) = V ar(aX) = a2V ar(X) = a2σ2

since X has variance V ar(X) = σ2. Plugging a2σ2 for V ar(aX + b) in (1), we find

SD(aX + b) =
√
V ar(aX + b) =

√
a2σ2 = |aσ|

Thus, if a random variableX has variance σ2, then the standard deviation of aX+b is SD(aX+b) = |aσ|.
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6. Recall that the (“raw”)moments of a random variableX are E[Xk] for k = 1, 2, 3, . . .. Write µk = E[Xk].

(a) Describe the first two moments (i.e. µ1, µ2) qualitatively. If X is measured in “meters”, what are
the units of µk?

(b) The central moments of X are defined by αk = E[(X − E[X])k]. Describe the first two central
moments (i.e. α1, α2) qualitatively.

(c) Express µ4 in terms of µ, α1, α2, α3, α4.

Solution.

(a) The first raw moment, µ1 = E[X1] = E[X] is simply the expected value of X. This can be thought
of as a weighted average of all possible values that X can take on, where the weights are assigned
based on the probabilities that X equals each individual value. In other words, µ1 = E[X] describes
the raw mean of a random variable X. It also describes the average raw distance from the origin
of a random variable X.
The second raw moment, µ2 = E[X2] is the expected value of X2. This can be thought of as a
weighted average of the squares of all possible values that X can take on, where the weights are
again assigned based on the probabilities that X equals each individual value. In other words,
µ2 = E[X2] describes the average squared distance from the origin of a random variable X.
If X is measured in “meters”, then the units of µk are “ metersk ”. For example, the units of µ1

are “meters”, the units of µ2 are “square meters” (“ meters2 ”), and so on.

(b) The first central moment, α1 = E[(X−E[X])1] = E[(X−E[X])], is the expected difference between
X and the expected value of X. This can be thought of as a weighted average of the raw differences
between each possible value of X and the mean of X, where the weights are assigned based on the
probabilities that X equals each individual value. The first central moment α1 = E[X − E[X]] is
always zero because the weighted average of the negative differences must have the same magnitude
as the weighted average of the positive differences for E[X] to be the weighted average of all possible
values of X. This makes sense, as X is expected to be E[X], so the expected difference between X
and E[X] should be 0.
The second central moment,

E[(X − E[X])2] = E[(X − E[X])2] = E[X2 − 2XE[X] + E[X2]]

= E[X2 − 2E[X]2 + E[X]2) = E[X2]− E[X]2

can be easily seen to equal the variance V ar(X). This can be interpreted as the weighted average
of the squared differences between each possible value of X and the mean of X, where the weights
are again assigned based on the probabilities that X equals each possible value. In other words,
α2 = E[(X − E[X])2] relates the variability of X by describing the expected squared magnitude
of the absolute distance between X and the mean of X. Since negative raw differences between X
and E[X] still have positive squared magnitudes, α2 should always be positive for any X that has
nonzero probabilities of equalling multiple different values.

(c) First, let’s write simplify α1, α2, α3, and α4: For α1, we have

α1 = E[(X − E[X])] = E[X]− E[X] = 0 (1)

For α2, we have

α2 = E[(X − E[X])2] = E[X2 − 2XE[X] + E[X]2] = E[X2]− E[X]2 = E[X2]− µ2 (2)

For α3, we have

α3 = E[(X − E[X])3] = E[(X3 − 3X2E[X] + 3XE[X]2 − E[X]3]

= E[X3]− 3E[X]E[X2] + 3E[X]2E[X]− E[X]3

= E[X3]− 3µE[X2] + 3E[X]3 − E[X]3

= E[X3]− 3µE[X2] + 2µ3 (3)
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For α4, we have

α4 = E[(X − E[X])4] = E[(X4 − 4X3E[X] + 6X2E[X]2 − 4XE[X]3 + E[X]4)]

= E[X4]− 4E[X]E[X3] + 6E[X]2E[X2]− 4E[X]3E[X] + E[X]4

= E[X4]− 4µE[X3] + 6µ2E[X2]− 3µ4 (4)

Note that µ4 is the first term in the sum equivalent to α4. This suggests we should modify α4

in some way to find µ4. First, let’s cancel the second term in the sum equivalent to α4, which is
−4µE[X3]. We can do this via adding 4µ copies of α3 to α4:

α4 + 4µα3 = E[X4]− 4µE[X3] + 6µ2E[X2]− 3µ4 + 4µ
(
E[X3]− 3µE[X2] + 2µ3

)
= E[X4] + (−4µE[X3] + 4µE[X3]) + (6µ2E[X2]− 12µ2E[X2]) + (−3µ4 + 8µ4)

= E[X4]− 6µ2E[X2] + 5µ4

Now we can cancel the −6µ2E[X2] term by adding 6µ2 copies of α2 to α4 + 4µα3:

α4 + 4µα3 + 6µ2α2 = E[X4]− 6µ2E[X2] + 5µ4 + 6µ2
(
E[X2]− µ2)

= E[X4] + (−6µ2E[X2] + 6µ2E[X2]) + (5µ4 − 6µ4)

= E[X4]− µ4

Now, we can just add µ4 to find

α4 + 4µα3 + 6µ2α2 + µ4 = E[X4] = µ4

Since α1 = 0, we can add α1 to express µ4 = E[X4] in terms of µ, α1, α2, α3, and α4 as follows:

µ4 = E[X4] = α4 + 4µα3 + 6µ2α2 + α1 + µ4
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7. Let X be a random variable and let Z = (X − µ)/σ be the standardized random variable associated to
X. Write µX,k or µZ,k and αX,k or αZ,k for the moments and central moments of X or Z.

(a) How are µZ,k and αZ,k related?

(b) How are µZ,k and αX,k related?

(c) The “higher moments” µ3, µ4, . . . often appear in more refined calculations (e.g. in the famous
Berry–Esseen theorem). Compute the higher moments of an exponential random variable.

Solution.

(a) We know from lecture that the standardized random variable Z = X−µ
σ has mean µZ = E[Z] = 0.

By definition, µZ,k is
µZ,k = E[Zk]

and αZ,k is
αZ,k = E[(Z − E[Z])k]

Since E[Z] = µZ = 0, we know that

αZ,k = E[(Z − 0)k] = E[Zk] = µZ,k

Thus, µZ,k and αZ,k are equivalent.

(b) By definition, αX,k is
αX,k = E[(X − µ)k]

Since Z = X−µ
σ , we can write µZ,k as

µZ,k = E[Zk] = E[
(X − µ

σ

)k
] = E[

(X − µ)k

σk
]

Since 1
σk is a constant, and E[aX] = aE[X] for all constants a and random variables X, we have

µZ,k =
1

σk
E[(X − µ)k] =

1

σk
αX,k =

αX,k
σk

Thus, µZ,k and αX,k are related in that dividing αX,k by σk yields µZ,k.

(c) Let X ∼ Exponential(λ). By the definition of an exponential random variable, X has the proba-
bility density function

f(x) =

{
λe−λx if x > 0

0 otherwise.

We want to find a formula for E[Xk] for all k ∈ N. We will do so by first finding a recurrence
relation for E[Xk], then proving the closed form of the recurrence relation using induction.
First, we will find the recurrence relation for E[Xk].
By the definition of expected value of a continuous random variable,

E[Xk] =

∫ ∞

−∞
xkf(x)dx

for all k ∈ N. The base case of our recurrence relation will occur when k ∈ N is minimal (i.e. when
k = 1).
When k = 1, we can compute directly that

E[Xk] = E[X] =

∫ ∞

−∞
xf(x)dx =

∫ 0

−∞
x · 0dx+

∫ ∞

0

xλe−λxdx

=

∫ ∞

0

xλe−λxdx = λ

∫ ∞

0

xe−λxdx
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Now, we can apply integration by parts with u = x, du = dx, dv = e−λxdx, and v = e−λx

−λ to find

E[X] = λ
(xe−λx

−λ

∣∣∣∣∣
∞

0

+
1

λ

∫ ∞

0

e−λxdx
)
= −xe−λx

∣∣∣∣∣
∞

0

+

∫ ∞

0

e−λxdx (1)

We can evaluate the leftmost term in the sum from (1) as

−xe−λx
∣∣∣∣∣
∞

0

= lim
x→∞

−xe−λx + 0 · e−λ·0 = lim
x→∞

−x
eλx

+ 0 = lim
x→∞

−x
eλx

Applying L’Hopital’s Rule once, we find

−xe−λx
∣∣∣∣∣
∞

0

= lim
x→∞

−1

λeλx
= 0

We can evaluate the rightmost term in the sum from (1) directly as∫ ∞

0

e−λxdx =
e−λx

−λ

∣∣∣∣∣
∞

0

= lim
x→∞

e−λx

−λ
+
e−λ·0

λ
= 0 +

1

λ
=

1

λ

Plugging these values into (1), we find

E[Xk] = E[X] = 0 +
1

λ
=

1

λ

when k = 1. This serves as the base case for our recurrence relation.
Now, we need to express E[Xk] recursively for all k ∈ N s.t. k ≥ 2. We can apply the definition of
expected value of a continuous random variable to find

E[Xk] =

∫ ∞

−∞
xkf(x)dx = λ

(∫ 0

−∞
xk · 0dx+

∫ ∞

0

xk · λe−λxdx
)

= λ(0 +

∫ ∞

0

xk · λe−λxdx) = λ

∫ ∞

0

xke−λxdx

We can apply integration by parts with u = xk, du = kxk−1dx, dv = e−λxdx, and v = e−λx

−λ to find

E[Xk] = λ
(xke−λx

−λ

∣∣∣∣∣
∞

0

+
k

λ

∫ ∞

0

xk−1e−λxdx
)

= − xke−λx

∣∣∣∣∣
∞

0

+ k
E[Xk−1]

λ
= −xke−λx

∣∣∣∣∣
∞

0

+
kE[Xk−1]

λ

We can simplify further by evaluating the −xke−λx
∣∣∣∣∣
∞

0

as

−xke−λx
∣∣∣∣∣
∞

0

= lim
x→∞

−xke−λx + 0k · e−λ·0 = lim
x→∞

−xke−λx = lim
x→∞

−xk

eλx

Applying L’Hopital’s Rule k times yields

−xke−λx
∣∣∣∣∣
∞

0

= lim
x→∞

−(k!)

λkeλx
= 0
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This implies that

E[Xk] = 0 +
kE[Xk−1]

λ
=
k

λ
E[Xk−1]

Thus, our recurrence relation is

E[Xk] =

{
1
λ if k = 1
kE[Xk−1]

λ otherwise.

Claim: E[Xk] = k!
λk for all k ∈ N.

Proof. We induct on k.
Base Case: k = 1, we already found that

E[Xk] = E[X] =
1

λ
=

1!

λ1
=
k!

λk

so the claim holds for the base case.
Inductive Hypothesis: Assume that E[Xk] = k!

λk for all 1 ≤ k ≤ n.
Inductive Step: Consider k = n+ 1. From our recurrence relation, we know that

E[Xk] = E[Xn+1] =
(n+ 1)E[Xn]

λ

From our inductive hypothesis, we know E[Xn] = n!
λn . This directly implies that

E[Xk] = E[Xn+1] =
(n+ 1) n!λn

λ
=

(n+ 1)!

λn+1
=
k!

λk

which is exactly what we want to show. The conclusion that

E[Xk] =
k!

λk

follows by induction for all k ∈ N.
Thus, the higher moments of an exponential random variable X are defined by

µk = E[Xk] =
k!

λk

for all k ∈ N.
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8. Let X ∼ Binomial(n, p).

(a) Fix k = 1, 2, 3, . . .. Prove that limn→∞E[Xk]/nk = pk. (Hint: recall E[Xk] =
(
t ddt
)k
GX(t)

∣∣∣
t=1

.)

(b) Let Z = (X − µ)/σ. Suppose also that p = 1/2. Prove that E[Z2k+1] = 0 for all k = 1, 2, 3, . . ..

(c) Show that limn→∞E[(X − E[X])2k]/n2k = 0 for k = 1, 2, 3, . . .. (This shows that n2k is not the
right “scale factor” for this random variable. We will later find that nk is the right scale factor in
the sense that limn→∞E[(X − E[X])2k)/nk ̸= 0 is finite.)

Solution.

(a) Since X ∼ Binomial(n, p), we know X has probability generating function

GX(t) = (pt+ q)n

where q = 1− p. Applying the hint, we find that

lim
n→∞

E[Xk]

nk
= lim
n→∞

(
t ddt
)k
GX(t)

∣∣∣
t=1

nk
= lim
n→∞

(
t ddt
)k
(pt+ q)n

∣∣∣
t=1

nk

Note: (
t
d

dt

)k
GX(t)

∣∣∣
t=1

is a polynomial in n. To compute
(
t ddt
)k
(pt+ q)n

∣∣∣
t=1

, the product rule is applied repeatedly. One

of the terms in the resulting sum results from (pt+ q)n being differentiated k times then evaluated
at t = 1. We can directly compute that( d

dt

)k
(pt+ q)n

∣∣∣
t=1

= n(n− 1) · · · (n− k + 1)pk(pt+ q)n−k
∣∣∣
t=1

= n(n− 1) · · · (n− k + 1)pk = nkpk + f(n)

where f(n) is a polynomial in n of degree k−1. All other terms in the sum resulting from repeatedly

applying the product rule to calculate
(
t ddt
)k
(pt+ q)n

∣∣∣
t=1

result from differentiating (pt+ q)n less

than k times and differentiating ati at least 1 time (for some i ∈ [k] and a constant W.R.T. t and
n). Differentiating ati with respect to t does not increase the degree of n. Differentiating (pt+ q)n

increases the degree of n by one each time. Therefore, the degree of n is maximally k − 1 in all

such terms. Therefore, the term with the highest degree in
(
t ddt
)k
(pt+ q)n

∣∣∣
t=1

is the term resulting

from differentiating (pt+ q)n k times. This term has a degree of k, so we know(
t
d

dt

)k
(pt+ q)n

∣∣∣
t=1

itself is a polynomial in n with degree k for all k ∈ N. Moreover, since the only term with degree k
is nkpk, we know (

t
d

dt

)k
(pt+ q)n

∣∣∣
t=1

= nkpk + ak−1n
k−1 + · · ·+ a1n+ a0

where ak−1, · · · , a0 are constants W.R.T n and t. This implies that

lim
n→∞

E[Xk]

nk
= lim

n→∞

(
t ddt
)k
(pt+ q)n

∣∣∣
t=1

nk

= lim
n→∞

nkpk + ak−1n
k−1 + · · ·+ a1n+ a0
nk
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Applying L’Hopital’s Rule k times yields

lim
n→∞

E[Xk]

nk
= lim
n→∞

k!pk

k!
= pk

for all k ∈ N since the kth derivative of ak−1n
k−1 + · · · + a1n + a0 is 0. This concludes the proof

that

lim
n→∞

E[Xk]

nk
= pk

for all k ∈ N.
(b) Since p = 1

2 , we know

E[X] = µ = np = n
1

2
=
n

2

and

SD(X) =
√
V ar(X) =

√
np(1− p) =

√
n

4
=

√
n

2

so

Z =
X − µ

σ
=
X − n

2√
n
2

Applying the definition of expected value and the probability mass function for X, we find

E[Zk] =

n∑
i=0

( i− n
2√
n
2

)kP(Z =
i− n

2√
n
2

) =

n∑
i=0

( i− n
2√
n
2

)kP(X = i)

=

n∑
i=0

( i− n
2√
n
2

)k(n
i

)
(
1

2
)i(

1

2
)n−i =

2k

2n
√
n
k

n∑
i=0

(
i− n

2

)k(n
i

)
If n is odd, we can pair each term corresponding to i with the term corresponding to n− i to find

E[Zk] =
2k

2n
√
n
k

n−1
2∑
i=0

(
n

i

)(
i− n

2

)k
+

(
n

n− i

)(
(n− i)− n

2

)k
=

2k

2n
√
n
k

n−1
2∑
i=0

(
n

i

)(
(i− n

2
)k + (−1)k(i− n

2
)k

)

This implies, for odd n

E[Z2k+1] =
22k+1

2n
√
n
2k+1

n−1
2∑
i=0

(
n

i

)(
(i− n

2
)2k+1 − (i− n

2
)2k+1

)
=

22k+1

2n
√
n
2k+1

n−1
2∑
i=0

(
n

i

)
· 0 = 0

since (−1)2k+1 = −1 for all k ∈ N.
For even n, we can pair up the terms in a similar way, with the exception of the i = n

2 term. This
yields

E[Xk] =
2k

2n
√
n
k

(
(
n

2
− n

2
)k
(
n
n
2

)
+

n
2 −1∑
i=0

(
n

i

)(
(i− n

2
)k + (−1)k(i− n

2
)k

))

=
2k

2n
√
n
k

n
2 −1∑
i=0

(
n

i

)(
(i− n

2
)k + (−1)k(i− n

2
)k

)
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This implies, for even n

E[Z2k+1] =
22k+1

2n
√
n
2k+1

n
2 −1∑
i=0

(
n

i

)(
(i− n

2
)2k+1 − (i− n

2
)2k+1

)
=

22k+1

2n
√
n
2k+1

n
2 −1∑
i=0

(
n

i

)
· 0 = 0

since (−1)2k+1 = −1 for all k ∈ N.
Thus, we have shown that, for any n ∈ N,

E[Z2k+1] = 0

for all k ∈ N, which completes the proof.

(c) We can apply the binomial theorem to find

E[(X − E[X])2k] = E[

2k∑
i=0

(
n

i

)
Xi(−E[X])2k−i]

Applying linearity of expectation yields

E[(X − E[X])2k] =

2k∑
i=0

E[

(
n

i

)
Xi(−E[X])2k−i] =

2k∑
i=0

(
n

i

)
(−1)2k−i(np)2k−iE[Xi]

From part (a), we know that

E[Xi] = nipi + ai−1n
i−1 + · · · a1n+ a0

which implies that

E[(X − E[X])2k] =

2k∑
i=0

(
n

i

)
(−1)2k−i(np)2k−i(nipi + ai−1n

i−1 + · · · a1n+ a0)

Each term in the sum is clearly a polynomial in n of degree 2k − i + i = 2k, so E[(X − E[X])k]
has degree of at most 2k. Furthermore, E[(X − E[X])k] is actually a polynomial in n of degree at
most 2k − 1. We can see this by examining the coefficient of n2k:

[n2k]E[(X − E[X])k] = [n2k]

2k∑
i=0

(
n

i

)
(−1)2k−i(np)2k−i(nipi + ai−1n

i−1 + · · · a1n+ a0)

= p2k
2k∑
i=0

(
n

i

)
(−1)2k−i

Note: We can multiply the each of the summands of the bottom sum by 1 = 1i and apply the
binomial theorem again to obtain

[n2k]E[(X − E[X])k] = p2k
2k∑
i=0

(
n

i

)
1i(−1)2k−i = p2k(1 + (−1))2k = p2k · 02k = 0

Since the coefficient of n2k is 0 in E[(X − E[X])2k], and we know that E[(X − E[X])2k] is a
polynomial in n of degree at most 2k − 1. We can then write E[(X − E[X])2k] as

E[(X − E[X])2k] = a2k−1n
2k−1 + · · ·+ a1n+ a0

for constants a0, · · · , a2k−1 W.R.T n. This implies that

lim
n→∞

E[(X − E[X])2k]

n2k
= lim
n→∞

a2k−1n
2k−1 + · · ·+ a1n+ a0

n2k
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Applying L’Hopital’s Rule 2k times W.R.T n yields

lim
n→∞

E[(X − E[X])2k]

n2k
= lim
n→∞

0

(2k)!
= 0

for all k ∈ N since ( d
dt

2k)
f(n) = 0

for any polynomial f in n of degree at most 2k − 1. This concludes the proof that

lim
n→∞

E[(X − E[X])2k]

n2k
= 0

for all k ∈ N.
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Assignment 11

Math 407 (Swanson) – Spring 2023
Homework 1

Due Friday 1/13, 11:59pm

Name: Emerson Kahle Section: 39981

• You must upload your solutions to Gradescope as one single, high-quality PDF. You can convert
paper-based work to a high-quality PDF using a scanning app for mobile devices, such as Adobe Scan
(free, available for iOS and Android, can do multiple pages) or many others. If necessary, you can
combine or merge multiple PDF’s into a single PDF using a variety of services, such as Adobe Acrobat’s
cloud-based merge tool.

• After you upload, you must match each question with its corresponding page using Gradescope’s
interface. This allows graders to spend more time giving you feedback instead of hunting through
submissions.

• Answers without supporting work will receive no credit. Show your work.

• You are encouraged to work together on homework, but you must write up your solutions sepa-
rately in your own words. Copying from your fellow students or other sources is a serious academic
integrity violation. In particular, you may not use “tutoring” services which simply provide answers.

• You are encouraged to typeset your solutions in LATEX. Source code has been provided on Blackboard.
Overleaf is a popular cloud-based editor.

• Problem numbers refer to the course textbook, though the problems may have been modified signifi-
cantly.
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1. (Ross, P5.7) The density function of X is given by

f(x) =

{
a+ bx2 if 0 ≤ x ≤ 1

0 otherwise.

If E[X] = 3
5 , find a and b.

Solution.
By the definition of the expected value of a continuous random variable,

E[X] =

∫ ∞

−∞
xf(x)dx

We can use the definition of f(x) to compute that

E[X] =

∫ 0

−∞
xf(x)dx+

∫ 1

0

xf(x)dx+

∫ ∞

1

xf(x)dx

=

∫ 0

−∞
x · 0dx+

∫ 1

0

x(a+ bx2)dx+

∫ ∞

1

x · 0dx

= 0 +

∫ 1

0

x(a+ bx2)dx+ 0

=

∫ 1

0

ax+ bx3dx

=

(
ax2

2
+
bx4

4

)∣∣∣∣∣
1

0

=

(
a · 12

2
+
b · 14

4

)
−

(
a · 02

2
+
b · 04

4

)
=
a

2
+
b

4

By the definition of the probability density function, we know that∫ ∞

−∞
f(x)dx = 1

and we can compute that

1 =

∫ ∞

−∞
f(x)dx =

∫ 1

0

a+ bx2dx =

(
ax+

bx3

3

)∣∣∣∣∣
1

0

=

(
a · 1 + b · 13

3

)
−

(
a · 0 + b · 0

3

)
= a+

b

3

Since we are given E[X] = 3
5 , we can now form a system of two linear equations in a and b:{

3
5 = a

2 + b
4

1 = a+ b
3

Solving the system yields:

1 = a+
b

3
=⇒ a = 1− b

3
=⇒

3

5
=

1− b
3

2
+
b

4
=

1

2
− b

6
+
b

4
=⇒ 3

5
− 1

2
=
b

4
− b

6
=⇒

6

10
− 5

10
=

3b

12
− 2b

12
=⇒ 1

10
=

b

12
=⇒

b =
12

10
=

6

5
=⇒ a = 1− 6

5

1

3
= 1− 2

5
=

3

5

Thus, we have found that a = 3
5 and b = 6

5 .
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2. (Ross, P5.42) If X is uniformly distributed on (0, 1), find the distribution of Y = eX .

We want to find a probability density function fY (x) for the random variable Y . We can start by
trying to find a cumulative distribution function FY (x) for Y . By the definition of the cumulative
distribution function, we know

FY (x) = P(Y ≤ x) = P(eX ≤ x)

Since
eX ≤ x ⇐⇒ X ≤ ln(x)

we know

FY (x) = P(X ≤ ln(x)) =

∫ ln(x)

−∞
fX(x)dx

where fX(x) is the probability density function of X. Since X ∼ ContinuousUniform([0, 1]), we know
it has probability density function

fX(x) =
1

1− 0
1[0,1](x) = 1[0,1](x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise.

which allows us to compute that

FY (x) =

∫ 0

−∞
0dx+

∫ ln(x)

0

1[0,1](x)dx =

∫ ln(x)

0

1[0,1](x)dx =


0 if x < 1∫ ln(x)
0

1dx = ln(x) if 1 ≤ x ≤ e∫ 1

0
1dx+

∫ ln(x)
1

0dx = 1 otherwise.

Since the probability density function of Y is fY (x) = F ′
Y (x), we know that

fY (x) = F ′
Y (x) =

{
1
x if 1 ≤ x ≤ e

0 otherwise.

Thus, the distribution of Y = eX can be described by its CDF

FY (x) =


0 if x < 1

ln(x) if 1 ≤ x ≤ e

1 otherwise.

and its PDF

fY (x) =

{
1
x if 1 ≤ x ≤ e

0 otherwise.
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3. Recall our second interpretation of Bertrand’s paradox from lecture. Specifically, L is the length of a ran-
domly selected chord on a circle of radius r, where the chord has been chosen using i.i.d. Uniform([0◦, 360◦])
random variables θ1, θ2. Here θi is the polar angle made by one of the chord’s endpoints on the circum-
ference of the circle.

(a) Compute and graph the CDF of L explicitly.

(b) Compute and graph the PDF of L explicitly.

Solution.

(a) We want to find the CDF of L
FL(x) = P(L ≤ x)

Let’s express L in terms of a Continuous Uniform random variable. First, by symmetry, we can let
θ2 = 0◦, as we did in lecture. Now, we can express L in terms of θ1. If θ1 <= 180, we can create a
triangle on the top half of the circle with two sides of length r, one side of length L and an angle of
θ1 between the two sides of length r. We can split the angle pf size θ1 in half to produce two right
triangles, each with one side of length r, one side of length L

2 , and one angle of size θ1
2 such that

the side of length L
2 is opposite to the angle and the side of length r is the hypotenuse. From the

definition of sin(x), we know

sin(
θ1
2
) =

L

2r
=⇒ L = 2rsin(

θ1
2
)

for all 0 ≤ θ1 ≤ 180. If θ1 > 180, we can create a similar triangle on the bottom half of the circle
with two sides of length r, one side of length L, and an angle of size 360− θ1 between the two sides
of length r. We can now split the angle of size 360− θ1 to create two right triangles, each with one
side of length r, one side of length L

2 , and one angle of size 360−θ1
2 such that the side of length L

2
is opposite to the angle and the side of length r is the hypotenuse. From the definition of sin(x),
we know

sin(
360− θ1

2
) =

L

2r
=⇒ L = 2rsin(

360− θ1
2

)

for all 180 < θ1 ≤ 360. Since 360 − θ1 ranges from 0 to 180 as θ1 ranges from 180 to 360, we can
define a new variable

θ =

{
θ1 if 0 ≤ θ1 ≤ 180

360− θ1 if 180 < θ1 ≤ 360

and, since θ1 ∼ ContinuousUniform([0◦, 360◦]), we know θ ∼ ContinuousUniform([0◦, 180◦]),
and we have

L = 2rsin(
θ

2
)

for all 0 ≤ θ ≤ 180. A visual demonstration of the geometric description is provided below:
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Thus, we have

FL(x) = P(L ≤ x) = P(2rsin(
θ

2
) ≤ x)

We know

2rsin(
θ

2
) ≤ x ⇐⇒ sin(

θ

2
) ≤ x

2r
⇐⇒ θ ≤ 2arcsin(

x

2r
)

which implies

FL(x) = P(θ ≤ 2arcsin(
x

2r
) = Fθ(2arcsin(

x

2r
))

where Fθ(x) is the cumulative distribution function of θ.
Since θ ∼ ContinuousUniform([0◦, 180◦]), we know θ has PDF

fθ(x) =

{
1

180 if 0 ≤ x ≤ 180

0 otherwise

which implies θ has CDF

Fθ(x) =


0 if x < 0∫ x
0

1
180dx = x

180 if 0 ≤ x ≤ 180

1 otherwise.

which implies that L has CDF

FL(x) = Fθ(2arcsin(
x

2r
)) =


0 if 2arcsin( x2r ) < 0
arcsin( x

2r )

90 if 0 ≤ 2arcsin( x2r ) ≤ 180

1 otherwise.

We know that

2arcsin(
x

2r
) < 0 ⇐⇒ x

2r
< sin(

0

2
) = 0 ⇐⇒ x < 0

We also know that

0 ≤ 2arcsin(
x

2r
) ≤ 180 ⇐⇒ 0 ≤ arcsin(

x

2r
) ≤ 90 ⇐⇒ 0 ≤ x

2r
≤ 1 ⇐⇒ 0 ≤ x ≤ 2r
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So we can rewrite our CDF as

FL(x) =


0 if x < 0
arcsin( x

2r )

90 if 0 ≤ x ≤ 2r

1 otherwise.

This is our explicit expression for the CDF of L. We graph FL(x) below with r = 0.5 for the
best visual experience. We also set 180 = π because the graphing software computes trigonometric
functions in terms of π. In the graph, x is on the x− axis and FL(x) is on the y − axis:

(b) Since we already computed the CDF of L, and we know the PDF of L

fL(x) = F ′
L(x)

we can easily compute the PDF of L. We know that

d

dx

(
arcsin( x2r )

90

)
=

1

90

1√
1− ( x2r )

2

1

2r
=

1

180r
√
1− x2

4r2

so we can conclude that the PDF of L is

fL(x) =


1

180r
√

1− x2

4r2

if 0 ≤ x ≤ 2r

0 otherwise.

This is our explicit expression for the PDF of L. We graph fL(x) below with r = 0.5 for the best
visual experience. In the graph, x is on the x− axis and fL(x) is on the y − axis:
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4. A third interpretation of Bertrand’s paradox is as follows. Uniformly choose a point P in the interior of
a circle of radius r. Now interpret P as the midpoint of a chord of length L.

(a) Let P = (X,Y ) where X and Y are themselves random variables. Here −r ≤ X,Y ≤ r. What is
the joint probability density function of X and Y ?

(b) Let m be the edge length of an equilateral triangle inscribed in the circle. Compute P (L > m) with
this third interpretation.

(c) How does your result for (b) compare to the results from lecture? Give a qualitative explanation
for which of the three probabilities is highest and which is lowest.

Solution.

(a) By the equation of a circle, we know P = (X,Y ) is in the interior of a circle of radius r ⇐⇒
X2 + Y 2 ≤ r2 ⇐⇒ |Y | ≤

√
r2 −X2,−r ≤ X ≤ r, ⇐⇒ −

√
r2 −X2 ≤ Y ≤

√
r2 −X2,−r ≤ X ≤

r. Thus, we know that, for any point P = (X,Y ) in the interior of the circle of radius r,

P(−r ≤ X ≤ r,−
√
r2 −X2 ≤ Y ≤

√
r2 −X2) = 1

By the definition of the joint probability density function of X and Y , we know

1 = P(−r ≤ X ≤ r,−
√
r2 −X2 ≤ Y ≤

√
r2 −X2) =

∫ r

−r

∫ √
r2−x2

−
√
r2−x2

fX,Y (x, y)dydx

Since the point P is chosen uniformly at random, the probability density function should be a
constant c for all P = (X,Y ) such that P is in the interior of a circle of radius r. Thus, for the
entirety of the region being integrated over, we have fX,Y (x, y) = c ∈ R, so we know

1 =

∫ r

−r

∫ √
r2−x2

−
√
r2−x2

cdydx = c

∫ r

−r

∫ √
r2−x2

−
√
r2−x2

dydx

Since the region being integrated over is the entire circle of radius r, we can convert to polar
coordinates to find∫ r

−r

∫ √
r2−x2

−
√
r2−xr

=

∫ 2π

0

∫ r

0

rdrdθ =

∫ 2π

0

r2

2
=
r2

2
θ

∣∣∣∣∣
2π

0

=
2πr2

2
= πr2

This makes sense because integrating the constant function f = 1 over a region equal to the entire
circle of radius r should return the area of the circle, which is πr2. We now know that

1 = cπr2 =⇒ c =
1

πr2

Thus, we know that X and Y have the joint probability density function fX,Y (x, y) =
1
πr2 for all

x2 + y2 ≤ r2. If X2 + Y 2 > r2, then P = (X,Y ) is outside of the circle, so the joint probability
density function is 0. Thus, the joint probability density function of X and Y is

fX,Y (x, y) =

{
1
πr2 if x2 + y2 ≤ r2

0 otherwise.
=

{
1
πr2 if − r ≤ x ≤ r,−

√
r2 − x2 ≤ y ≤

√
r2 − x2

0 otherwise.

More concisely, we can write the joint probability density function of X and Y as

fX,Y (x, y) =
1

πr2
· 1[−r,r](x) · 1[−√

r2−x2,
√
r2−x2](y)
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(b) Suppose pm is the midpoint of an edge of an equilateral triangle inscribed in the circle. It is clear
that L > m ⇐⇒ P is closer to (0, 0) the center of the circle than pm. Since all angles in an
equilateral triangle are 60◦, we can draw a line from pm to (0, 0) and from (0, 0) to one endpoint of
the edge of the triangle corresponding to pm to create a right triangle in which one side length is
the hypotenuse r, one side length is the distance from pm to (0, 0), and an angle of 30◦ sits opposite
this side. If we let dm = the distance from pm to (0, 0), then we know

sin(30◦) =
1

2
=
dm
r

=⇒ dm =
r

2

Thus, if we let D = the distance from P to (0, 0), then we have L > m ⇐⇒ D < n
2 .

The distance from P to (0, 0) is

D =
√
X2 + Y 2

so we have
L > m ⇐⇒

√
X2 + Y 2 <

r

2
⇐⇒ X2 + Y 2 < (

r

2
)2

We can recognize the rightmost inequality as the set of all points inside a circle of radius r
2 centered

at (0, 0). Call such a circle c1, and call the circle of radius r centered at (0, 0) c2. Note that the

entirety of the area of c1 is contained inside c2. The area of c1 is πr2

4 . The area of c2 is πr2. Since
P is chosen uniformly at random, we know that

P(L > m) = P(X2 + Y 2 < (
r

2
)2) =

|X2 + Y 2 < ( r2 )
2|

|X2 + Y 2 < r2|
=
Area(c1)

Area(c2)
=

πr2

4

πr2
=

1

4
= 25%

Thus, the probability that L > m with this third interpretation is

P(L > m) =
1

4

A visual depiction of the geometric description is provided below:
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(c) The result from part (b) is less than the P (L > m) = 1
3 value obtained using the method of selecting

endpoints randomly and less than the P(L > m) = 1
2 value obtained by selecting the distance from

the midpoint to (0, 0) randomly. Thus, P(L > m) is lowest when we select the midpoint of the
chord randomly and P(L > m) is largest when we select the distance from the midpoint to (0, 0)
randomly. This result makes sense intuitively.
For all methods, L > m ⇐⇒ D < r

2 . However, the distribution of D changes significantly
depending on the sampling method.
When we select the distance from the midpoint to (0, 0), we have
D ∼ ContinuousUniform([0, r]), so half of the possible chords have D < r

2 . In this case, we
only have L < m if one variable, D is larger than r

2 . This is different from the method where we
select the midpoint P at random. In this case, if either |X| > r

2 or |Y | > r
2 or both, we will have

L < m. This now accounts for 3
4 of all possible chord selections, as opposed to one half. Therefore,

since selecting the midpoint P randomly allows two variables to independently cause L < m, while
selecting the distance of D to the midpoint from (0, 0) only allows one variable to independently
cause L < m, it makes sense qualitatively why P(L > m) is greater with the latter method. Also,
when we randomly select endpoints (fixing one endpoint with θi = 0), the length of our chord L
increases from θ = 0◦ to θ = 180◦ before decreasing symmetrically. When we are halfway through
the increasing portion, at θ = 90◦, the distance to the midpoint of our chord from (0, 0) is r√

2
> r

2 .

Therefore, since we know at least half of our chords will be too far from (0, 0) for L > m with the
endpoint method, it makes sense that P(L > m) is greater for the midpoint distance D method
than the endpoint method. This completes the explanation of why P(L > m) is greatest for the
midpoint distance D method.
Since we already explained why the midpoint P method should return a lower probability P(L > m)
than the midpoint distance D method, we just need to explain why the midpoint P method should
return a lower probability P(L > m) than the endpoint method. We can do this by considering
which cords of length L > m we can choose with the two methods. If we consider some ε > 0, then
the area of chords whose midpoint is closer than ε to (0, 0) is a triangle for the endpoint method
and a circle for the midpoint P method. Therefore, as ε → 0, the percentage of choosable chords
that satisfy L > m for the midpoint P method decreases exponentially while it decreases linearly
for the endpoint method. Therefore, a lower percentage of choosable chords satisfy L > m for the
midpoint P method than for the endpoint method. This explains why P(L > m) is smallest for the
midpoint P method.
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5. A ubiquitous probabilistic model involves a very large number of independent Bernoulli trials occuring
nearly continuously, each with a very small probability of success, but where the expected number of
events in a given time period is known. For instance, a large software company has many clients using
its software all the time, but only rarely does any given client encounter an issue requiring them to call
the company’s tech support line. Suppose in a given interval of time τ , the company knows to expect
λ calls on average. The company has some unknown but large number n of active users in each time
interval τ and some unknown but small probability p of any active user calling in to tech support.

(a) Show that λ = np.

(b) Let X be the number of users interacting with the software until the first user calls in for tech
support. Determine the distribution of X in terms of p.

(c) Let Y be the amount of time until the first user calls for tech support, expressed as multiples of τ .
Determine the distribution of Y in terms of p and n.

(d) By taking the large n/small p limit, approximate FY (t) as n→ ∞, p→ 0, np = λ.

(e) Suppose it has been τ/2 time since the last tech support call. What is the probability that the next
tech support call will happen within 2τ more time?

(f) Suppose E ∼ Exponential(λ). Show that cE ∼ Exponential(λ/c) for any c > 0. Give an intuitive
explanation for this property.

Solution.

(a) Let W = the number of tech support calls that the company gets in a given time interval τ . We
are given that

E[W ] = λ

Since the company has n active users, each of which have probability p of calling tech support, we
can let V1, ..., Vn be i.i.d. Bernoulli(p) such that

Vi =

{
1 if the ith user calls tech support

0 otherwise.

Then we have

W =

n∑
i=1

Vi = V1 + · · ·+ Vn

so W ∼ Binomial(n, p). Thus, by the definition of the expected value of a binomial random
variable, we have

E[W ] = np

Since we are given E[W ] = λ, this completes the proof that

λ = np

(b) Define V1, V2, ... to be i.i.d. Bernoulli(p) such that

Vi =

{
1 if the i’th customer calls tech support

0 otherwise.

Then X = the number of Vi’s until the first customer calls tech support = the number of i.i.d
Bernoulli(p) trials until the first success. This implies X ∼ Geometric(p). Thus, by the definition
of a geometric random variable, X has probability mass function

pX(k) = P(X = k) = (1− p)k−1p
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and cumulative distribution function

FX(k) = P(X ≤ k) =

⌊k⌋∑
i=1

(1− p)i−1p = p

⌊k−1⌋∑
i=0

(1− p)i

= p
1− (1− p)⌊k⌋

1− (1− p)
=


0 if k < 0

1− (1− p)⌊k⌋ if 0 ≤ k ≤ n

1 otherwise.

(c) If X = i for any 1 ≤ i ≤ n, then the amount of time until the first user calls tech support is τ . If
X = j for any n+1 ≤ j ≤ 2n, then the amount of time until the first user calls tech support is 2τ .
Similarly, for any t ∈ N, if X = j for any (t − 1)n + 1 ≤ j ≤ tn, then the amount of time taken
until the first user calls tech support is tτ . Thus, we know

Y = ⌈X
n
⌉τ

so

P(Y = tτ) = P(⌈X
n
⌉ = t) = P((t− 1)n+ 1 ≤ X ≤ tn)

=

tn∑
i=(t−1)n+1

P(X = i) =

tn∑
i=(t−1)n+1

(1− p)i−1p

= p

tn−1∑
i=(t−1)n

(1− p)i = p

(
tn−1∑
i=0

(1− p)i −
(t−1)n−1∑

i=0

(1− p)i

)

= p

(
1− (1− p)tn

1− (1− p)
− 1− (1− p)(t−1)n

1− (1− p)

)

= p
(1− p)(t−1)n − (1− p)nt

p
= (1− p)(t−1)n − (1− p)nt

so we know is

FY (t) = P(Y ≤ tτ) =

⌊t⌋∑
i=1

(1− p)(i−1)n − (1− p)ni

= 1− (1− p)n + (1− p)n − · · · − (1− p)(⌊t⌋−1)n + (1− p)(⌊t⌋−1)n − (1− p)n⌊t⌋

=

{
0 if t < 0

1− (1− p)n⌊t⌋ otherwise.

Thus, the probability mass function of Y is

pY (t) = P(Y = tτ) = (1− p)(t−1)n − (1− p)nt

And the cumulative distribution function of Y is

FY (t) =

{
0 if t < 0

1− (1− p)n⌊t⌋ otherwise.
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(d) We can note that np = λ =⇒ p = λ
n and find

lim
n→ ∞
p→ 0

np = λ

FY (t) = lim
n→ ∞
p→ 0

np = λ

1− (1− λ

n
)nt

= 1− lim
n→ ∞
p→ 0

np = λ

(
(1− λ

n
)n

)t

= 1−

(
lim

n→ ∞
p→ 0

np = λ

(1 + (−λ
n
))n

)t

Since ex = limn→∞(1 + x
n )
n, we know

lim
n→ ∞
p→ 0

np = λ

FY (t) = 1− (e−λ)t = 1− e−λt

Thus, by taking the large n/ small p limit, we can approximate FY (t) as n→ ∞, p→ 0, np = λ as

FY (t) ≈ 1− e−λt

(e) We want to find

P(Y ≤ 5τ

2
|Y ≥ τ

2
)

We know that

P(Y ≤ 5τ

2
|Y ≥ τ

2
) = P(

τ

2
≤ Y ≤ 5τ

2
) = P(Y ≤ 5τ

2
)

since P(Y ≥ τ
2 ) = 1. We can now use the CDF of Y from part (c) to find that

P(Y ≤ 5τ

2
|Y ≥ τ

2
) = FY (

5

2
) = FY (2) = 1− (1− p)2

Thus, the probability that the next tech support call will happen within 2τ more time given that
it has been τ

2 time since the last tech support call is

P(Y ≤ 5τ

2
|Y ≥ τ

2
) = 1− (1− p)2

If we want to approximate the probability for large n and small p, using the fact that the company
knows to expect λ calls in any given interval of time τ , we find that

P(Y ≤ 5τ

2
|Y ≥ τ

2
) ≈ 1− e−2λ
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(f) Since E ∼ Exponential(λ), we know that E has cumulative distribution function

FE(x) =

{
0 if x < 0

1− e−λx otherwise.

By the definition of the cumulative distribution function, we know cE has CDF

FcE(x) = P(cE ≤ x) = P(E ≤ x

c
) = FE(

x

c
)

=

{
0 if x < 0

1− e−λ(
x
c ) otherwise.

Therefore cE has cumulative distribution function

FcE(x) =

{
0 if x < 0

1− e−(λ
c )x otherwise.

so cE has probability density function

fcE(x) =

{
0 if x < 0
λ
c e

−λ
c x otherwise.

By the definition of an Exponential random variable, we know cE ∼ Exponential(λc ).

Intuitively, this property makes sense because multiplying E by a positive constant c does not
change the shape of the distribution of E itself, it only stretches it by a factor of c. Therefore, if E
is an exponential random variable, cE should also be an exponential random variable. In order for
cE to have a valid probability distribution, the

∫∞
−∞ fcE(x)dx = 1 must be true. Since we scaled

every value in E by a factor of c to produce cE, we must also divide the parameter λ by a factor of
c to produce a valid exponential probability distribution. Thus, the result is intuitive because cE
just scales all values of E by a factor of c, so cE should still be an exponential distribution, but we
need to scale its parameter by a factor of 1

c to satisfy the axioms of probability.
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6. (Ross, TE5.30) Let X have probability density fX . Find the probability density function of the random
variable Y defined by Y = aX + b.

Solution.
Since X has probability density fX , we know

FX(x) =

∫ x

−∞
fX(k)dk

First, we will compute the cumulative distribution function of Y , FY (x). By the definition of the CDF,
and since Y = aX + b, we know

FY (x) = P(Y ≤ X) = P(aX + b ≤ x)

If a > 0, we have

FY (x) = P(X ≤ x− b

a
) = FX(

x− b

a
)

so for all a > 0 we have

FY (x) = FX(
x− b

a
) =

∫ x−b
a

−∞
fX(k)dk

We can take the derivative to find that, for any a > 0, the probability density function of Y is

d

dx
FX(

x− b

a
) = fX(

x− b

a
)
1

a
=
fX(x−ba )

a

If a < 0, we know

FY (x) = P(aX + b ≤ x) = P(X ≥ x− b

a
) = 1− P(X ≤ x− b

a
) = 1− FX(

x− b

a
)

Once again, we can differentiate to find that, for any a < 0, Y has probability density function

fY (x) =
d

dx
FY (x) =

d

dx
(1− FX(

x− b

a
)) = −fX(

x− b

a
)
1

a
= −

fX(x−ba )

a

Finally, if a = 0, we have Y = aX + b = b, so the PDF of Y is

fY (x) = 1

We can note that, if a > 0, we have

fY (x) =
fX(x−ba )

a
=
fX(x−ba )

|a|

and if a < 0, we also have

fY (x) = −
fX(x−ba )

a
=
fX(x−ba )

|a|
Thus, we can express the probability density function of Y = aX + b as

fY (X) =

{
1 if x = 0
fX( x−b

a )

|a| otherwise.
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7. (Ross, TE5.26) Let F be a continuous distribution function.

(a) If U is uniformly distributed on (0, 1), find the distribution function of Y = F−1(U), where F−1 is
the inverse function of F . (That is, y = F−1(x) if F (y) = x.)

(b) A common practical problem is to sample from a particular continuous distribution. Suppose you
have a routine, Uniform(a, b), which returns a uniformly random floating point number in the
range (a, b). Use this routine and part (a) to construct a routine Exponential(lambda) which
returns a floating point number sampled from the exponential distribution with rate λ.

Solution.

(a) Since U ∼ ContinuousUniform([0, 1]), we know that U has probability density function

fU (x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise.

By the definition of the cumulative distribution function, we know

FY (x) = P(Y ≤ X)

Since Y = F−1(U), we know that

FY (x) = P(F−1(U) ≤ X) =

Since y = F−1(x) ⇐⇒ F (y) = x, we know

FY (x) = P(F (F−1(U)) ≤ F (x)) = P(U ≤ F (x)) = FU (F (x))

By the definition of the cumulative distribution function, we know

FY (x) = FU (F (x)) =

∫ F (x)

−∞
fU (k)dk =

∫ F (x)

0

fU (k)dk =


0 if F (x) < 0

F (x) if 0 ≤ F (x) ≤ 1

1 otherwise.

Thus, if Y = F−1(U), where U ∼ ContinuousUniform([0, 1]), then the cumulative distribution
function of Y is

FY (x) =


0 if F (x) < 0

F (x) if 0 ≤ F (x) ≤ 1

1 otherwise.

(b) Suppose U ∼ ContinuousUniform([0, 1]). We need to find F−1 such that setting Y = F−1(U)
results in

FY (x) =

{
0 if x < 0

1− e−λx otherwise

We know Y = F−1(U) has cumulative distribution function

FY (x) =


0 if F (x) < 0

F (x) if 0 ≤ F (x) ≤ 1

1 otherwise.

so we just need to find the inverse of F (x) = 1− e−λx. Note:

x 7→ 1− e−λx =⇒ x− 1 7→ −e−λx =⇒
(1− x) 7→ e−λx =⇒ ln(1− x) 7→ −λx =⇒
−ln(1− x)

λ
7→ x
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so we know F−1(x) = −ln(1−x)
λ .

Thus, we can let Y = F−1(U) = −ln(1−U)
λ and we know Y has cumulative distribution function

FY (x) =

{
0 if 1− e−λx < 0

1− e−λx if 0 ≤ x

so Y ∼ Exponential(λ).

To summarize, our routine to return a floating point number sampled from Exponential(λ) is

(i) Return −ln(1−Uniform(0,1)
λ

Explicitly, our routine to return a floating point number sampled from Exponential(λ) is

Exponential(λ) =
−ln(1− Uniform(0, 1))

λ
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Assignment 12

Math 407 (Swanson) – Spring 2023
Homework 1

Due Friday 1/13, 11:59pm

Name: Emerson Kahle Section: 39981

• You must upload your solutions to Gradescope as one single, high-quality PDF. You can convert
paper-based work to a high-quality PDF using a scanning app for mobile devices, such as Adobe Scan
(free, available for iOS and Android, can do multiple pages) or many others. If necessary, you can
combine or merge multiple PDF’s into a single PDF using a variety of services, such as Adobe Acrobat’s
cloud-based merge tool.

• After you upload, you must match each question with its corresponding page using Gradescope’s
interface. This allows graders to spend more time giving you feedback instead of hunting through
submissions.

• Answers without supporting work will receive no credit. Show your work.

• You are encouraged to work together on homework, but you must write up your solutions sepa-
rately in your own words. Copying from your fellow students or other sources is a serious academic
integrity violation. In particular, you may not use “tutoring” services which simply provide answers.

• You are encouraged to typeset your solutions in LATEX. Source code has been provided on Blackboard.
Overleaf is a popular cloud-based editor.

• Problem numbers refer to the course textbook, though the problems may have been modified signifi-
cantly.
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1. (Ross, P6.9) The joint probability density function of X and Y is given by

f()x, y) =
6

7

(
x2 +

xy

2

)
, 0 < x < 1, 0 < y < 2.

(a) Verify that this is indeed a joint density function.

(b) Compute the density function of X.

(c) Find P (X > Y )

(d) Find P (Y > 1
2 | X < 1

2 ).

(e) Find E[Y ].

Solution.

(a) For f(x, y) to be a valid joint density function, we need∫ ∞

−∞

∫ ∞

−∞
f(x, y)dydx = 1

Since we are given f(x, y), we can compute that∫ ∞

−∞

∫ ∞

−∞
f(x, y)dydx =

∫ 1

0

∫ 2

0

6

7

(
x2 +

xy

2

)
dydx =

∫ 1

0

6

7

(
x2(2) +

x(2)2

4

)
dx

=
6

7

∫ 1

0

2x2 + xdx =
6

7

(
2(1)3

3
+

12

2

)
=

6

7
(
4

6
+

3

6
) =

6

7

7

6
= 1

By showing that ∫ ∞

−∞

∫ ∞

−∞
f(x, y)dydx =

∫ 1

0

∫ 2

0

6

7

(
x2 +

xy

2

)
dydx = 1

we have completed the verification that f(x, y) is indeed a joint density function.

(b) We know that the density function of X is equal to the X-marginal which is∫ ∞

−∞
f(x, y)dy

We can directly compute that∫ ∞

−∞
f(x, y)dy =

∫ 2

0

6

7

(
x2 +

xy

2

)
dy =

6

7

(
x2(2) +

x(2)2

4

)
=

6

7

(
2x2 + x

)
=

12x2 + 6x

7

Thus, X has the density function

fX(x) =

{
12x2+6x

7 if 0 < x < 1

0 otherwise.

(c) To calculate P(X > Y ), we only have to consider values of Y that are strictly less than X, for each
value of X. Therefore, while we still integrate over all values of X, we can restrict our integration
over Y to only range from −∞ to X for each value of X. This allows us to compute

P(X > Y ) =

∫ ∞

−∞

∫ x

−∞

6

7

(
x2 +

xy

2

)
dydx =

∫ 1

0

∫ x

0

6

7

(
x2 +

xy

2

)
dydx

=
6

7

∫ 1

0

x2(x) +
x(x2)

4
dx =

6

7

∫ 1

0

5x3

4
dx

=
15

14

14

4
=

15

56
≈ 26.79%
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(d) By the definition of conditional probability, we know

P(Y >
1

2
|X <

1

2
) =

P(Y > 1
2 , X < 1

2 )

P(X < 1
2 )

(1)

We can use the PDF of X to compute that

P(X <
1

2
) =

∫ 1
2

−∞

6

7
(2x2 + x)dx =

6

7

∫ 1
2

0

2x2 + xdx =
6

7

(
2( 12 )

3

3
+

(
1
2

)2
2

)

=
6

7

(
1

12
+

1

8

)
=

6

7

(
4

48
+

6

48

)
=

6 · 10
7 · 48

=
10

56
=

5

28

We can use the joint density function of X and Y to compute that

P(Y >
1

2
, X <

1

2
) =

∫ 1
2

0

∫ 2

1
2

6

7

(
x2 +

xy

2

)
dydx =

6

7

∫ 1
2

0

(
2x2 + x− (

x2

2
+

x

16
)

)
dx

=
6

7

∫ 1
2

0

3x2

2
+

15x

16
dx =

6

7

(
1
2

3

2
+

15( 12 )
2

32

)
=

6

7

(
1

16
+

15

128

)
=

6

7

23

128
=

3 · 23
7 · 64

=
69

448

Plugging the computed values for P(X < 1
2 ) and P(Y > 1

2 , X < 1
2 ) into (1), we find

P(Y >
1

2
|X <

1

2
) =

69

448

28

5
=

69

80
= 86.25%

(e) By the definition of expected value, we know

E[Y ] =

∫ ∞

−∞
yfY (y)dy (2)

We know that, for 0 < y < 2

fY (y) =

∫ ∞

−∞
f(x, y)dx =

∫ 1

0

6

7

(
x2 +

xy

2

)
dx

=
6

7

(
13

3
+

12y

4

)
=

6

7

(
1

3
+
y

4

)
=

2

7
+

3y

14

so we have

fY (y) =

{
2
7 + 3y

14 if 0 < y < 2

0 otherwise.

Plugging this into (2), we find

E[Y ] =

∫ ∞

−∞
yfY (y)dy =

∫ 2

0

y

(
2

7
+

3y

14

)
dy

=

∫ 2

0

2y

7
+

3y2

14
dy =

4

7
+

8

14
=

4

7
+

4

7
=

8

7

Thus, the expected value of Y is 8
7 .
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2. (Ross, ST6.5) Suppose that X, Y , and Z are independent random variables that are each equally likely
to be either 1 or 2. Find the probability mass function of

(a) XY Z

(b) X2 + Y Z

Solution.

(a) We are given that X, Y , and Z are i.i.d DiscreteUniform({1, 2}). Thus, they all have the same
probability mass function

pX(x) = pY (x) = pZ(x) =

{
1
2 if x ∈ {1, 2}
0 otherwise.

Since X, Y , and Z can only take on values in {1, 2}, we know that XY Z will be some 2k for some
0 ≤ k ≤ 3. Since X, Y , and Z are independent, we can easily compute P(XY Z = 2k) for each such
k. Note that there are 8 equally likely combinations of values for the variables X, Y , Z.

(i) For XY Z = 20 = 1, we need 0 random variables to be 2, which can only happen in 1 way (all
random variables are 1). Thus,

P(XY Z = 20 = 1) = P(X = 1, Y = 1, Z = 1) = P(X = 1)P(Y = 1)P(Z = 1)

=
1

2

1

2

1

2
=

1

8
= 12.5%

(ii) For XY Z = 21 = 2, we need exactly 1 random variable to be 2, which can happen in
(
3
1

)
ways

since we have three i.i.d DiscreteUniform({1, 2}) random variables. Thus,

P(XY Z = 21 = 2) = P((X = 1, Y = 1, Z = 2) ∪ (X = 1, Y = 2, Z = 1)

∪ (X = 2, Y = 1, Z = 1))

= P(X = 1, Y = 1, Z = 2) + P(X = 1, Y = 2, Z = 1)+

= P(X = 2, Y = 1, Z = 1)

= P(X = 1)P(Y = 1)P(Z = 2) + P(X = 1)P(Y = 2)P(Z = 1)+

= P(X = 2)P(Y = 1)P(Z = 1)

=

(
1

2

)3

+

(
1

2

)3

+

(
1

2

)3

=

(
3

1

)
1

8
=

3

8
= 37.5%

(iii) Similarly, for XY Z = 22 = 4, we need exactly 2 random variables to be 2, which can happen
in
(
3
2

)
ways. Thus,

P(XY Z = 22 = 4) = P((X = 1, Y = 2, Z = 2) ∪ (X = 2, Y = 2, Z = 1)

∪ (X = 2, Y = 1, Z = 2))

= P(X = 1, Y = 2, Z = 2) + P(X = 2, Y = 2, Z = 1)+

= P(X = 2, Y = 1, Z = 2)

= P(X = 1)P(Y = 2)P(Z = 2) + P(X = 2)P(Y = 2)P(Z = 1)+

= P(X = 2)P(Y = 1)P(Z = 2)

=

(
1

2

)3

+

(
1

2

)3

+

(
1

2

)3

=

(
3

2

)
1

8
=

3

8
= 37.5%

(iv) For XY Z = 23 = 8, we need all 3 random variables to be 2, which can only happen in 1 way.
Thus,

P(XY Z = 23 = 8) = P(X = 2, Y = 2, Z = 2)

= P(X = 2)P(Y = 2)P(Z = 2) =
1

2

3

=
1

8
= 12.5%
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Thus, the probability mass function of XY Z is

pXY Z(xyz) =


1
8 if xyz ∈ {1, 8}
3
8 if xyz ∈ {2, 4}
0 otherwise.

(b) Since X can only take on values in {1, 2}, X2 can only take on values in {12, 22} = {1, 4}. Also,
X2 = 1 ⇐⇒ X = 1 and X2 = 4 ⇐⇒ X = 2, so we know X2 has probability mass function

pX2(x2) =

{
1
2 if x ∈ {1, 2} ⇐⇒ x2 ∈ {1, 4}, x > 0

0 otherwise.

Since Y and Z can only take on values in {1,2}, we know that Y Z will be some 2k for k ∈ {0, 1, 2}.
We can easily compute the probability that Y Z = 2k for each such k:

(i) For Y Z = 1, we need both Y and Z to equal 1, which can only happen in 1 way. Thus,

P(Y Z = 1) = P(Y = 1, Z = 1) = P(Y = 1)P(Z = 1) = (
1

2
)2 =

1

4

(ii) For Y Z = 2, we need exactly 1 of Y and Z to be 1, which can be done in 2 ways. Thus,

P(Y Z = 2) = P((Y = 2, Z = 1) ∪ (Y = 1, Z = 2)) = P(Y = 2, Z = 1) + P(Y = 1, Z = 2)

=
1

4
+

1

4
=

1

2

(iii) For Y Z = 4, we need neither of Y and Z to be 1, which can be done in exactly 1 way. Thus,

P(Y Z = 4) = P(Y = 2, Z = 2) = P(Y = 2)P(Z = 2) =
1

4

so Y Z has probability mass function

PY Z(yz) =


1
4 if yz ∈ {1, 4}
1
2 if yz = 2

0 otherwise.

Since X2 takes on values in {1, 4} and Y Z takes on values in {1, 2, 4}, X2 + Y Z takes on values
in {2, 3, 5, 6, 8}. Since X2 and Y Z are independent, we can easily compute P((X2 + Y Z) = a) for
all a ∈ {2, 3, 5, 6, 8}:
(i) For X2 + Y Z = 2, we need both X2 = 1 and Y Z = 1, so we have

P(X2 + Y Z = 2) = P(X2 = 1, Y Z = 1) = P(X2 = 1)P(Y Z = 1) =
1

2

1

4
=

1

8

(ii) For X2 + Y Z = 3, we need X2 = 1, Y Z = 2, so we have

P(X2 + Y Z = 3) = P(X2 = 1, Y Z = 2) = P(X2 = 1)P(Y Z = 2) =
1

2

1

2
=

1

4

(iii) For X2 + Y Z = 5, we need X2 = 1, Y Z = 4 or X2 = 4, Y Z = 1. Thus, we have

P(X2 + Y Z = 5) = P((X2 = 1, Y Z = 4) ∪ (X2 = 4, Y Z = 1))

= P(X2 = 1, Y Z = 4) + P(X2 = 4, Y Z = 1)

= P(X2 = 1)P(Y Z = 4) + P(X2 = 4)P(Y Z = 1)

=
1

2

1

4
+

1

2

1

4
=

2

8
=

1

4
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(iv) For X2 + Y Z = 6, we need X2 = 4, Y Z = 2. Thus, we have

P(X2 + Y Z = 6) = P(X2 = 4, Y Z = 2) = P(X2 = 4)P(Y Z = 2) =
1

2

1

2
=

1

4

(v) For X2 + Y Z = 8, we need X2 = 4, Y Z = 4. Thus, we have

P(X2 + Y Z = 8) = P(X2 = 4, Y Z = 4) = P(X2 = 4)P(Y Z = 4) =
1

2

1

4
=

1

8

Thus, the probability mass function of X2 + Y Z is

pX2+Y Z(x
2 + yz) =


1
8 if x2 + yz ∈ {2, 8}, x, y, z ≥ 0
1
4 if x2 + yz ∈ {3, 5, 6}, x, y, z ≥ 0

0 otherwise.
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3. Let
f(x, y) = C(sin(x+ y)− sin(x− y))1[0,π/2](x)1[0,π](y)

be a joint PDF. (Here 1A is the indicator function on the set A.)

(a) Compute C.

(b) Show that the marginals X and Y are independent.

Solution.

(a) For f(x, y) to be a joint PDF, we must have∫ ∞

−∞

∫ ∞

−∞
f(x, y)dydx = 1

First we can simplify f(x, y). Note that, since sin(x) is an odd function, −sin(x− y) = sin(y−x),
so we know

f(x, y) = C(sin(y + x) + sin(y − x))1[0,π/2](x)1[0,π](y)

Now, we can apply the sum-to-product formula for sin(y + x) + sin(y − x) to find

f(x, y) = C(2sin(
y + x+ y − x

2
)cos(

y + x− y + x

2
))1[0,π/2](x)1[0,π](y)

= 2Csin(
2y

2
)cos(

2x

2
)1[0,π/2](x)1[0,π](y) = 2Csin(y)cos(x)1[0,π/2](x)1[0,π](y)

We can plug in this simplified f(x, y) to directly compute that∫ ∞

−∞

∫ ∞

−∞
f(x, y)dydx =

∫ ∞

−∞

∫ ∞

−∞
2Csin(y)cos(x)1[0,π/2](x)1[0,π](y)dydx

=

∫ π
2

0

∫ π

0

2Csin(y)cos(x)dydx

= 2C

∫ π
2

0

∫ π

0

sin(y)cos(x)dydx

= 2C

∫ π
2

0

(−cos(π)cos(x)− (−cos(0)cos(x))) dx

= 2C

∫ π
2

0

2cos(x)dx

= 4C(sin(
π

2
)− sin(0))

= 4C · 1 = 4C

Thus, since f(x, y) is a valid joint PDF, we know

1 =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)dydx = 4C

which implies

C =
1

4

and

f(x, y) =
1

4
(sin(x+ y)− sin(x− y))1[0,π/2](x)1[0,π](y)

=
1

2
sin(y)cos(x)1[0,π/2](x)1[0,π](y)
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(b) The X marginal is

pX(x) =

∫ ∞

−∞
f(x, y)dy =

∫ π

0

1

2
sin(y)cos(x)dy

= − 1

2
cos(π)cos(x)− (−1

2
cos(0)cos(x)) =

cos(x) + cos(x)

2
=

2cos(x)

2
= cos(x)

so we have

pX(x) =

{
cos(x) if 0 < x < π

2

0 otherwise.

assuming 0 < Y < π.
The Y marginal is

pY (y) =

∫ ∞

−∞
f(x, y)dx =

∫ π
2

0

1

2
sin(y)cos(x)dx

=
1

2
sin(y)sin(

π

2
)− 1

2
sin(y)sin(0) =

sin(y)

2

so we have

pY (y) =

{
sin(y)

2 if 0 < y < π

0 otherwise.

assuming 0 < X < π
2 . Multiplying pY (y) and pX(x) together, we find

pX(x)pY (y) =

{
cos(x) sin(y)2 = 1

2sin(y)cos(x) if 0 < x < π
2 , 0 < y < π

0 otherwise

=
1

2
sin(y)cos(x)1[0,π2 ](x)1[0,π](y) = f(x, y)

This holds for all −∞ < x, y < ∞, which completes the proof that the marginals of X and Y are
independent. We can also note that

pX|Y (x|y) =
f(x, y)

fY (y)
=

1
2sin(y)cos(x)

1
2sin(y)

1[0,π2 ](x)1[0,π](y) = cos(x)1[0,π2 ](x)1[0,π](y) = pX(x)

and

PY |X(y|x) = f(x, y)

fX(x)
=

1
2sin(y)cos(x)

cos(x)
1[0,π2 ](x)1[0,π](y) =

1

2
sin(y)1[0,π2 ](x)1[0,π](y) = pY (y)

to conclude that the X and Y marginals are independent.
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4. (Ross, P6.43) Two dice are rolled. Let X and Y denote, respectively, the largest and smallest values
obtained. Compute the conditional mass function of Y given X = i, for i = 1, 2, . . . , 6. Are X and Y
independent? Why?

Solution.
We can do this directly for each i. Suppose vi = the value on the ith roll.

(i) X = i = 1. If vi > 1 for any i ∈ {1, 2}, then X ̸= 1, as the value of the largest roll could not be 1.
Thus, X = 1 =⇒ vi = 1 for all i ∈ {1, 2}. Since both rolls must be 1, the smallest roll must be 1,
so we know

pY |X(y|1) =

{
1 if y = 1

0 otherwise.

(ii) X = i = 2. Since the largest roll is 2, the smallest roll could either be 2 or 1. There are 3 equally
likely ways to have a largest roll of 2:

(v1, v2) ∈ {(1, 2), (2, 1), (2, 2)}

Of these 3 ways, Y = 1 in the first 2, and Y = 2 in the last 1. Thus, we have

pY |X(y|2) =


2
3 if y = 1
1
3 if y = 2

0 otherwise.

(iii) X = i = 3. Since the largest roll is 3, the smallest roll could be 1, 2, or 3. There are 5 equally
likely ways to have a largest roll of 3:

(v1, v2) ∈ {(1, 3), (3, 1), (2, 3), (3, 2), (3, 3)}

Of these 5 ways, Y = 1 in 2 of them, Y = 2 in 2 of them, and Y = 3 in 1 of them. Thus, we have

pY |X(y|3) =


2
5 if y ∈ {1, 2}
1
5 if y = 3

0 otherwise.

(iv) X = i = 4. Since the largest roll is 4, the smallest roll could be 1, 2, 3, or 4. There are 7 equally
likely ways to have a largest roll of 4:

(v1, v2) ∈ {(1, 4), (4, 1), (2, 4), (4, 2), (3, 4), (4, 3), (4, 4)}

Of these 7 ways, Y = 1 in 2 of them, Y = 2 in 2 of them, Y = 3 in 2 of them, and Y = 4 in 1 of
them. Thus, we have

pY |X(y|4) =


2
7 if y ∈ {1, 2, 3}
1
7 if y = 4

0 otherwise.

(v) X = i = 5. Since the largest roll is 5, the smallest roll could be 1, 2, 3, 4, or 5. There are 9 equally
likely ways to have a largest roll of 5:

(v1, v2) ∈ {(1, 5), (5, 1), (2, 5), (5, 2), (3, 5), (5, 3), (4, 5), (5, 4), (5, 5)}

Of these 9 ways Y = 1 in 2 of them, Y = 2 in 2 of them, Y = 3 in 2 of them, Y = 4 in 2 of them,
and Y = 5 in 1 of them. Thus, we have

pY |X(y|5) =


2
9 if y ∈ {1, 2, 3, 4}
1
9 if y = 5

0 otherwise.
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(vi) X = i = 6. Since the largest roll is 6, the smallest roll could be 1, 2, 3, 4, 5, or 6. There are 11
equally likely ways to have a largest roll of 6:

(v1, v2) ∈ {(1, 6), (6, 1), (2, 6), (6, 2), (3, 6), (6, 3), (4, 6), (6, 4), (5, 6), (6, 5), (6, 6)

Of these 11 ways, Y = 1 in 2 of them, Y = 2 in 2 of them, Y = 3 in 2 of them, Y = 4 in 2 of them,
Y = 5 in 2 of them, and Y = 6 in 1 of them. Thus, we have

pY |X(y|6) =


2
11 if y ∈ {1, 2, 3, 4, 5}
1
11 if y = 6

0 otherwise.

We can also use these solutions for the individual conditional mass functions to find a general conditional
mass function for Y |X. By the definition of conditional probability, we have

pY |X(y|x) = P(Y = y|X = x) =
P(Y = y,X = x)

P(X = x)
(1)

If y > x, then P(Y = y,X = x) = 0.
If 1 ≤ y = x ≤ 6, then we must have v1 = v2 = y = x, which can only happen in 1 way. Since there are
36 equally likely sequences of dice rolls, this means P(Y = y,X = x) = 1

36 for all y = x.
If 1 ≤ y < x ≤ 6, then P(Y = y,X = x) = P((v1 = y, v2 = x) ∪ (v1 = x, v2 = y)). There is only 1
outcome in which v1 = y, v2 = x, and 1 more outcome in which v1 = x, v2 = y. Since there are 36
equally likely outcomes, we know

P(Y = y,X = x) =
2

36

for all 1 ≤ y < x ≤ 6.
If x ̸∈ {1, ..., 6} or y ̸∈ {1, ..., 6}, then P(X = x, Y = y) = 0. Thus, we know

P(Y = y,X = x) =


1
36 if 1 ≤ y = x ≤ 6
2
36 if 1 ≤ y < x ≤ 6

0 otherwise.

From our calculations for the individual conditional mass functions, we found that, for any X = i, there
are exactly 2i − 1 equally likely outcomes in which i is the largest value rolled. This makes sense, as
there are 2 outcomes in which one roll is i and the other roll is j for each j ∈ {1, ..., i−1} and 1 outcome
in which i is rolled twice, for a total of 2(i−1)+1 = 2i−1 equally likely outcomes. Since the experiment
has 36 equally likely outcomes, we have

pX(x) = P(X = x) =

{
2x−1
36 if 1 ≤ x ≤ 6

0 otherwise.

Plugging in our computed values for P(X = x) and P(Y = y,X = x) into (1), we find that the general
conditional mass function of Y given X is

pY |X(y|x) =


1

2x−1 if 1 ≤ y = x ≤ 6
2

2x−1 if 1 ≤ y < x ≤ 6

0 otherwise.

For X and Y to be independent, we need

P(X = x, Y = y) = P(X = x)P(Y = y)
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for all x, y. We can easily see this statement does not hold under our definition of X and Y . Let X = 4,
Y = 5. Plugging in x = 4 into pX(x), we find

pX(4) = P(X = 4) =
2(4)− 1

36
=

7

36

If Y = 5, then at least one roll must be a 5, and the other roll must be no lower than a 5. There are
only 3 such outcomes, each of which are equally likely:

(v1, v2) ∈ {(5, 5), (5, 6), (6, 5)}

Since there are 36 total equally likely outcomes, we have

P(Y = 5) =
3

36

Multiplying these values together, we find

P(Y = 5)P(X = 4) =
3

36

7

36
=

21

362

However if X = 4, the smallest number rolled cannot be Y = 5, as 5 > 4. Thus, we know

P(X = 4, Y = 5) = 0 ̸= P(X = 4)P(Y = 5)

This counterexample proves that X and Y are NOT independent.
This result makes intuitive sense because, once you know X = i, you know that 1 ≤ Y ≤ i. Thus, having
knowledge about the value of X provides direct knowledge about the value of Y , rendering making the
variables dependent on one another. This is consistent with our calculations for pY |X(y|x), which show
that the conditional probability of Y given X takes the value of X as input and thus depends on X.

Page 443



5. (Ross P7.42) The joint density function of X and Y is given by

f(x, y) =
1

y
e−(y+x/y), x > 0, y > 0.

Find E[X], E[Y ], and show that E[(X − E[X])(Y − E[Y ])] = 1.

Solution.
First, we will calculate E[X]. By the definitions of expected value and the X marginal, we know

E[X] =

∫ ∞

−∞
xfX(x)dx =

∫ ∞

−∞

∫ ∞

−∞
xf(x, y)dydx =

∫ ∞

0

∫ ∞

0

x
1

y
e−(y+x/y)dydx

We can flip the order of integration to find

E[X] =

∫ ∞

0

∫ ∞

0

x

y
e−(y+x/y)dxdy

Now, we can integrate by parts with u = x
y , du = dx

y , dv = e−(y+x/y)dx, v = −ye−(y+x/y) to find

∫ ∞

0

x

y
e−(y+x/y)dx = − xe−(y+x/y)

∣∣∣∣∣
∞

0

+

∫ ∞

0

e(−y+x/y)dx

= 0− 0 + (−ye−(y+x/y))

∣∣∣∣∣
∞

0

= −0− (−ye−y) = ye−y

Therefore

E[X] =

∫ ∞

0

ye−ydy

Integrating by parts with u = y, du = dy, dv = e−y, v = −e−y, we find

E[X] = − ye−y

∣∣∣∣∣
∞

0

+

∫ ∞

0

e−ydy

= 0− 0 + (−e−y)

∣∣∣∣∣
∞

0

= 0− (−e0) = e0 = 1

Thus, the expected value of X is
E[X] = 1

.

Next, we will calculate E[Y ]. By the definition of expected value,

E[Y ] =

∫ ∞

0

yfY (y)dy

so let’s compute pY (y) first. By definition

fY (y) =

∫ ∞

−∞
f(x, y)dx =

∫ ∞

0

1

y
e−(y+x/y)dx

If we let u = y + x/y, then we have du = dx
y , x = 0 ⇐⇒ u = y, and

fY (y) =

∫ ∞

y

e−udu = −e−u
∣∣∣∣∣
∞

y

= 0− (−ey) = e−y
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so we have

fY (y) =

{
e−y if y > 0

0 otherwise.

Note that the density function of an exponential random variable with parameter λ is

f(x) =

{
λe−λx if x > 0

0 otherwise.

Since e−y = 1 · e−1·y, we know Y ∼ Exponential(1). Thus, Y has expected value

E[Y ] =
1

λ
=

1

1
= 1

We can also plug in pY (y) to the equation for E[Y ] to compute directly that

E[Y ] =

∫ ∞

0

ye−ydy = E[X] = 1

since we already found that E[X] =
∫∞
0
ye−ydy = 1.

Plugging E[Y ] = E[X] = 1 into E[(X − E[X])(Y − E[Y ])], we find

E[(X − E[X])(Y − E[Y ])] = E[(XY − E[X]Y − E[Y ]X + E[X]E[Y ])]

= E[XY − Y −X + E[X]E[Y ]]

= E[XY ]− E[Y ]− E[X] + 1 = E[XY ]− 2 + 1 = E[XY ]− 1

Thus, we just need to compute E[XY ]. By the definition of expected value, we know

E[XY ] =

∫ ∞

−∞

∫ ∞

−∞
xyf(x, y)dxdy =

∫ ∞

0

∫ ∞

0

xy
1

y
e−(y+x/y)dxdy

=

∫ ∞

0

y

∫ ∞

0

x

y
e−(y+x/y)dxdy

We already computed that ∫ ∞

0

x

y
e−(y+x/y)dx = ye−y

when computing E[X], so we know

E[XY ] =

∫ ∞

0

y2e−ydy

Integrating by parts with u = y2, du = 2ydy, dv = e−ydy, v = −e−y, we find

E[XY ] = − y2e−y

∣∣∣∣∣
∞

0

+ 2

∫ ∞

0

ye−ydy

= 0− 0 + 2(1) = 2

since we already computed that ∫ ∞

0

ye−ydy = 1

when computing E[X]. Thus, we know

E[(X − E[X])(Y − E[Y ])] = E[XY ]− 1 = 2− 1 = 1

which completes the proof that
E[(X − E[X])(Y − E[Y ])] = 1
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6. (Ross P7.52) The joint density function of X and Y is given by

f(x, y) =
e−x/ye−y

y
, 0 < x <∞, 0 < y <∞.

Compute E[X2 | Y = y].

Solution.
By the definition of expected value and the conditional density function of X given Y = y, we know

E[X2 | Y = y] =

∫ ∞

−∞
x2fX|Y (X|Y = y)dx =

∫ ∞

−∞
x2
f(x, y)

fY (y)
dx (1)

We are given f(x, y), so we just need to compute fY (y). We can compute fY (y) directly using its
definition.

fY (y) =

∫ ∞

−∞
f(x, y)dx =

e−y

y

∫ ∞

0

e−x/ydx

=
e−y

y
(−ye−x/y)

∣∣∣∣∣
∞

x=0

=
e−y

y
(0− (−ye0)) = e−y

y
y = e−y

so we have

fY (y) =

{
e−y if y > 0

0 otherwise.

Plugging this into (1), we find

E[X2|Y = y] =

∫ ∞

0

x2
e−x/ye−y

y

e−y
dx =

∫ ∞

0

x2
e−x/y

y
dx =

∫ ∞

0

x2

y
e−x/ydx

Integrating by parts with u = x2

y , du = 2xy dx, dv = e−x/ydx, v = −ye−x/y, we find

E[X2|Y = y] = − x2e−x/y

∣∣∣∣∣
∞

x=0

+ 2

∫ ∞

0

xe−x/ydx

= 0− 0 + 2

∫ ∞

0

xe−x/ydx = 2

∫ ∞

0

xe−x/ydx

Integrating by parts again with u = x, du = dx, dv = e−x/ydx, v = −ye−x/y, we find

E[X2|Y = y] = 2

(
−xye−x/y

∣∣∣∣∣
∞

x=0

+ y

∫ ∞

0

e−x/ydx

)
= 2

(
0− 0 + y(−ye−x/y|∞x=0)

)
= 2(0− (−y2)) = 2y2

Thus, the expected value of X2 given that Y = y is

E[X2|Y = y] = 2y2
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7. Suppose X,Y are i.i.d. Exponential(λ) random variables. Compute the density of X + Y .

Solution.
We will use the cumulative distribution function of X + Y to solve this problem. By definition, the
cumulative distribution function of X + Y is

FX+Y (z) =

∫ ∫
x+y≤z

fX(x)fY (y)dxdy

If we let y go from −∞ to ∞, then we must restrict x from −∞ to z − y. Therefore, we have

FX+Y (z) =

∫ ∞

−∞

∫ z−y

−∞
fX(x)fY (y)dxdy =

∫ ∞

−∞
fY (y)

(∫ z−y

−∞
fX(x)dx

)
dy

By the definition of the cumulative distribution function, we know

FX(z − y) =

∫ z−y

−∞
fX(x)dx

so we can rewrite FX+Y (z) as

FX+Y (z) =

∫ ∞

−∞
fY (y)FX(z − y)dy

By the definition of the probability density function, we know the density of X + Y is

fX+Y (z) =
d

dz
FX+Y (z)

which implies that

fX+Y (z) =
d

dz

∫ ∞

−∞
fY (y)FX(z − y)dy =

∫ ∞

−∞
fY (y)

d

dz
FX(z − y)dy =

∫ ∞

−∞
fY (y)fX(z − y)dy

Since X and Y are i.i.d. Exponential(λ), we know that

fX(x) = fY (x) =

{
λe−λx if x > 0

0 otherwise.

which implies that

fX+Y (z) =

∫ z

0

λe−λyλe−λ(z−y)dy

The integral’s lower bound of 0 stems from the fact that fY (y) = 0 for all y ≤ 0. The integral’s upper
bound of z stems from the fact that fX(z − y) = 0 for all y ≥ z. We can now directly compute that, for
z > 0

fX+Y (z) = λ2
∫ z

0

e−λ(y+z−y)dy = λ2e−λz
∫ z

0

dy = λ2e−λzy

∣∣∣∣∣
z

y=0

= λ2ze−λz

Thus, the density of X + Y is

fX+Y (z) =

{
λ2ze−λz if z > 0

0 otherwise.

Page 447



8. (Ross, TE5.13) The median of a continuous random variable having distribution function F is that value
m such that F (m) = 1

2 . That is, a random variable is just as likely to be larger than its median as it is
to be smaller. Find the median of X if X is

(a) uniformly distributed over (a, b);

(b) normal with parameters µ, σ2;

(c) exponential with rate λ.

Solution.

(a) Let X ∼ ContinuousUniform(a, b). Then, by the definition of a Continuous Uniform random
variable, X has density function

fX(x) =

{
1
b−a if x ∈ (a, b)

0 otherwise.

Since F (m) = 1
2 , we know

F (m) =

∫ m

−∞
fX(x) =

1

2

We can compute directly that

F (m) =

∫ m

a

1

b− a
dx =

1

b− a
x

∣∣∣∣∣
m

a

=
1

b− a
(m− a) =

m− a

b− a

Thus, we know

1

2
=
m− a

b− a
=⇒ b− a

2
= m− a =⇒ m =

b− a

2
+ a =

b− a+ 2a

2
=
b+ a

2

Thus, the median of X ∼ ContinuousUniform(a, b) is

m =
b+ a

2

This makes intuitive sense, as the distribution of X is symmetric about the center of (a, b), which
is a+b

2 .

(b) Let N ∼ Normal(µ, σ2). Then, by the definition of a Normal random variable, N has density
function

fN (x) =
e

−(x−µ)2

2σ2

σ
√
2π

for all x ∈ R.
For F (m) = 1

2 , we need

P(N > m) = P(N ≤ m) =
1

2

Since

P(N > m) = 1− P(N ≤ m) = 1− FN (m) =

∫ ∞

−∞
fN (x)dx−

∫ m

−∞
fN (x)dx =

∫ ∞

m

fN (x)dx

we must have

P(N ≤ m) = FN (m) =

∫ m

−∞
fN (x)dx =

∫ ∞

m

fN (x)dx = P(N > m)
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Using the definition of the density function of a Normal random variable, we find

∫ m

−∞

e
−(x−µ)2

2σ2

σ
√
2π

dx =

∫ ∞

m

e
−(x−µ)2

2σ2

σ
√
2π

dx

Noting that
(
x−µ
σ

)2
is part of the power to which e is raised in both integrals, we can let u = x−µ

σ ,

du = dx
σ to find ∫ m−µ

σ

−∞

e
−u2

2

√
2π

du =

∫ ∞

m−µ
σ

e
−u2

2

√
2π

du

Since 1√
2π

is a constant, this implies

∫ m−µ
σ

−∞
e

−u2

2 du =

∫ ∞

m−µ
σ

e
−u2

2 du (1)

Note that, for any u ∈ R, we have

e
−(−u)2

2 = e
−u2

2 = e
−(u)2

2

so e
−u2

2 is an even function. For any even function∫ 0

−∞
f(x)dx =

∫ 0

−∞
f(−x)dx =

∫ ∞

0

f(x)dx

so we know (1) will be true if m−µ
σ = 0. Thus, we know

m− µ

σ
= 0 =⇒ m− µ = 0 =⇒ m = µ

We can easily verify (1) holds under m = µ:∫ 0

−∞
e

−u2

2 du =

∫ 0

−∞
e

−(−u)2

2 du =

∫ ∞

0

e
−u2

2 du

Thus, the median of N ∼ Normal(µ, σ2) is

m = µ

This also makes intuitive sense, as the distribution of N is symmetric about µ.

(c) Let E ∼ Exponential(λ). Then, by the definition of an Exponential random variable, E has density
function

fE(x) =

{
λe−λx if x > 0

0 otherwise.

Since F (m) = 1
2 , we know

F (m) =

∫ m

−∞
fE(x)dx =

∫ m

0

λe−λxdx =
1

2

We can compute directly that

1

2
= F (m) =

∫ m

0

λe−λxdx = −e−λx
∣∣∣∣∣
m

0

= −e−λm − (−e0) = 1− e−λm
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This implies

−1

2
= −e−λm =⇒ 1

2
= e−λm =⇒ ln(

1

2
) = −λm =⇒

−ln( 12 )
λ

=
ln(2)

λ
= m

Thus, the median of E ∼ Exponential(λ) is

m =
ln(2)

λ

This also makes intuitive sense, as ln(2)
λ < 1

λ = E[E], and E’s distribution is skewed to the right,
so the median should be less than the mean.

Page 450



Assignment 13

Math 407 (Swanson) – Spring 2023
Homework 1

Due Friday 1/13, 11:59pm

Name: Emerson Kahle Section: 39981

• You must upload your solutions to Gradescope as one single, high-quality PDF. You can convert
paper-based work to a high-quality PDF using a scanning app for mobile devices, such as Adobe Scan
(free, available for iOS and Android, can do multiple pages) or many others. If necessary, you can
combine or merge multiple PDF’s into a single PDF using a variety of services, such as Adobe Acrobat’s
cloud-based merge tool.

• After you upload, you must match each question with its corresponding page using Gradescope’s
interface. This allows graders to spend more time giving you feedback instead of hunting through
submissions.

• Answers without supporting work will receive no credit. Show your work.

• You are encouraged to work together on homework, but you must write up your solutions sepa-
rately in your own words. Copying from your fellow students or other sources is a serious academic
integrity violation. In particular, you may not use “tutoring” services which simply provide answers.

• You are encouraged to typeset your solutions in LATEX. Source code has been provided on Blackboard.
Overleaf is a popular cloud-based editor.

• Problem numbers refer to the course textbook, though the problems may have been modified signifi-
cantly.
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1. (Ross, P5.16) The annual rainfall (in inches) in a certain region is normally distributed with µ = 40 and
σ = 4. What is the probability that starting with this year, it will take more than 10 years before a year
occurs having a rainfall of more than 50 inches? What assumptions are you making?

Solution.
Let Xi = the annual rainfall in inches for the ith year, starting from this year.
In order to arrive at a conclusive answer, we assume that the annual rainfall in the ith year is indepen-
dent from the rainfall in the jth year for all i ̸= j.
Let Y = the number of years, starting from this year, before a year occurs having a rainfall of more than
50 inches. Then we want to find

P(Y > 10)

Let Zi =

{
1 if Xi > 50

0 otherwise.

Then the Zis are i.i.d. Bernoulli(p) random variables, where

p = P(Xi > 50)

Since the Xis are i.i.d. Normal(40, 16), we can compute that

P(Xi > 50) = P(
Xi − 40

4
>

50− 40

4
) = P(

Xi − 40

4
> 2.5) = 1− P(

Xi − 40

4
≤ 2.5) = 1− ϕ(2.5)

since Xi−40
4 is a standardized normal random variable. We can approximate that

P(Xi > 50) ≈ 1− 0.99379 = 0.00621

Thus, we have that the Zis are i.i.d. Bernoulli(p) where p = 0.00621. Since Y is simply the number of
Zis until the first ‘success’ (Zi = 1), we have that Y ∼ Geometric(p). Thus, Y has probability mass
function

pY (y) =

{
(1− p)y−1p if y ∈ N
0 otherwise.

so we can directly compute that

P(Y > 10) = 1− P (Y ≤ 10) = 1−
10∑
i=1

(1− p)i−1p = 1− p

9∑
i=0

(1− p)i

= 1− p
1− (1− p)10

1− (1− p)
= 1− (1− (1− p)10) = (1− p)10

= (0.99379)10 ≈ 0.9396 = 93.96%

Thus, there is approximately a 93.96% chance it will take more than 10 years before a year occurs having
a rainfall of more than 50 years, assuming the annual rainfalls are mutually independent.
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2. (Ross, P5.23) One thousand independent rolls of a fair die will be made. Compute an approximation
to the probability that the number 6 will appear between 150 and 200 times (i.e. in [150, 200]). If the
number 6 appears exactly 200 times, find the probability that the number 5 will appear less than 150
times.

(Note: here it is best to use the continuity correction, which replaces the discrete probability P (X = i)
with P (i− 1/2 < X < i+ 1/2). This is, however, typically only a small improvement.)

Solution.

Let Xi =

{
1 if the ith roll is a 6

0 otherwise.

Then the 1000 independent dice rolls correspond to 1000 i.i.d. Xi ∼ Bernoulli( 16 ) random variables.

Let Y =
∑1000
i=1 Xi = the number of 6’s rolled over the 1000 independent dice rolls. Then Y ∼

Binomial(1000, 16 ), so we know

µY =
1000

6
σ2
Y =

1

6

5

6
1000 =

5000

36
=

1250

9

Using the Normal approximation to the Binomial distribution since n = 1000 is large, and applying the
continuity correction, we find

P(150 ≤ Y ≤ 200) ≈ P(149.5 ≤ Z ≤ 200.5)

where Z ∼ Normal(µY , σ
2
Y ). Thus, we can compute that

P(150 ≤ Y ≤ 200) ≈ P(
149.5− 1000

6√
1250
9

≤
Z − 1000

6√
1250
9

≤
200.5− 1000

6√
1250
9

)

= P(−1.457 ≤
Z − 1000

6√
1250
9

≤ 2.871) = ϕ(2.871)− ϕ(−1.457)

since
Z− 1000

6√
1250

9

is a standardized normal random variable. Thus, we can approximate that

P(150 ≤ Y ≤ 200) ≈ 0.9980− 0.0726 = 0.9254 = 92.54%

Thus, the probability that the number 6 will appear between 150 and 200 times in 1000 independent
rolls of a fair die is approximately 92.54%.

If we are given that the number 6 appears exactly 200 times, then we know the other 800 indepen-

dent dice rolls only have values from 1 to 5. Let Ai =

{
1 if the ith roll is a 5

0 otherwise.
Then the Ai’s are 800

i.i.d. Bernoulli( 15 ) random variables.

Let B = the number of 5s, given that there are exactly 200 6s. Then B =
∑800
i=1Ai, so B ∼

Binomial(800, 15 ). Thus, B has mean µB = 800
5 = 160 and variance σ2

B = 800∗4∗1
5∗5 = 3200

25 = 128.
Using the Normal approximation for the Binomial distribution since n = 800 is large, and applying the
continuity correction, we find the probability that the number 5 appears less than 150 times, given that
the number 6 appears exactly 200 times, is

P(B < 150) = P(B ≤ 149) ≈ P(C ≤ 149.5) = P(
C − 160√

128
≤ 149.5− 160√

128
)

= P(
C − 160√

128
≤ −0.9281) = ϕ(−0.9281)
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where C ∼ Normal(160, 128) since C−160√
128

is a standardized normal random variable. Thus, we can

approximate that
P(B < 150) ≈ 0.1767 = 17.67%

Thus, the probability that the number 5 appears less than 150 times given that the number 6 appears
exactly 200 times is approximately 17.67%.
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3. (Ross, P8.5) Fifty numbers are rounded off to the nearest integer and then summed. If the individual
round-off errors are uniformly distributed over (−0.5, 0.5), approximate the probability that the resul-
tant sum differs from the exact sum by more than 3.

Solution.
Let Xi = the round-off error of the ith number. Then {X1, · · · , Xn} are i.i.d.
ContinuousUniform(−0.5, 0.5). Thus, they all have mean µX = −0.5+0.5

2 = 0
2 = 0 and variance

σ2
X = (0.5−(−0.5))2

12 = 1
12 .

Let Y = the difference between the exact and rounded sums of the fifty numbers. Then

Y =

50∑
i=1

Xi

so Y has mean µY = 50 · µX = 0 and variance σ2
Y = 50σ2

X = 50
12 = 25

6 . Thus, we can apply the Central
Limit Theorem to find

P((Y < −3) ∪ (Y > 3)) = 1− P(−3 ≤ Y ≤ 3) = 1− P(
−3√

25
6

≤ Y√
25
6

≤ 3√
25
6

)

≈ 1− P(
−3

√
6

5
≤ Z

√
6

5
≤ 3

√
6

5
) = 1− (ϕ(

3
√
6

5
)− ϕ(

−3
√
6

5
))

where Z ∼ Normal(0, 256 ) since Z
√
6

5 is a standardized normal random variable. Thus we can approxi-
mate that

P((Y < −3) ∪ (Y > 3)) ≈ 1− (0.9292− 0.0708) = 1− 0.8584 = 0.1416 = 14.16%

Thus, the probability that the rounded and exact sums of the fifty numbers differ by more than 3 is
approximately 14.16%.

Note: This answer assumes that the question is asking about the absolute difference between the
rounded and exact sums. If the question is asking specifically for the probability that the rounded sum
exceeds the exact sum by more than 3, we have

P(Y > 3) = 1− P(Y ≤ 3) ≈ 1− P(
Z
√
6

5
>

3
√
6

5
) = 1− ϕ(

3
√
6

5
) ≈ 1− 0.9292 = 0.0708 = 7.08%

In this case, the probability that the rounded sum exceeds the exact sum by more than 3 is approximately
7.08%.
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4. (Ross, P8.15) An insurance company has 10,000 automobile policyholders. The expected yearly claim
per policyholder is $240, with a standard deviation of $800. Approximate the probability that the total
yearly claim exceeds $2.7 million.

Solution.
Let Xi = the yearly claim of the ith policyholder.
Let Y = the combined yearly claim of all 10,000 automobile policyholders. Then, assuming the Xis are
i.i.d. with µX = 240 and σX = 800, we have

µY = 10, 000·240 = 2, 400, 000 σ2
Y = 10, 000·(800)2 = 10, 000·640, 000 = 6, 400, 000, 000 σY =

√
6, 400, 000, 000 = 80, 000

Thus we can apply the Central Limit Theorem with Z ∼ Normal(2, 400, 000, 6, 400, 000, 000) to find

P(Y > 2, 700, 000) ≈ P(Z > 2, 700, 000) = P(
Z − 2, 400, 000

80, 000
>

2, 700, 000− 2, 400, 000

80, 000
)

= P(
Z − 2, 400, 000

80, 000
> 3.75) = 1− P(

Z − 2, 400, 000

80, 000
≤ 3.75)

= 1− ϕ(3.75) ≈ 1− 0.99991 = 0.00009 = 0.009%

since Z−2,400,000
80,000 is a standardized normal random variable.

Thus, the probability that the total yearly claim exceeds $2.7 million is approximately 0.009%.
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5. (Ross, TE5.31) Find the probability density function of Y = eX when X is normally distributed with
parameters µ and σ2. The random variable Y is said to have a lognormal distribution (since log Y has
a normal distribution) with parameters µ and σ2.

Solution.
We will use the fact that

d

dx
FY (x) =

d

dx
P(Y ≤ x) = fY (x)

We can compute directly that

FY (x) = P(Y ≤ x) = P(eX ≤ x) = P(X ≤ ln(x)) = FX(ln(x))

This implies Y has probability density function

fY (x) =
d

dx
FX(ln(x)) =

1

x
fX(ln(x))

Since X ∼ Normal(µ, σ2), we know X has density function

fX(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2

for all x ∈ R. This implies

fY (x) =
1

x

1

σ
√
2π
e−

(ln(x)−µ)2

2σ2 =
e−

(ln(x)−µ)2

2σ2

xσ
√
2π

for all x ∈ R. Thus, if X ∼ Normal(µ, σ2), then Y = eX has probability density function

fY (x) =
e−

(ln(x)−µ)2

2σ2

xσ
√
2π

for all x ∈ R.
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6. (Ross, P7.38) Suppose X and Y have the following joint probability mass function.

p(1, 1) = 0.10, p(1, 2) = 0.12, p(1, 3) = 0.16

p(2, 1) = 0.08, p(2, 2) = 0.12, p(2, 3) = 0.10

p(3, 1) = 0.06, p(3, 2) = 0.06, p(3, 3) = 0.20

(a) Find E[X] and E[Y ].

(b) Find Var(X) and Var(Y ).

(c) Find Cov(X,Y ).

(d) Find the correlation between X and Y .

Solution.

(a) First, we will find E[X]. By the definition of the expected value of a discrete random variable, we
know

E[X] =

3∑
x=1

xP(X = x) (1)

We can easily compute that

P(X = 1) = P((X = 1, Y = 1) ∪ (X = 1, Y = 2) ∪ (X = 1, Y = 3))

= P(X = 1, Y = 1) + P(X = 1, Y = 2) + P(X = 1, Y = 3)

= p(1, 1) + p(1, 2) + p(1, 3) = 0.10 + 0.12 + 0.16 = 0.38

Similarly, we have

P(X = 2) = P((X = 2, Y = 1) ∪ (X = 2, Y = 2) ∪ (X = 2, Y = 3))

= P(X = 2, Y = 1) + P(X = 2, Y = 2) + P(X = 2, Y = 3)

= p(2, 1) + p(2, 2) + p(2, 3) = 0.08 + 0.12 + 0.10 = 0.30

and

P(X = 3) = P((X = 3, Y = 1) ∪ (X = 3, Y = 2) ∪ (X = 3, Y = 3))

= P(X = 3, Y = 1) + P(X = 3, Y = 2) + P(X = 3, Y = 3)

= p(3, 1) + p(3, 2) + p(3, 3) = 0.06 + 0.06 + 0.20 = 0.32

Plugging these values into (1), we find

E[X] = 1 · 0.38 + 2 · 0.30 + 3 · 0.32 = 0.38 + 0.60 + 0.96 = 1.94

Now, we can find E[Y ]. By the definition of expected value, we know

E[Y ] =

3∑
y=1

yP(Y = y) (2)

We can easily compute that

P(Y = 1) = P((X = 1, Y = 1) ∪ (X = 2, Y = 1) ∪ (X = 3, Y = 1))

= P(X = 1, Y = 1) + P(X = 2, Y = 1) + P(X = 3, Y = 1)

= p(1, 1) + p(2, 1) + p(3, 1) = 0.10 + 0.08 + 0.06 = 0.24
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Similarly, we have

P(Y = 2) = P((X = 1, Y = 2) ∪ (X = 2, Y = 2) ∪ (X = 3, Y = 2))

= P(X = 1, Y = 2) + P(X = 2, Y = 2) + P(X = 3, Y = 2)

= p(1, 2) + p(2, 2) + p(3, 2) = 0.12 + 0.12 + 0.06 = 0.30

and

P(Y = 3) = P((X = 1, Y = 3) ∪ (X = 2, Y = 3) ∪ (X = 3, Y = 3))

= P(X = 1, Y = 3) + P(X = 2, Y = 3) + P(X = 3, Y = 3)

= p(1, 3) + p(2, 3) + p(3, 3) = 0.16 + 0.10 + 0.20 = 0.46

Plugging these values into (2), we find

E[Y ] = 1 · 0.24 + 2 · 0.30 + 3 · 0.46 = 2.22

(b) We know that
V ar(X) = E[X2]− E[X]2 (3)

We already computed E[X], so we just need to compute E[X2]. By the definition of the second
raw moment, we know

E[X2] =

3∑
x=1

x2P(X = x) = 1 · 0.38 + 4 · 0.30 + 9 · 0.32 = 4.46

Thus, we can directly compute that

V ar(X) = 4.46− 1.942 = 4.46− 3.7636 = 0.6964

Similarly, we know that
V ar(Y ) = E[Y 2]− E[Y ]2 (4)

and since we already computed E[Y ], we just need to find E[Y 2]. By the definition of the second
raw moment, we know

E[Y 2] =

3∑
y=1

y2P(Y = y) = 1 · 0.24 + 4 · 0.30 + 9 · 0.46 = 5.58

Plugging this into (4) yields

V ar(Y ) = 5.58− 2.222 = 5.58− 4.9284 = 0.6516

(c) By the definition of Covariance, we know

Cov(X,Y ) = E[XY ]− E[X]E[Y ] (5)

We already computed E[X] and E[Y ], so we just need to compute E[XY ]. To compute this, we
can simply sum over all possible combinations of X and Y , multiplying xy by p(x, y) for each
combination. We find

E[XY ] =

3∑
x=1

3∑
y=1

xyp(x, y)

= (1 · 1 · 0.10) + (1 · 2 · 0.12) + (1 · 3 · 0.16) + (2 · 1 · 0.08) + (2 · 2 · 0.12) + (2 · 3 · 0.10)
+ (3 · 1 · 0.06) + (3 · 2 · 0.06) + (3 · 3 · 0.20)

= 0.10 + 0.24 + 0.48 + 0.16 + 0.48 + 0.60 + 0.18 + 0.36 + 1.8

= 4.4
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Plugging this into (5), we find

Cov(X,Y ) = 4.4− (1.94)(2.22) = 4.4− 4.3068 = 0.0932

Thus, the Covariance of X and Y is 0.0932.

(d) By definition, the correlation between X and Y is

Corr(X,Y ) =
Cov(X,Y )

SD(X)SD(Y )
(6)

We already calculated Cov(X,Y ) in part (c), and we know that SD(X) =
√
V ar(X) =

√
0.6964

and SD(Y ) =
√
V ar(Y ) =

√
0.6516. Plugging these values into (6), we can easily compute that

Corr(X,Y ) =
0.0932√

0.6964
√
0.6516

≈ 0.1384

Thus, the correlation between X and Y is approximately 0.1384, so X and Y have a weak positive
correlation.
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7. (Ross, P7.39) Suppose that 2 balls are randomly removed from an urn containing n red and m blue
balls. Let Xi = 1 if the ith ball removed is red, and let it be 0 otherwise, i = 1, 2.

(a) Do you think that Cov(X1, X2) is negative, zero, or positive?

(b) Validate your answer to part (a).

Solution.

(a) I think that Cov(X1, X2) is negative. If the first ball picked is not red (i.e. X1 = 0), then a higher
proportion of the remaining balls will be red, so there should be a higher probability that the second
ball picked is red (i.e. X2 = 1). Similarly, if the first ball picked is red (i.e. X1 = 1), then a lower
proportion of the remaining balls will be red, so there should be a lower probability that the second
ball picked is red (i.e. X2 = 1).

(b) By definition,
Cov(X1, X2) = E[X1X2]− E[X1]E[X2]

We can easily see that X1 ∼ Bernoulli( n
n+m ), so we know

E[X1] = P(X1 = 1) =
n

n+m

We can use the Law of Total Probability to compute that

E[X2] = P(X2 = 1) = P(X2 = 1|X1 = 1)P(X1 = 1) + P(X2 = 1|X1 = 0)P(X1 = 0)

=
n− 1

n+m− 1

n

n+m
+

n

n+m− 1

m

n+m

=
n(m+ n− 1)

(n+m)(n+m− 1)
=

n

n+m

so X2 ∼ Bernoulli( n
n+m ) as well. However, as X1 and X2 are not independent, we find

E[X1X2] = P((X1 = 1) ∩ (X2 = 1)) =
n

n+m

n− 1

n+m− 1

This allows us to compute that

Cov(X1, X2) =
n

n+m

n− 1

n+m− 1
− n2

(n+m)2

We want to show
Cov(X1, X2) < 0

Note that

Cov(X1, X2) =
n

n+m
(

n− 1

n+m− 1
− n

n+m
)

=
n

n+m
(
(n− 1)(n+m)− n(n+m− 1)

(n+m)(n+m− 1)
)

=
n

n+m
(
n2 − n+ nm−m− n2 − nm− n

(n+m)(n+m− 1)
)

=
n

n+m
(

−2n−m

(n+m)(n+m− 1)
)

Assuming both n and m are positive, we have

Cov(X1, X2) < 0

since−2n−m < 0. This completes the verification of the intuition from part (a) that Cov(X1, X2) <
0.
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8. (Ross, P7.49) Consider a graph having n vertices labeled 1, 2, . . . , n, and suppose that, between each of
the

(
n
2

)
pairs of distinct vertices, an edge is independently present with probability p. The degree of

vertex i, designated Di, is the number of edges that have vertex i as one of their vertices.

(a) What is the distribution of Di?

(b) Find ρ(Di, Dj), the correlation between Di and Dj .

(Incidentally, this method of creating random graphs is called an Erdös–Rényi model.)

Solution.

(a) Note that, for each vertex i, there are n− 1 potential edges incident to i. Pick a vertex i.

If we let Xi,j =

{
1 if there is an edge between vertices i and j

0 otherwise.
for all j ̸= i

Then the n− 1 Xij ’s are i.i.d. Bernoulli(p) random variables, and the degree of vertex i is

Di =
∑

1≤j ̸=i≤n

Xi,j

Since Di is the sum of n−1 i.i.d. Bernoulli(p) random variables, we know Di ∼ Binomial(n−1, p).
Thus, the distribution of the degree of vertex i is Binomial with parameters n− 1 and p.

(b) By definition, the correlation between Di and Dj is

ρ(Di, Dj) = Corr(Di, Dj) =
Cov(Di, Dj)

SD(Di)SD(Dj)
(1)

Since Di and Dj are Binomial(n− 1, p) random variables, we know

E[Di] = E[Dj ] = (n− 1)p V ar(Di) = V ar(Dj) = (n− 1)p(1− p)

so we just need to compute Cov(Di, Dj). Note that, if we redefine

Xa,b =

{
1 if there is an edge between vertices a and b

0 otherwise.
for all b ̸= a

we have

Cov(Di, Dj) = Cov(
∑

1≤x̸=i≤n

Xi,x,
∑

1≤y ̸=j≤n

Xj,y) =
∑

1≤x̸=i≤

∑
1≤y ̸=j≤n

Cov(Xi,x, Xj,y)

Note: For all x ̸= j or y ̸= i, Xi,x and Xj,y are different edges, so they have independent probability
p of existing, and are thus independent random variables. Therefore, we have

Cov(Xi,x, Xj,y) = E[Xi,xXj,y]− E[Xi,x]E[Xj,y] = E[Xi,x]E[Xj,y]− E[Xi,x]E[Xj,y] = 0

for all x ̸= j or y ̸= i. This implies

Cov(Di, Dj) =
∑

1≤x ̸=i≤

∑
1≤y ̸=j≤n

Cov(Xi,x, Xj,y) = Cov(Xi,j , Xj,i) = E[Xi,jXj,i]− E[Xi,j ]E[Xj,i]

We already know that
E[Xi,j ] = E[Xj,i] = p

Note that

E[Xi,jXj,i] =

{
1 if there is an edge between vertices i and j

0 otherwise.
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so Xi,jXj,i is also a Bernoulli(p) random variable. Thus, we know E[Xi,jXj,i] = p, which implies

Cov(Di, Dj) = p− p · p = p− p2 = p(1− p)

Plugging this into (1), along with SD(Di) = SD(Dj) =
√
V ar(Di) =

√
(n− 1)p(1− p), we find

ρ(Di, Dj) = Corr(Di, Dj) =
p(1− p)√

(n− 1)p(1− p)
√
(n− 1)p(1− p)

=
p(1− p)

(n− 1)p(1− p)
=

1

n− 1

Thus, the correlation between Di and Dj is
1

n−1 .
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Assignment 14

Math 407 (Swanson) – Spring 2023
Homework 1

Due Friday 1/13, 11:59pm

Name: Emerson Kahle Section: 39981

• You must upload your solutions to Gradescope as one single, high-quality PDF. You can convert
paper-based work to a high-quality PDF using a scanning app for mobile devices, such as Adobe Scan
(free, available for iOS and Android, can do multiple pages) or many others. If necessary, you can
combine or merge multiple PDF’s into a single PDF using a variety of services, such as Adobe Acrobat’s
cloud-based merge tool.

• After you upload, you must match each question with its corresponding page using Gradescope’s
interface. This allows graders to spend more time giving you feedback instead of hunting through
submissions.

• Answers without supporting work will receive no credit. Show your work.

• You are encouraged to work together on homework, but you must write up your solutions sepa-
rately in your own words. Copying from your fellow students or other sources is a serious academic
integrity violation. In particular, you may not use “tutoring” services which simply provide answers.

• You are encouraged to typeset your solutions in LATEX. Source code has been provided on Blackboard.
Overleaf is a popular cloud-based editor.

• Problem numbers refer to the course textbook, though the problems may have been modified signifi-
cantly.
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1. Let X,Y be jointly continuous random variables such that X −Y and X +Y are i.i.d. standard normal
random variables. Show that (X,Y ) is a bivariate normal random variable. Explicitly compute the
covariance matrix Σ.

Solution.
By definition, we know (X,Y ) is a bivariate normal random variable ⇐⇒ ∃X1, X2 i.i.d. Normal(0, 1)
random variables such that

X = a11X1 + a12X2 + µX

Y = a21X1 + a22X2 + µY

where a11, a12, a21, a22 ∈ R.
We know X − Y and X + Y are i.i.d. Normal(0, 1) random variables, so let X1 = (X + Y ) and
X2 = (X − Y ). We can quickly see that

X =
1

2
X1 +

1

2
X2 + µX =

X + Y

2
+
X − Y

2
+ 0

=
X

2
+
X

2
+
Y

2
− Y

2
= X (1)

Similarly, we can clearly see that

Y =
1

2
X1 +

−1

2
X2 + µY =

X + Y

2
− X − Y

2
+ 0

=
X

2
− X

2
+
Y

2
+
Y

2
= Y (2)

Combining (1) and (2), we find a11 = 1
2 = a12 = a21 and a22 = −1

2 . Thus, we have found real numbers
a11, a12, a21, a22 and standard normal random variables X1, X2 such that

X = a11X1 + a12X2 + µX

Y = a21X1 + a22X2 + µY

which proves that (X,Y ) is a bivariate normal random variable by the definition of the bivariate normal
random variable.

To compute the covariance matrix
∑

, we can apply the property that∑
=

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
=

[
a211 + a212 a11a21 + a12a22

a11a21 + a12a22 a221 + a222

]
to find that the covariance matrix of (X,Y ) is∑

=

[
( 12 )

2 + ( 12 )
2 ( 12 )(

1
2 ) + ( 12 )(−

1
2 )

( 12 )(−
1
2 ) (12 )

2 + (− 1
2 )

2

]
=

[
1
4 + 1

4
1
4 − 1

4
1
4 − 1

4
1
4 + 1

4

]
=

[
1
2 0
0 1

2

]
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2. Recall that a bivariate normal random variable (Y1, Y2) is determined by the 5 parameters µi = E[Yi],
σ2
i = Var(Yi), ρ = Cov(Y1, Y2)/(σ1σ2).

(a) Let

Y1 = σ1X1 + µ1

Y2 = ρσ2X1 + σ2
√

1− ρ2X2 + µ2

where X1, X2 are i.i.d. standard normal random variables. Show that (Y1, Y2) have the 5 parameters
above.

(Aside for those who have seen linear algebra: this is related to the Cholesky decomposition of the

covariance matrix Σ. Here Σ = AAT where A =

(
σ1 0

ρσ2 σ2
√

1− ρ2

)
.)

(b) Recall HW 11, Exercise 7, where you used a routine Uniform(a, b) to construct a new routine to
sample from exponential distributions. In this problem, use (a) and Uniform(a, b) to write an-
other routine BivariateNormal(mu1, mu2, sigma1, sigma2, rho) that samples from a bivariate
normal random variable with given parameters µ1, µ2, σ1, σ2, ρ. You may assume there is another
routine InversePhi(t) which returns the unique value x such that Φ(x) = t where Φ is the CDF
of the standard normal.

Solution.

(a) Since we are given

A =

(
σ1 0

ρσ2 σ2
√
1− ρ2

)
we can easily compute that the covariance matrix of (Y1, Y2) is∑

=

[
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]
= AAT =

(
σ1 0

ρσ2 σ2
√

1− ρ2

)(
σ1 ρσ2
0 σ2

√
1− ρ2

)
=

(
σ1(σ1) + 0(0) σ1ρσ2 + 0 · σ2

√
1− ρ2

ρσ2σ1 + σ2
√
1− ρ2 · 0 ρσ2 · ρσ2 + (σ2

√
1− ρ2)2

)
=

(
σ2
1 ρσ1σ2

ρσ1σ2 ρ2σ2
2 + σ2

2(1− ρ2)

)
=

(
σ2
1 ρσ1σ2

ρσ1σ2 ρ2σ2
2 + σ2

2 − ρ2σ2
2

)
=

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
This completes the verification that (X,Y ) has the parameters E[Y1] = µ1, E[Y2] = µ2, V ar(Y1) =

σ2
1 , V ar(Y2) = σ2

2 , and ρ = Cov(Y1,Y2)
σ1σ2

.
We can also directly verify that

E[Y1] = E[σ1X1 + µ1] = σ1E[X1] + µ1 = 0 + µ1 = µ1

and

E[Y2] = E[ρσ2X1 + σ2
√
1− ρ2X2 + µ2] = ρσ2E[X1] + σ2

√
1− ρ2E[X2] + µ2 = 0 + 0 + µ2 = µ2

since E[X1] = E[X2] = 0 since they are i.i.d. standard normal random variables.
We can use the fact from lecture that

V ar(Yi) = a2i1 + a2i2

to directly verify that
V ar(Y1) = σ2

1 + 02 = σ2
1

and
V ar(Y2) = ρ2σ2

2 + σ2
2(1− ρ2) = ρ2σ2

2 + σ2
2 − ρ2σ2

2 = σ2
2
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This allows us to use the fact that

Cov(Y1, Y2) = a11a21 + a12a22

to compute that

ρ =
σ1ρσ2 + 0 · σ2

√
1− ρ2

σ1σ2
=
ρσ1σ2
σ2σ2

= ρ

which completes the direct verification of the five parameters.

(b) We know from HW 11, Exercise 7, that if we let Ui = the result of the ith call to Uniform(0,1)
and Xi = InversePhi(Ui), then the cumulative distribution function of Xi is

FXi
(x) =


0 if Φ(x) = 0

Φ(x) if 0 < Φ(x) < 1

1 otherwise

= Φ(x) for all x ∈ R

Thus, assuming the result of the ith call to Uniform(0,1) is independent from all other calls, we
know X1 and X2 are i.i.d. standard normal random variables.

From part (a), we know that if we let

Y1 = σ1X1 + µ1

Y2 = ρσ2X1 + σ2
√
1− ρ2X2 + µ2

then (Y1, Y2) is a bivariate normal random variable with parameters µ1, µ2, σ
2
1 , σ

2
2 , ρ. This provides

a very simple routine to sample from a bivariate normal random variable using two independent
samples from Uniform(0,1):

BivariateNormal(mu1, mu2, sigma1, sigma2, rho){
Let u1 = Uniform(0, 1)
Let x1 = InversePhi(u1)
Let u2 = Uniform(0, 1)
Let x2 = InversePhi(u2)
Let y1 = sigma1 ∗ x1 +mu1
Let y2 = rho ∗ sigma2 ∗ x2 + sigma2 ∗ sqrt(1− (rho ∗ rho))x2 +mu2
return (y1, y2) }
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3. Let f, g be real-valued functions. The convolution of f and g is the real-valued function f ∗ g defined by

(f ∗ g)(a) =
∫ ∞

−∞
f(a− y)g(y) dy.

(a) Suppose X,Y are jointly continuous, independent random variables. Show that

fX+Y = fX ∗ fY .

That is, the PDF of the independent sum of continuous random variables is obtained by taking the
convolution of their PDF’s.

(Hint: as usual, your argument should use cumulative distribution functions and derivatives.)

(b) Suppose X,Y, Z are i.i.d. Uniform(0, 1) random variables. Explicitly compute the PDF of X+Y +Z
using convolution.

(Aside: this is an Irwin–Hall distribution. While there are general formulas for the PDF of the
sum of n i.i.d. Uniform(0, 1) random variables, they are complicated and have many terms.)

(c) Suppose X,Y are i.i.d. Normal(0, 1) random variables. Using convolution, verify that X + Y ∼
Normal(0,

√
2).

(Hint: recall the Gaussian integral, and how to complete the square.)

Solution.

(a) Since

fX+Y (z) =
d

dz
FX+Y (z)

we can compute fX+Y by first computing FX+Y . Note that

FX+Y (z) = P(X + Y ≤ z) = P(X ≤ z − y, Y ≤ y)

for all −∞ < y <∞. Since X and Y are continuous random variables, we have

FX+Y (z) =

∫ ∞

−∞

∫ z−y

−∞
fX,Y (x, y)dxdy

Since X and Y are independent, we have

FX+Y (z) =

∫ ∞

−∞

∫ z−y

−∞
fX(x)fY (y)dxdy =

∫ ∞

−∞

(∫ z−y

−∞
fX(x)dx

)
fY (y)dy

Since

FX(x) = P(X ≤ x) =

∫ x

−∞
fX(x)dx

we have

FX+Y (z) =

∫ ∞

−∞
FX(z − y)fY (y)dy

Differentiating, we find that the density function of X + Y is

fX+Y (z) =
d

dz

∫ ∞

−∞
FX(z − y)fY (y)dy =

∫ ∞

−∞

d

dz
FX(z − y)fY (y)dy

=

∫ ∞

−∞
fX(z − y)fy(y)dy = (fX ∗ fY )(z)

Thus, we have
fX+Y (z) = (fX ∗ fY )(z)

This completes the proof that, for jointly continuous, independent random variables, the PDF of
the sum of the variables is obtained by taking the convolution of their PDF’s.
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(b) Since X, Y , and Z are i.i.d. Uniform(0,1), we know that

fX(a) = fY (a) = fZ(a) =

{
1 if 0 ≤ x ≤ 1

0 otherwise.

Thus, we can apply part (a) to find

fX+Y (a) =

∫ ∞

−∞
fX(a− y)fY (y)dy =

∫ 1

0

fX(a− y)fy(y)dy

=


∫ a
0
dy if 0 ≤ a ≤ 1∫ 1

a−1
dy if 1 ≤ a ≤ 2

0 otherwise.

We can directly compute that ∫ a

0

dy = y

∣∣∣∣∣
a

0

= a− 0 = a

and ∫ 1

a−1

dy = y

∣∣∣∣∣
1

a−1

= 1− (a− 1) = 2− a

so we know that

fX+Y (a) =


a if 0 ≤ a ≤ 1

2− a if 1 ≤ a ≤ 2

0 otherwise.

We can know use part (a) again to compute fX+Y+Z as the convolution of fX+Y and fZ . We have

fX+Y+Z(b) =

∫ ∞

−∞
fX+Y (b− z)fZ(z)dz =

∫ 1

0

fX+Y (b− z)dz

If 0 ≤ b ≤ 1, then fX+Y (b − z) is only nonzero for 0 ≤ b − z =⇒ b ≥ z. Thus, we should only
integrate from 0 to b for such b.
If 1 ≤ b ≤ 2, then fX+Y (b− z) is nonzero for all of z : 0 → 1. However, when (b− z) ≥ 1 ⇐⇒ z ≤
b− 1, we have

fX+Y (b− z) = 2− (b− z) = 2− b+ z

and when (b− z) ≤ 1 ⇐⇒ z ≥ b− 1, we have

fX+Y (b− z) = b− z

Thus, we must split the integral into one from z : 0 → b− 1 and one from z : b− 1 → 1 for such b.
If 2 ≤ b ≤ 3, then fX+Y (b− z) is only nonzero when (b− z) ≤ 2 ⇐⇒ z ≥ b− 2, so we should only
integrate from b− 2 to 1 for such b.
This combines to yield

fX+Y+Z(b) =


∫ b
0
(b− z)dz if 0 ≤ b ≤ 1∫ b−1

0
(2− b+ z)dz +

∫ 1

b−1
(b− z)dz if 1 ≤ b ≤ 2∫ 1

b−2
(2− b+ z)dz if 2 ≤ b ≤ 3

We can directly compute that∫ b

0

(b− z)dz = bz − z2

2

∣∣∣∣∣
b

0

= b2 − b2

2
=
b2

2
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and ∫ b−1

0

(2− b+ z)dz +

∫ 1

b−1

(b− z)dz

=

(
(2− b)z +

z2

2

) ∣∣∣∣∣
b−1

0

+

(
bz − z2

2

) ∣∣∣∣∣
1

b−1

= (2− b)(b− 1) +
(b− 1)2

2
+ (b− 1

2
)− (b(b− 1)− (b− 1)2

2
)

= (b− 1)2 + 2b− b2 − 2 + b+ b− 1

2
− b2 + b

= (b− 1)2 + 5b− 2b2 − 5

2

= b2 − 2b+ 1 + 5b− 2b2 − 5

2

= −b2 + 3b− 3

2

=
1

2
(−2b2 + 6b− 3)

and ∫ 1

b−2

2− b+ zdz = (2− b)z +
z2

2

∣∣∣∣∣
1

b−2

= (2− b) +
1

2
−
(
(2− b)(b− 2) +

(b− 2)2

2

)
=

5

2
− b+

(b− 2)2

2
=

1

2
(5− 2b+ b2 − 4b+ 4) =

1

2
(b2 − 6b+ 9)

=
1

2
(b− 3)2

Thus, we can express fX+Y+Z(b) explicitly as

fX+Y+Z(b) =


b2

2 if 0 ≤ b ≤ 1
1
2 (−2b2 + 6b− 3) if 1 ≤ b ≤ 2
1
2 (b− 3)2 if 2 ≤ b ≤ 3

0 otherwise.

(c) Since X and Y are i.i.d. Normal(0,1) random variables, we know

fX(a) = fY (a) =
1√
2π
exp(−a

2

2
)

so we can apply part (a) to find

fX+Y (a) =

∫ ∞

−∞
fX(y − a)fY (a)dy =

∫ ∞

−∞

1√
2π
exp(− (a− y)2

2
)

1√
2π
exp(−y

2

2
)dy

=
1

2π

∫ ∞

−∞
exp(− (a− y)2 + y2

2
)dy

Completing the square, we find

(a− y)2 + y2

2
= y2 − ay +

a2

2
= (y − a

2
)2 +

a2

4
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so we can apply the fact that abac = abc to find

fX+Y (a) =
1

2π

∫ ∞

−∞
exp(−(y − a

2
)− a2

4
)dy =

exp(−a2

4 )

2π

∫ ∞

−∞
exp(−(y − a

2
)2)dy

Applying the general Gaussian integral∫ ∞

−∞
e−a(x+b)

2

dx =

√
π

a

we find

fX+Y (a) =
exp(−a2

4 )

2π

√
π =

1√
2π

√
2
2
exp(− a2

2
√
2
2 )

Note that this is just the PDF of a normal random variable with µ = 0, σ =
√
2. This completes

the proof that X + Y ∼ Normal(0,
√
2).
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4. Recall the fundamental simple linear regression model,

Y = β0 + β1X + ε,

with three parameters β0, β1, σ where ε ∼ N(0, σ) is a normally distributed error term which is inde-
pendent of X.

In 1903, Pearson and Lee collected data on the heights of 1078 pairs of fathers and sons. The father’s
heights had a sample mean of 67.7 and a sample standard deviation of 2.72, while the son’s heights had
a sample mean of 68.7 and a sample standard deviation of 2.82. The sample correlation between the
father’s heights and the son’s heights was 0.50.

(a) If the father is 74 inches tall, what would you predict the son’s height to be? (Hint : use the formulas
from lecture to estimate β0 and β1. In particular, estimate ρ(X,Y ) using the sample correlation.
Use these parameter estimates to compute Ŷ = β0 + β1X.)

(b) In the situation in part (a), compute the z-score of the father’s height and the z-score of the
predicted value of the son’s height. Does the result exhibit regression towards the mean?

Solution.
Let X = the height of a given father and Y = the height of his son.

(a) We know that

β1 =
ρ(X,Y )σY

σX

so we can use our unbiased estimators for ρ ≈ 0.50, σX ≈ 2.72, and σY ≈ 2.82 to estimate that

β1 ≈ 0.50 · 2.82
2.72

≈ 0.5184

We know that
β0 = E[Y ]− β1E[X]

so we can use our unbiased estimators for E[Y ] ≈ 68.7, E[Y ] ≈ 67.7, and β1 ≈ 0.5184 to estimate
that

β0 ≈ 68.7− 0.5184 · 74 ≈ 33.61

This allows us to calculate that

Ŷ = β0 + β1X ≈ 33.61 + 0.5184 · 74 ≈ 71.97

Thus, if the father is 74 inches tall, the son’s height is predicted to be about 71.97 inches.

(b) We can quickly compute that the z-score of the father’s height is

zx =
74− 67.7

2.72
≈ 2.316

while the z-score of the predicted value of the son’s height is only

zŷ =
71.97− 68.7

2.82
≈ 1.160

Thus, as the z-score of the predicted value of the son’s height is about half the z-score of the father’s
height, and the sample correlation is 0.50, the result does exhibit regression towards the mean. The
son’s height is predicted to be about half as far from the mean as the father’s.
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5. (Ross, P7.80) The moment generating function of X is given by MX(t) = exp(2et− 2) and that of Y by

MY (t) =
(
3
4e
t + 1

4

)10
. If X and Y are independent, what are

a P (X + Y = 2)?

b P (XY = 0)?

c E[XY ]?

Solution.
Note: For any discrete random variable X, MX(t) = GX(et), where GX(t) is the probability generating
function of X.
We know that a Poisson random variable P with parameter λ has probability generating function

GP (t) = exp(λ(t− 1))

Thus, P has moment generating function

MP (t) = exp(λ(et − 1))

Since MX(t) = exp(2et − 2) = exp(2(et − 1)) =MP (t) for λ = 2, and

MA(t) =MB(t) =⇒ fA(t) = fB(t)

we know X ∼ Poisson(2). Thus, X has probability mass function

pX(k) = e−λ
λk

k!

Similarly, any Binomial random variable B with parameters n and p has probability generating function

GB(t) = (pt+ (1− p))n

so it has moment generating function

MB(t) = (pet + (1− p))n

Since MY (t) = ( 34e
t + 1

4 )
10 = MB(t) for n = 10, p = 3

4 , we know Y ∼ Binomial(10, 34 ). Thus, Y has
probability mass function

pY (k) =

(
10

k

)
(
3

4
)k(

1

4
)10−k

(a) For X + Y = 2, we need either X = 2 and Y = 0, X = 1 and Y = 1, or X = 0 and Y = 2. These
are all mutually disjoint events, which yields

P(X + Y = 2) = P(X = 2, Y = 0) + P(X = 1, Y = 1) + P(X = 0, Y = 2)

= P(X = 2)P(Y = 0) + P(X = 1)P(Y = 1) + P(X = 0)P(Y = 2)

= e−2 2
2

2

(
10

0

)
1

4

10

+ e−2 2
1

1!

(
10

1

)
3

4

1 1

4

9

+ e−2

(
10

8

)
3

4

2 1

4

8

= 2e−2 1

4

10

+ 15e−2 1

4

9

+ 45e−2 3

4

2 1

4

8

≈ 0.00006 = 0.006%

(b) For XY = 0, we have to find P(X = 0∪Y = 0). We can apply the Principle of Inclusion Exclusion
to find

P(X = 0 ∪ Y = 0) = P(X = 0) + P(Y = 0)− P(X = 0, Y = 0)

Now, using the fact that X and Y are independent, we find

P(X = 0 ∪ Y = 0) = e−2 + (
1

4
)10 − e−2 · (1

4
)10 =

410 + e2 − 1

410e2
≈ 0.1353 = 13.53%

Page 473



(c) Since X and Y are independent, we know that

E[XY ] = E[X]E[Y ] =
10 · 3
4

· 2 =
60

4
= 15

so the expected value of XY is 15.
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6. The characteristic function of a random variable X is the complex-valued function ϕX of a real variable
t defined by ϕX(t) = E[eitX ]. Explicitly,

ϕX(t) =


∫∞
−∞ eitxf(x) dx X continuous∑
x

eitxp(x) X discrete,

where f is the density of X or p is the mass function of X. (Here eitx = cos(tx) + i sin(tx) by Euler’s
formula.)

(a) Determine the characteristic function of a uniform continuous random variable on [a, b].

(b) Determine the characteristic function of a uniform discrete random variable on {a, a+1, . . . , b−1, b}.
Your expression should be similar to your expression from (a).

(c) The characteristic function ϕX is the Fourier transform of the PDF of X. It is a general principle
that under the Fourier transform, convolution corresponds to multiplication.

Let X,Y be i.i.d. jointly continuous random variables. Show directly that

ϕX+Y (t) = ϕX(t)ϕY (t).

Solution.

(a) Let X ∼ ContinuousUniform(a, b). Then X has PDF

fX(x) =

{
1
b−a if a ≤ x ≤ b

0 otherwise.

Applying the definition of the characteristic function of a continuous random variable, we find

ϕX(t) =

∫ ∞

−∞
eitxfX(x)dx =

∫ b

a

eitx

b− a
dx =

1

b− a

eitx
it

∣∣∣∣∣
b

a

 =
eitb − eita

(b− a)it

Note: This formula does not hold for t = 0, at which point it is undefined. However, we can clearly
see that, when t = 0,

ϕX(t) =

∫ b

a

1

b− a
dx =

b− a

b− a
= 1

so we have

ϕX(t) =

{
1 if t = 0
eitb−eita
(b−a)it otherwise.

for a continuous uniform random variable.

(b) Now, let X ∼ DiscreteUniform(a, b). Then X has PMF

pX(k) =

{
1

b−a+1 if k ∈ {a, ..., b}
0 otherwise.

Applying the definition of the characteristic function for a discrete random variable, we find

ϕX(t) =

b∑
k=a

eitk

b− a+ 1
=

1

b− a+ 1

(
b∑

k=0

eitk −
a−1∑
k=0

eitk

)

=
1

b− a+ 1

(
1− eit(b+1

1− eit
− 1− eita

1− eit

)
=

eita − eit(b+1)

(b− a+ 1)(1− eit)
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Note: This formula does not hold for t = 0, at which point it is undefined. However, we can clearly
see that, when t = 0, we have

ϕX(t) =

b∑
a

1

b− a+ 1
=
b− a+ 1

b− a+ 1
= 1

Thus, we have

ϕX(t) =

{
1 if t = 0
eita−eit(b+1)

(b−a+1)(1−eit) otherwise.

for a discrete uniform random variable.

(c) We can use the fact that E[f(X)g(Y )] = E[f(X)]E[g(Y )] sinceX and Y are independent continuous
random variables. Applying the definition of the characteristic function, we find

ϕX+Y (t) = E[eit(X+Y )] = E[eitX+itY ] = E[eitXeitY ]

If we let f(X) = eitX and g(Y ) = eitY , we clearly see that

ϕX+Y (t) = E[f(x)g(Y )] = E[f(x)]E[g(Y )] = E[eitX ]E[eitY ] = ϕX(t)ϕY (t)

This completes the proof that, for jointly continuous i.i.d. continuous random variables X and Y ,

ϕX+Y (t) = ϕX(t)ϕY (t)
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7. This problem formally introduces unbiased estimators for the parameters β0, β1, and σ
2 in simple linear

regression. It has the virtue of using most of the ideas introduced in this course simultaneously and
hence serves as something of a “capstone.”

We begin with random variables (X,Y ) with some unknown joint distribution. We suppose that there
are some parameters β0, β1, σ and a true regression line ŷ = β0 + β1x such that, for every fixed value
X = x, the conditional distribution of the error in estimating Y using the true regression line is normal:

Y − ŷ | X = x ∼ N(0, σ).

In particular, E[Y − (β0 + β1X) | X = x] = 0.

We now take i.i.d. random variables (X1, Y1), . . . , (Xn, Yn) with the same joint distribution as (X,Y ).
The following random variables will be used to estimate the parameters β0, β1, σ

2. Let

• X̄ = (X1 + · · ·+Xn)/n

• Ȳ = (Y1 + · · ·+ Yn)/n

• S2
X = 1

n−1

∑n
i=1(Xi − X̄)2

• S2
Y = 1

n−1

∑n
i=1(Yi − Ȳ )2

• r = 1
n−1

∑n
i=1

Xi−X̄
SX

Yi−Ȳ
SY

• b1 = rSY /SX

• b0 = Ȳ − b1X̄

• Ŷi = b0 + b1Xi

• s2 = 1
n−2

∑n
i=1(Yi − Ŷi)

2

Any experimentally obtained sample will consist of n pairs of data points (x1, y1), . . . , (xn, yn), and the
random variables X̄, Ȳ , S2

X , S
2
Y , r, b1, b0, Ŷi, s

2 will all take on concrete values.

You will show
E[b0] = β0, E[b1] = β1, E[s2] = σ2.

(a) Show that

b1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
.

(b) Write b1 | (Xj = xj) for the conditional random variable b1 | (X1 = x1, . . . , Xn = xn). Show that

b1 | (Xj = xj) =

∑n
i=1(xi − x̄)Yi

(
∑n
i=1 x

2
i )− nx̄2

,

where x̄ =
∑n
i=1 xi/n.

(c) Show that

E[b1 | (Xj = xj)] =

∑n
i=1(xi − x̄)(β0 + β1xi)

(
∑n
i=1 x

2
i )− nx̄2

.

(Hint: first show that E[Yi | (Xj = xj)] = β0 + β1xi.)

(d) Show that
n∑
i=1

(xi − x̄)(β0 + β1xi) = β1

((
n∑
i=1

x2i

)
− nx̄2

)
.

Conclude that
E[b1 | (Xj = xj)] = β1.

(e) Conclude that
E[b1] = β1.
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(f) Show that
E[b0 | (Xj = xj)] = β0.

Conclude that
E[b0] = β0.

(g) Show that

b1 | (Xj = xj) ∼ N

(
β1,

σ√∑n
i=1(xi − x̄)2

)
.

(h) (Bonus.) Show that

Var(b0 | (Xj = xj)) =
σ2
∑n
i=1 x

2
i

n
∑n
i=1(xi − x̄)2

.

(Hint: Cov(Ȳ , b1) = 0.)

(i) (Bonus.) Show that
E[s2] = σ2.

In practice, (g) is used to test hypotheses like “X and Y are uncorrelated”, i.e. β1 = 0. Specifically, σ2

is estimated by s2 and b1 is calculated for a given data set (x1, y1), . . . , (xn, yn). The z-score

z =
b1

s/
√∑n

i=1(xi − x̄)2

is then computed. If β1 = 0, then this z-score would follow a standard normal Z ∼ N(0, 1). Now one
computes the probability that a standard normal would be at least as far as z is from 0. This is called
the p-value and here is p = 2P (Z > |z|) = 2(1−Φ(|z|)). Finally, if p is smaller than some threshold such
as 0.05, the hypothesis that X and Y are uncorrelated is rejected and the data set yields fairly strong
evidence that X and Y are correlated.

The father/son example produces an extraordinarily tiny p-value and therefore extremely strong evi-
dence that father/son heights are correlated, in agreement with our intuition.

Solution.

(a) Note that

r =
1

(n− 1)SY SX

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

so

b1 = r
SY
SX

=
1

(n− 1)S2
X

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

Plugging in the given formula for SX , we find

b1 =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

(n− 1) 1
n−1

∑n
i=1(Xi − X̄)2

=

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2

as required.

(b) If we are given (Xj = xj), we can rewrite b1 as

b1|(Xj = xj) =

∑n
i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2
=

∑n
i=1(xi − x̄)(Yi)− Ȳ

∑n
i=1(xi − x̄)∑n

i=1(xi − x̄)2
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Since X̄ is the raw average of x1, . . . , xn, we know

n∑
i=1

(xi − x̄) = (x1 + · · ·+ xn)− (x1 + · · ·+ xn) = 0

so we have

b1|(Xj = xj) =

∑n
i=1(xi − x̄)Yi∑n
i=1(xi − x̄)2

Note that

n∑
i=1

(xi − x̄)2 =

n∑
i=1

x2i − 2x̄

n∑
i=1

xi + nx̄2 =

n∑
i=1

x2i − 2x̄nx̄+ nx̄2 =

n∑
i=1

(x2i )− nx̄2

This completes the proof that

b1|(Xj = xj) =

∑n
i=1(xi − x̄)Yi∑n
i=1(x

2
i )− nx̄2

(c) Note that, since everything besides the Yis is a constant, we have

E[b|(Xj = xj)] =

∑n
i=1(xi − x̄)E[Yi]∑n
i=1(x

2
i )− nx̄2

so we just need to compute E[Yi]. Since E[Yi − (β0 + β1xi)] = 0, we know

E[Yi] = E[β0 + β1xi] = β0 + β1xi

since β0, β1, and xi are constants given (Xj = xj). This yields

E[b|(Xj = xj)] =

∑n
i=1(xi − x̄)(β0 + β1xi)∑n

i=1(x
2
i )− nx̄2

as required.

(d) We can split the sum to find

n∑
i=1

(xi − x̄)(β0 + β1xi) = β0

n∑
i=1

(xi − x̄) + β1

n∑
i=1

(x2i − xix̄)

Since
n∑
i=1

(xi − x̄) = 0

we know
n∑
i=1

(xi − x̄)(β0 + β1xi) = β1

n∑
i=1

(x2i − xix̄) = β1

(∑
i=1n

x2i − x̄

n∑
i=1

xi

)
Since

n∑
i=1

xi = nx̄

we know
n∑
i=1

(xi − x̄)(β0 + β1xi) = β1

(
(
∑
i=1n

x2i )− nx̄2

)
as required. Plugging this into the equation from part (c), we immediately see that

E[b|(Xj = xj)] =
β1
(
(
∑
i=1n x

2
i )− nx̄2

)∑n
i=1(x

2
i )− nx̄2

= β1
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(e) Since
E[b1|(Xj = xj)] = β1

for all Xj , we know that E[b1] does not depend on Xj . Thus, we can conclude that

E[b1] = β1

as required.

(f) Since
b0 = Ȳ − b1X̄

we know
b0|(Xj = xj) = Ȳ |(Xj = xj)− b1|(Xj = xj) · x̄

Note that

E[Ȳ |(Xj = xj)] =
1

n

n∑
i=1

E[Yi|(Xj = xj)] =
1

n

n∑
i=1

(β0 + β1xi) =
nβ0
n

+ β1

n∑
i=1

xi
n

= β0 + β1x̄

Since we already computed
E[b1|(Xj = xj)]

in part (c), we know
E[b0|(Xj = xj)] = β0 + β1x̄− β1x̄ = β0

as required.

(g) From part (b), since everything involving xi’s and X̄ is a constant given (Xj = xj), we can rewrite
b1|(Xj = xj) as

b1|(Xj = xj) =

n∑
i=1

ciYi

Note: For a given (Xj = xj), we know that

Yi − ŷ = Yi − (β0 + β1xi) ∼ Normal(0, σ)

Thus, b1|(Xj = xj) is a weighted sum of i.i.d. Normal(0, σ) random variables, so b1|(Xj = Xj) is
a normal random variable. Note that the weights

ci =

∑n
i=1(xi − x̄)∑n
i=1(xi − x̄)2

so we know

V ar(b1|(Xj = xj)) =

∑n
i=1(xi − x̄)2

(
∑n
i=1(xi − x̄)2)

2V ar(Yi) =
σ2∑n

i=1(xi − x̄)2

This completes the proof that

b1|(Xj = xj) ∼ Normal(β1,
σ√∑n

i=1(xi − x̄)2
)
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CSCI 270: Algorithms and Computing Theory

All assignments in this section were written by Shahriar Shamsian, Senior Lecturer of Computer Science,
USC. Solutions to assignments 1 through 12 are provided.

Assignment 1

1.

Solve Kleinberg and Tardos, Chapter 1, Exercise 1:
Decide whether you think the following statement is true or false. If it is true, give a short explanation. If
it is false, give a counterexample.
True or false? In every instance of the Stable Matching Problem, there is a stable matching containing a
pair (m, w) such that m is ranked first on the preference list of w and w is ranked first on the preference list
of m.

Claim: The statement is false.
Counterexample: Consider the following preference lists with n = 2 and a : b > c indicating that a ranks
b higher than c.

M1 :W1 > W2 W1 :M2 > M1

M2 :W2 > W1 W2 :M1 > W1

Note: There is no pair (Mi,Wj) such that Mi is ranked first on Wj ’s preference list and Wj is ranked first
on Mi’s preference list.
No stable matching can contain such a pair (Mi,Wj), as no such pair exists.
Therefore, the statement is false.

2.

Determine whether the following statement is true or false. If it is true, give an example. If it is false, give
a short explanation. (5pts)
For some n ≥ 2, there exists a set of preferences for n men and n women such that in the stable matching
returned by the G-S algorithm when men are proposing, every woman is matched with their most preferred
man, even though that man does not prefer that woman the most.

Claim: The statement is true.
Example: Consider the following preference lists with n = 3 and a : b > c indicating a ranks b higher than
c.

M1 :W1 > W3 > W2 W1 :M3 > M1 > M2

M2 :W1 > W2 > W3 W2 :M2 > M3 > M1

M3 :W2 > W1 > W3 W3 :M1 > M2 > M3

Now, let’s trace the Gale-Shapley Algorithm with this scenario:
First, M1 proposes to W1, and they get engaged.
Next, M2 proposes to W1, but he gets rejected.
Next, M2 proposes to W2, and they get engaged.
Next, M3 proposes to W2, and he gets rejected.
Next, M3 proposes to W1, and they get engaged, breaking up M1’s engagement.
Finally, M1 proposes to W3, and they get engaged
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Now, all men and all women are in exactly one engagement, so all active engagements are finalized into
marriages.
In the end, (M1,W3), (M2,W2), and (M3,W1) are the three final marriages returned by the Gale Shapley
algorithm. In each marriage, the woman is matched with her most preferred man, while the man is not
matched with his most preferred woman.
Therefore, the statement is true.

3.

Solve Kleinberg and Tardos, Chapter 1, Exercise 4. (15 pts)
Show that there is always a stable assignment of students to hospitals, and give an algorithm to find one.

Note 1: We will use the definition of a stable matching provided by the problem description.
Note 2: Based on the problem description in the textbook, we will assume that all students rank all hospi-
tals and all hospitals rank all students.

Now, let’s provide some other necessary definitions:
Define H := the set of all hospitals.
Define S := the set of all students.
Define f(h) := # of roles filled at hospital h ∈ H.
Define n(h) := # of total roles at hospital h ∈ H.
Define Hs := the ordered ranking of hospitals by preference of student s ∈ S.
Define Sh := the ordered ranking of students by preference of hospital h ∈ H.
Define (s, h) := student s is assigned to hospital h.

Now, we will present an algorithm that always returns a stable matching of students and hospitals, that is,
it returns a matching such that:
i) all roles at all hospitals are filled
ii) no assignment (s, h) exists such that hospital h prefers unassigned student s′ to student s.
iii) No two assignments (s, h), (s′, h′) exist such that hospital h prefers student s′ to student s and student
s′ prefers hospital h to hospital h′

Our algorithm works as follows:
while ∃ unassigned s ∈ S that and has NOT been unassigned from all h ∈ H

assign such a student s ∈ S to most preferred hospital h ∈ Hs

if(f(h) > n(h))
unassign student s′ ∈ S assigned to h that is least preferred on Sh
remove h from Hs′

endif
endwhile

Proof of Correctness: First, we need to make a helpful observation:
Observation 1: Since we check if a hospital h ∈ H has too many students assigned to it every time we
assign a new student, and we only remove a student if f(h) > n(h), unassignment will never cause a filled
role to open up. Therefore, once a role is filled, our algorithm will never open it up.

Now, we will show our algorithm satisfies all three necessary properties:
i) all roles at all hospitals are filled:
Assume to the contrary that our algorithm terminates and there exists an unfilled role at a hospital, that is,
∃ h ∈ H such that f(h) < n(h).
There is a surplus of students, which implies that must exist either an unassigned student OR a hospital
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with more students than total roles, or both.
Since the algorithm terminates only after all unassigned students have been unassigned from all h ∈ H, the
existence of an unassigned student s ∈ S implies that the algorithm assigned and then unassigned s to every
hospital.
Unassignment only happens when all roles at a hospital are filled.
Therefore, the existence of an unassigned student implies that all roles at all the hospitals were at one point
filled.
But since Observation 1 tells us that our algorithm will never open up a role after filling it, this directly
contradicts the existence of an open role at the termination of our algorithm.
On the other hand, the existence of a hospital with more students than total roles at the termination of
the algorithm implies that a student was assigned to a full hospital without a student immediately being
removed from that hospital.
However, assigning a student to a full hospital h ∈ H will always cause f(h) > n(h), which immediately
causes our algorithm to unassign a student from h, another contradiction.
Therefore, by contradiction, our algorithm fills all hospital roles.

ii) no assignment (s, h) exists such that hospital h prefers unassigned student s′ to student s:
Assume to the contrary that ∃(s, h) such that hospital h prefers unassigned student s′ to student s after the
algorithm terminates.
Since the algorithm terminates after all students are either assigned or have been unassigned from all h ∈ H,
and s′ is unassigned, we know s′ was unassigned from h, either before or after s was assigned to h.
If s′ was unassigned from h after s was assigned to h, then the algorithm would have unassigned s instead
of s′ since it unassigns the least preferred student among those assigned to h, and h prefers s′ over s.
If s′ was unassigned from h before s was assigned to h, then there must have been n(h) students assigned
to h that were preferred over s′.
Observation 1 guarantees that all n(h) of those roles will never open up, so there will still be n(h) students
assigned to h when s is assigned.
Hospital h will only unassign a student in favor of a more preferred student.
Therefore, since all of the initial n(h) students assigned to h were preferred over s′, all of the n(h) students
assigned to h when s is assigned are also preferred over s′.
Since h prefers s′ to s, h also prefers all of the n(h) students assigned to it over s.
Therefore, when s is assigned to h, it becomes the least preferred student among n(h) + 1 students assigned
to h, which immediately causes s to be unassigned from h and h to be removed from Hs.
Student s can only be assigned to hospitals in Hs, so this implies s will never be assigned to h again.
However, this directly contradicts our assumption that (s, h) exists. By contradiction, our algorithm satisfies
property (ii).

iii) No two assignments (s, h), (s′, h′) exist such that hospital h prefers student s′ to student s and stu-
dent s′ prefers hospital h to hospital h′:
Assume to the contrary that two assignments (s, h), (s′, h′) exist such that hospital h prefers student s′ to
student s and student s′ prefers hospital h to hospital h′.
Student s′ was either unassigned from hospital h at one point, or student s′ was never assigned to h.
If student s′ was unassigned from hospital h, then there must be n(h) students assigned to hospital h that
hospital h prefers over s′.
Since s is assigned to h, and we already proved that no hospital can have more students assigned than total
roles (after the algorithm terminates), we know that s is one of these n(h) students that h prefers over s′.
However, this directly contradicts our assumption that h prefers s′ over s.
On the other hand, since students are assigned to their most preferred hospital from which they have not
been unassigned, and we know s′ is assigned to h′, if s′ was never assigned to h, then s′ must prefer h′ to h.
However, this directly contradicts our assumption that s′ prefers h over h′.
Thus, by contradiction, our algorithm satisfies property (iii).

Therefore, we have proven that our algorithm always returns a stable matching of hospitals and students,
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which implies that there always exists a stable matching of hospitals and students.

Time Complexity Analysis
Suppose there are n students, m hospitals, and k < n total hospital roles. We assume that k < n because
the problem description identifies a surplus of students

Worst Case:
All of the n−k unassigned students are assigned to and then unassigned from each hospital. Therefore, each
of these unassigned students causes m iterations. In the worst case, each of the k assigned students ends
up assigned to their least preferred hospital. Since students are assigned to hospitals in order of preference,
this means each of these k assigned students was also assigned to each of the m hospitals at some point by
the algorithm. Thus, all of the n students directly cause m iterations, for a total of n ·m iterations. Since
all functionality inside each iteration can operate in constant time with proper implementation, this means
our algorithm has O(n ∗m) worst case time complexity.

Best Case: In the best case, one hospital, hi, will have n(hi) + 1 students who rank hi as their favorite
hospital. For all h ̸= hi, there will be exactly n(h) students who rank h as their favorite hospital. In this
case, there is just one unassigned student. All n− 1 assigned students will just be assigned to their favorite
hospital, only taking one iteration each for a total of n − 1 iterations. The one unassigned student will be
assigned to and then unassigned from all h ∈ H, taking a total of m iterations. Thus, the total number
of iterations in the best case is n − 1 +m. Thus, the time complexity of our algorithm in the best case is
O(n+m).

4.

Solve Kleinberg and Tardos, Chapter 1, Exercise 8. (10pts)
Resolve this question by doing one of the following two things:
(a) Give a proof that, for any set of preference lists, switching the order of a pair on the list cannot improve
a woman’s partner in the Gale-Shapley algorithm; or
(b) Give an example of a set of preference lists for which there is a switch that would improve the partner
of a woman who switched preferences

I will complete option (b).
Consider the following truthful preference lists with n = 3:

M1 :W1 > W2 > W3 W1 :M3 > M2 > M1

M2 :W1 > W3 > W2 W2 :M2 > M1 > M3

M3 :W3 > W1 > W2 W3 :M2 > M3 > M1

Now, let’s trace the Gale-Shapley Algorithm with this scenario:
First, M1 proposes to W1, and they get engaged.
Next, M2 proposes to W1, and they get engaged, breaking up M1’s engagement.
Next, M1 proposes to W2, and they get engaged.
Next, M3 proposes to W3, and they get engaged.
Now, all men and all women belong to exactly one engagement, so all engagements are finalized into mar-
riages.
In the end (M2,W1), (M1,W2), and (M3,W3) are the three final marriages. By telling the truth, W1 ends
up married to her second choice man, M2.

Let’s now examine what happens if W1 lies and says that she prefers M1 to M2. This results in the
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untruthful preference lists:

M1 :W1 > W2 > W3 W1 :M3 > M1 > M2

M2 :W1 > W3 > W2 W2 :M2 > M1 > M3

M3 :W3 > W1 > W2 W3 :M2 > M3 > M1

Now, let’s trace the Gale-Shapley Algorithm again:
First, M1 proposes to W1, and they get engaged.
Next, M2 proposes to W1, and he gets rejected.
Next, M2 proposes to W3, and they get engaged.
Next, M3 proposes to W3, and he gets rejected.
Next, M3 proposes to W1, and they get engaged, breaking up M1’s engagement.
Next, M1 proposes to W2, and they get engaged.
Now, all men and all women belong to exactly one engagement, so all engagements are finalized into mar-
riages.
In the end, (M3,W1), (M1,W2), and (M2,W3) are the three final marriages. By lying, W1 ends up married
to her first choice man, M3.

Therefore, with these lists of preferences, W1 can directly improve her final partner by lying about one
of her preferences, which concludes the example.

Assignment 2

1.

Arrange these functions under the O notation using only = (equivalent) or ⊆ (strict subset of):
a) 2log(n)

b) 23n

c) nnlog(n)

d) log(n)
e) nlog(n2)

f) nn
2

g) log(log(nn))
All logs are base 2. (10 pts)

Solution. First we will manipulate some of the functions to make the arrangement more obvious:

a) 2log(n) = n (polynomial)
b) 23n = (23)n = 8n (exponential)
c) nnlog(n) > nn for all n > 2, and nn > 8n for all n > 8, so nnlog(n) > 8n for all n > 8 (exponential)
d) log(n) (logarithmic)
e) nlog(n2) = 2nlog(n) > n for all n > 2 (polynomial)

f) n > log(n) for all n > 1 =⇒ n2 > nlog(n) =⇒ nn
2

> nnlog(n) for all n > 1 (exponential)
g) log(log(nn)) = log(nlog(n)), and nlog(n) > n for all n > 2, so log(log(nn)) > log(n) for all n > 2
(logarithmic)

Note: if l(n) is a logarithmic function, p(n) is a polynomial function, and e(n) is an exponential func-
tion, then O(l(n)) ⊆ O(p(n)) ⊆ O(e(n)).
Combining this fact with our previous manipulations, we arrive at the following arrangement:
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O(log(n))︸ ︷︷ ︸
(d)

⊆ O(log(log(nn))︸ ︷︷ ︸
(g)

⊆ O(2log(n))︸ ︷︷ ︸
(a)

⊆ O(nlog(n2))︸ ︷︷ ︸
(e)

⊆ O(23n)︸ ︷︷ ︸
(b)

⊆ O(nnlog(n))︸ ︷︷ ︸
(c)

⊆ O(nn
2

)︸ ︷︷ ︸
(f)

2.

Given functions f1, f2, g1, g2 such that f1(n) = O(g1(n)) and f2(n) = O(g2(n)). For each of the following
statements, decide whether it is true or false and briefly explain why. (12 pts)

a) f1(n)/f2(n) = O(g1(n)/g2(n))
b) f1(n) + f2(n) = O(max(g1(n), g2(n)))
c) f1(n)

2 = O(g1(n)
2)

d) log2(f1(n)) = O(log2(g1(n)))

Solution.

(a) False. Let f1(n) = n2, f2(n) = n, g1(n) = n3, and g2(n) = n3.
Then f1(n) = O(g1(n)) and f2(n) = O(g2(n)), as required.
But f1(n)/f2(n) = n2/n = n, and g1(n)/g2(n) = n3/n3 = 1.
n ̸= O(1), so this counterexample disproves statement (a).

(b) True. Since f1(n) = O(g1(n)) and f2(n) = O(g2(n)), we know that:

∃n1, n2, c1, c2 > 0 such that f1(n) ≤ c1g1(n) for all n ≥ n1 andf2(n) ≤ c2g2(n) for all n ≥ n2

Therefore,
f1(n) + f2(n) ≤ c1g1(n) + c2g2(n) for all n ≥ max(n1, n2) = n3

Also,

c1g1(n) + c2g2(n) ≤ c1max(g1(n), g2(n)) + c2max(g1(n), g2(n)) = (c1 + c2)max(g1(n), g2(n))

Thus, if we let c3 = c1 + c2, we find:

f1(n) + f2(n) ≤ c3max(g1(n), g2(n)) for all n ≥ n3 =⇒ f1(n) + f2(n) = O(max(g1(n), g2(n))

which completes the proof of statement (b).

(c) True. Since f1(n) = O(g1(n)), we know

∃n1, c1 > 0 such that f1(n) ≤ c1g1(n) for all n ≥ n1

Therefore,
f1(n)

2 ≤ c21g1(n)
2 for all n ≥ n1

Let c2 = c21, and we find:

f1(n)
2 ≤ c2g1(n)

2 for all n ≥ n1 =⇒ f1(n)
2 = O(g1(n)

2))

which completes the proof of statement (c).

(d) False. Let f1(n) = 8 and g1(n) = 1. Then f1(n) = O(g1(n)), as required.
However, log2(f1(n)) = log2(8) = 3, and log2(g1(n)) = log2(1) = 0.
3 ̸= O(0), so this counteraxample disproves statement (d).

Page 486



3.

Given an undirected graph G with n nodes and m edges, design an O(m + n) algorithm to detect whether
G contains a cycle. Your algorithm should output a cycle if there is one. (12 pts)

Solution. We will implement a modification of recursive Depth-First Search. We will use a helper func-
tion to implement this modification, and our primary function will just call this function until all the nodes
are explored or a cycle is found. We will use an adjacency list representation of edges to traverse the edges
incident to a given vertex v in O(deg(v)) time. We will also keep track of the parent of each node in an
array to print the cycle (if found) in linear time relative to the length of the cycle.

boolean SearchComp( vertex current, vertex parent )
if explored[current] is true

return false
endIf
set explored[current] to true
set parent[current] to parent
for each edge (current, v) incident to current

if explored[v] is false
return SearchComp(v, current)

endIf
else

if parent[current] != v
vertex temp = current
while parent[temp] != null

print temp
temp = parent[temp]

endWhile
return true

endIf
endElse

endFor
return false

endSearchComp

boolean hasCycle( G(V,E) )
set parent[] to null
set explored[] to null
for int v: 1 → N

pick vertex v
if searchComp(v, null)

return true
endIf

endFor
return false

endHasCycle

Time Complexity: DFS runs in O(m + n) time over a connected component with n vertices and m
edges. For each call to our modified DFS (searchComp), we only ever stop the recursion early (if we find a
cycle), we never cause more recursion to take place than in normal DFS. Therefore, searchComp will only
run slower than O(m+n) if the process underwent upon finding a cycle takes more than O(m+n). However,
printing a node takes constant time, and the while loop could only possibly run through every vertex in the
connected component, for a total of O(n) runtime. Therefore, the worst case runtime of searchComp, just
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like recursive DFS, is still O(m+ n+ n) = O(m+ 2n) = O(m+ n).

For hasCycle, all of the intializations take a total of O(N + N) = O(2N) = O(N) runtime. If there ex-
ists a cycle, searchComp will return true, so hasCycle will terminate early. Thus, we must consider what
happens if there exists no cycle. In this case, we must iterate through the entire for loop. In the absence
of a cycle, searchComp is just DFS, which will explore all nodes in a connected component. Therefore,
searchComp will execute in constant time if the current vertex was a part of a previously explored connected
component. Thus, for each connected component, the searchComp calls to the vertices in that compo-
nent will take a total of O(m + n) time. If there are k connected components, with n1, ..., nk vertices and
m1, ...,mk edges respectively, then the sum of calling searchComp on each of these components will take
O((n1 + m1) + ... + (nk + mk)) = O(N +M) time. Thus, in the worst case, hasCycle will terminate in
O(M +N) time, as required.

Note: We are redefining N := total number of vertices in graph and M := total number of edges in the
graph to let n and m denote similar quantities for individual connected components.

4.

Solve Kleinberg and Tardos, Chapter 2, Exercise 6

Solution.
(a) We choose f(n) = n3. The outermost for loop has exactly n iterations. The innermost for loop has a
maximum of (n− 1) iterations. Inside each iteration, a maximum of (n+1) steps are done (n addition steps
+ 1 storage step). Thus, there will never be more than n(n− 1)(n+ 1) = n(n2 − 1) = n3 − n = O(n3) steps
in the algorithm. Thus, the algorithm is upper bounded by O(f(n)) = O(n3).

(b) Note: There are n
4 values of i for which i ≤ n

4 . For each such value of i, there will be n
4 values of j for

which j ≥ 3n
4 . In each iteration with such a combination of i and j, there is at least 3n

4 − n
4 = 2n

4 = n
2 work

done adding up the entries of A[]. Thus, there is at least n
4
n
4
n
2 = n3

32 work done by the algorithm. Thus, the
algorithm is also Ω(f(n)) = Ω(n3). This combines with part (a) to show the algorithm is Θ(f(n)) = Θ(n3).

(c) The modified algorithm works as follows:

for i : 1 → n
let B(i, i) = A(i)
for j : i+ 1 → n

let B(i,j) = B(i,j-1) + A(j)
endFor

endFor

Proof of Correctness: We only care about values of B(i,j) where j > i, so we just need to show that
B(i, j − 1) +A(j) = A(i) +A(i+ 1) + · · ·+A(j − 1) +A(j).
We will do so by induction on j.
Base Case: j = i+ 1, B(i, j) = B(i, j − 1) +A(j) = B(i, i) +A(j) = A(i) +A(j) as expected.
Inductive Hypothesis: Assume that B(i, j − 1) + A(j) = A(i) + A(i + 1) + · · · + A(j − 1) + A(j) for all
i < j = k < n.
Inductive Step: We want to show that B(i, k + 1) = A(i) +A(i+ 1) + · · ·+A(k) +A(k + 1).
Our algorithm sets B(i, k + 1) = B(i, k) +A(k + 1).
By our Inductive Hypothesis, we know B(i, k) = A(i) +A(i+ 1) + · · ·+A(k − 1) +A(k).
Therefore, our algorithm sets

B(i, k + 1) = A(i) +A(i+ 1) + · · ·+A(k − 1) +A(k) +A(k + 1)
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as required.

Time Complexity: Each iteration takes constant time. The inner for loop runs (n − i) times for a
given 1 ≤ i ≤ n. Since i ranges from 1 to n, this means the number of iterations of the inner loop ranges
from 0 to n− 1. Thus, the total number of iterations is

n−1∑
k=0

k =
n(n− 1)

2
=
n2

2
− n

2

Since each iteration takes constant time, this means the total runtime of the algorithm is O(n2), which is
faster than the previous algorithm.

5.

What Mathematicians often keep track of a statistic called their Erdos Number, after the great 20th century
mathematician. Paul Erdos himself has a number of zero. Anyone who wrote a mathematical paper with
him has a number of one, anyone who wrote a paper with someone who wrote a paper with him has a number
of two, and so forth and so on. Supposing that we have a database of all mathematical papers ever written
along with their authors: (6 pts)
a. Explain how to represent this data as a graph
b. Explain how we would compute the Erdos number for a particular researcher
c. Explain how we would determine all researcher with Erdos number at most two.

Solution.
(a) We could represent the data as a graph by storing each individual researcher as a distinct vertex in the
graph. Then, we could create undirected edges between each pair of researchers that wrote a paper together.

(b) To compute the Erdos number for a particular researcher, we could just run a Breadth-First Search
algorithm with the particular researcher as the start vertex and Erdos as the end vertex. This would trace
the shortest path between the particular researcher and Erdos, the length of which would be that researcher’s
Erdos number.

(c) To determine all researchers with Erdos number at most two, we could run a modified breadth-first
search algorithm with Erdos as the start vertex. The modification would entail stopping the search algo-
rithm after completing level 2 of the BFS tree. Every researcher marked as explored by this algorithm would
be guaranteed to have an Erdos number at most two. Even better, their specific Erdos number could be
determined by just looking at what level of the BFS tree they are in.

6.

Given a DAG, give a linear-time algorithm to determine if there is a simple path that visits all vertices. (8 pts)

Solution.
We slightly modify the explained O(m+ n) topological ordering algorithm from Chapter 3 of the textbook.
Our algorithm works as follows:

bool path(V,E)
count = 0
stack S = null
for each node v ∈ V

if indegree[v] == 0
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increment count by 1
add v to S

endIf
endFor
if count > 1

return false
endIf
while S != null

pop top node s ∈ S
dependentcount = 0
for all edges (u, s) outgoing from s

decrement indegree[u] by 1
if indegree[u] == 0

add u to S
increment dependentcount by 1

endIf
endFor
if dependentcount > 1

return false
endIf

endWhile
return true

endPath

Time Complexity: The topological ordering algorithm from Chapter 3 runs in O(m + n) time. This
algorithm only makes 2 significant modifications to the runtime of the topological ordering algorithm. First,
it adds a O(n) for loop that checks for vertices with in-degree 0. Next, it stops the main O(m + n) loop
early if there are ever two vertices with no incoming edges. Thus, our algorithm’s main loop can only ever
run quicker than the main loop in the topological ordering algorithm, so its runtime is also O(m+ n). This
means the total runtime of our algorithm is O(m + n + n) = O(2n +m) = O(m + n), so it runs in linear
time as required.

Assignment 3

1.

Suppose you want to drive from USC to Santa Monica. Your gas tank, when full, holds enough gas to go p
miles. Suppose there are n gas stations along the route at distances d1 ≤ d2 ≤ · · · ≤ dn from USC. Assume
that the distance between any neighboring gas stations, and the distance between USC and the first gas
station, as well as the distance between the last gas station and Santa Monica, are all at most p miles.
Assume you start from USC with the tank full. Your goal is to make as few gas stops as possible along the
way. Give the most efficient algorithm to determine which gas stations you should stop at and prove that
your algorithm yields an optimal solution (i.e., the minimum number of gas stops). Give the time complexity
of your algorithm as a function of n. (15 points)

Solution. Our strategy is to only stop at the furthest away gas station which we can reach. At every
stop, we will completely fill our tank. This ensures we go as far as possible on each gas tank before fill-
ing up, which should minimize the total number of stops needed. We can implement the algorithm as follows:

vector< int > leastStops (vector< int > d)
let dn+1 = the distance from USC to Santa Monica
add dn+1 to d
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sort d in ascending order
set stops = an empty vector
set traveled = 0
set burnt = 0
set gas = p
for i : 1 → n

decrement gas by di − (burnt+ traveled)
burnt = di − traveled
if (gas− (di+1 − di) < 0)

set gas = p
set burnt = 0
set traveled = di
add di to stops

endIf
endFor
return stops

endLeastStops

Proof of Correctness:
First, we will show that our algorithm implements the described Greedy approach. Indeed, our gas tank
starts at full with enough gas to go p miles. Traveled tracks the distance from USC to the gas station we
last stopped at. Burnt tracks the number of miles we have driven since the last stop. Gas tracks the number
of miles left in our tank at each gas station. We only ever refill the tank if we do not have enough gas to
reach the next station (i.e. the number of additional miles we need to drive is greater than gas), at which
we add that gas station to the list of stops. Thus, our algorithm does implement the Greedy approach of
only stopping at the furthest gas station we can reach with our current gas.

Now, we will show that our algorithm always produces an optimal solution.

First, we must show that our algorithm always chooses sufficient stops for us to reach Santa Monica, as
the optimal solution will never result in us running out of gas. It suffices to show that our algorithm always
chooses stops such that our car has enough gas to get to the station i. We can do this via induction on i.
Base Case:
i = 1. Our algorithm initializes our gas tank to be full (p miles of range). The problem description guarantees
that the distance between the first stop and USC is less than or equal to p miles. Therefore, we will have
enough gas to get to the first station (station i = 1).
Inductive Hypothesis:
Assume that our algorithm always chooses stops such that we have enough gas to get to the station i for all
1 ≤ i ≤ k < n+ 1
Inductive Step:
Consider i = k + 1. By the Inductive Hypothesis, we know our algorithm chose stops such that we have
enough gas to get to station k. Once we arrive at station station k:

1) if we already have enough gas to get to station k + 1, then the inductive step is trivially true
2) if we don’t have enough gas to get to station k+1, then we fill up our gas tank with p miles of range.

No two gas stations are more than p miles apart, so we now have enough gas to get to station k + 1.
By induction, our algorithm always chooses stops such that we have enough gas to get to station i for all
1 ≤ i ≤ n + 1, where station n + 1 is Santa Monica. Therefore, our algorithm will always choose sufficient
stops for us to get to Santa Monica without running out of gas.

Next, we must show that our solution always stays ahead of the optimal solution.
Consider S := the set of stops returned by our leastStops() algorithm, and
O := the set of stops in the optimal solution.
We want to show that, for each si ∈ S, si ≥ oi. We can do this via induction, where the size of S is |S| = k.
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Base Case:
i = 1. Our algorithm’s first stop is the furthest gas station we can reach from USC on a full tank of gas.
Therefore, s1 must be at least as far from USC as o1, as it is impossible to reach any further stops without
stopping earlier.
Inductive Hypothesis:
Assume that si ≥ oi for all 1 ≤ i ≤ j < k.
Inductive Step: Consider i = j+1. By our Inductive Hypothesis, we know that sj ≥ oj . Once we stop at sj ,
we know our algorithm doesn’t stop again until it reaches the furthest station it can reach without running
out of gas. Thus sj+1 is the furthest station we can reach from sj on a full tank of gas. Since sj ≥ oj , we
know that oj cannot reach a station further than sj+1. Thus, since the optimal solution never runs out of
gas, we know sj+1 ≥ oj+1.
By induction, we know that si ≥ oi for all 1 ≤ i ≤ k.

Now, we just need to show that |S| = |O.
Assume to the contrary that |S| ≠ |O|. Since O is optimal, this directly implies |O| < |S|. Let |O| = m.
By the previous proof, we know sm ≥ om. Since |O| < |S|, we know ∃sm+1 ∈ S. Since leastStops() only
adds a stop when we cannot get to the next station, we know we cannot get to Santa Monica from sm on
a full tank of gas. However, since om is the last stop in the O, and O must get us to Santa Monica, this
implies we can get to Santa Monica from om on a full tank of gas. However, since om ≤ sm, this implies
we can also get to Santa Monica from sm on a full tank of gas. This is a contradiction, which proves |O| = |S|.

Thus, we have shown that |O| = |S|, which concludes the proof that leastStops() always yields an op-
timal solution.

Time Complexity Analysis:
The time complexity of leastStops() directly depends on the format of the input data. If the input data is
already sorted in ascending order, then we could simply append dn+1 to the end of that list in O(1) time to
produce a sorted list of all n + 1 distances from USC in ascending order. If the data is not already sorted
in ascending order, then we have to manually sort the data after appending dn+1, which takes O(nlog(n))
time.
The runtime of the rest of the algorithm does not depend on this detail. Each iteration of the for loop only
involves a constant number of constant time steps. Thus, each iteration of the for loop takes O(1) time. The
for loop always iterates n times, so it always takes O(n) time in total.
This results in two distinct runtimes depending on the format of the input data.
1 - Sorted Input Data: O(1) +O(n) = O(n) total runtime.
2 - Unsorted Input Data: O(nlog(n)) +O(n) = O(nlog(n)) total runtime.

2.

The array A holds a max-heap. What will be the order of elements in array A after a new entry with value
18 is inserted into this heap? Show all your work. A = 19, 17, 14, 8, 7, 9, 3, 2, 1, 4 (8 points)

Solution.
We will convert the array representation of the heap to a tree representation of the heap. From here, we
can easily trace what happens when 18 is inserted. Then, we can convert the resulting tree back into its
corresponding array form to arrive at a final answer.
The tree representation of the initial array is:
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19

17

8

2 1

7

4

14

9 3

Since the heap’s tree representation must always be complete, immediately after inserting 18, the tree rep-
resentation looks as follows:

19

17

8

2 1

7

4 18

14

9 3

In order to maintain the Max-Heap property, the 18 must now be promoted upwards until it is smaller than
its parent.
After the first such promotion, the tree looks as follows:

19

17

8

2 1

18

4 7

14

9 3

18 is still greater than its parent, 17, so we promote again to get:

19

18

8

2 1

17

4 7

14

9 3

Now, 18 is smaller than its parent, 19, so the tree once again satisfies the Max-Heap property. Thus, the
process of inserting 18 is finished, so we can convert the resulting tree back to an array. The array that
corresponds to the tree after the process of inserting 18 finishes is A = 19, 18, 14, 8, 17, 9, 3, 2, 1, 4, 7.
Thus, the order of elements in array A after a new entry with value 18 is inserted into this heap is
A = 19, 18, 14, 8, 17, 9, 3, 2, 1, 4, 7.

3.

(a) Consider the problem of making change for n cents using the fewest number of coins. Describe a greedy
algorithm to make change consisting of quarters (25 cents), dimes (10 cents), nickels (5 cents), and pennies
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(1 cent). Prove that your algorithm yields an optimal solution. (Hints: consider how many pennies, nickels,
dimes, and dimes plus nickels are taken by an optimal solution at most.)
(b) For the previous problem, give a set of coin denominations for which the greedy algorithm does not yield
an optimal solution. Assume that each coin’s value is an integer. Your set should include a penny so that
there is a solution for every value of n. (15+5 points)

Solution. (a) Our algorithm will implement the Greedy strategy of always using the largest coin possi-
ble. We will first pick the largest coin which is ≤ n. Then, we will decrement n by the value of that coin,
and repeat the process until n = 0. We will keep track of the frequency with which each coin is used, and
return an object that stores the frequency for each of the four coin denominations. The algorithm works as
follows:

bestChange(int n)
result.quarterCount = 0
result.dimeCount = 0
result.nickelCount = 0
result.pennyCount = 0
while (n! = 0)

if(n ≥ 25)
result.quarterCount++
n− = 25

endIf
else if(n ≥ 10)

result.dimeCount++
n− = 10

endElseIf
else if(n ≥ 5)

result.nickelCount++
n− = 5

endElseIf
else if(n ≥ 1)

result.pennyCount++
n− = 1

endElseIf
endWhile
return result

endBestChange

Proof of Correctness:
First, we must show that our algorithm always returns a valid combination of coin frequencies, for all positive
integers n. Our algorithm runs for the duration of a while loop that terminates when n = 0. During each
iteration, n decrements by at least 1. When n ≥ 25, each iteration decrements n by exactly 25 until n ≤ 24.
At this point, each iteration decrements n by exactly 10 until n ≤ 9. At this point, each iteration decrements
n by exactly 5 until n ≤ 4. Then, each iteration decrements n by exactly 1 until n = 0, which is guaranteed
to happen in ≤ 4 iterations. Thus, the algorithm will terminate for all n ∈ N.
Each time the algorithm decrements n by k it increments the count of the coin with value k by 1. Since
this process stops when n = 0, and we always decrement n to exactly 0, the combination of coin frequencies
returned by our algorithm is always valid change for n cents, for all n ∈ N.

Now, we must show that our algorithm always returns valid change for n cents using the fewest total
coins.
Assume to the contrary that our algorithm returns change using more than the fewest possible coins. This
means there must be a way to substitute a susbet of coins from our solution for a smaller subset of coins
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with the same total value. There are exactly 4 situations which allow for a substitution that decreases the
total number of coins used without changing the total value of the coins:
i) pennyCount ≥ 5 (We can replace 5 pennies with 1 nickel, saving 4 coins)
ii) nickelCount ≥ 2 (We can replace 2 nickels with 1 dime, saving 1 coin)
iii) dimeCount ≥ 3 (We can replace 3 dimes with 1 quarter and 1 nickel, saving 1 coin)
iv) dimeCount ≥ 2 && nickelCount ≥ 1 (We can replace 2 dimes and 1 nickel with 1 quarter, saving 2 coins)

Thus, since our solution is not optimal, it must allow for one of these situations.
i) pennnyCount ≥ 5 implies that pennyCount was incremented ≥ 5 times. However, pennyCount is only
incremented when 0 ≤ n ≤ 4, and n decrements by 1 each time pennyCount increments, so pennyCount
cannot possibly increment ≥ 5 times. This is a contradiction.
ii) nickelCount ≥ 2 implies that nickelCount was incremented ≥ 2 times. However, nickelCount is only
incremented when 5 ≤ n ≤ 9, and n decrements by 5 each time nickelCount increments, so nickelCount
cannot possibly increment ≥ 2 times. This is a contradiction.
iii) dimeCount ≥ 3 implies dimeCount was incremented ≥ 3 times. However, dimeCount only increments
when 10 ≤ n ≤ 24, and n decrements by 10 every time dimeCount increments, so dimeCount cannot possibly
increments ≥ 3 times. This is a contradiction.
iv) dimeCount ≥ 2 && nickelCount ≥ 1 implies that nickelCount incremented at least once after dimeCount
incremented at least twice. However, dimeCount only increments when 10 ≤ n ≤ 24, and n decrements by 10
each time dimeCount increments, so n ≤ 4 after dimeCount increments at least twice. However, nickelCount
only increments when 5 ≤ n ≤ 9, so nickelCount can never increment after dimeCount increments at least
twice. This is a contradiction.

Thus, there is no way to substitute a set of x coins from the solution returned by bestChange() for a
set of y < x coins that have the same total value.
Thus, the solution returned by bestChange() uses the fewest total coins of any combination of coin fre-
quencies that makes valid change for n cents, for all n ∈ N.
Thus, bestChange() always yields the optimal solution.

(b) Consider the set of coin denominations S := {1, 3, 10, 11}. With an input of n = 13, the greedy
strategy employed by bestChange() would first choose 1 11-cent coin, then 2 1-cent coins, for a total of 3
coins. However, we could also choose 1 10-cent coin and 1 3-cent coin to form 13 cents with just 2 coins.
Thus, with this input and this set of coin denominations, the solution returned by the greedy strategy does
not have the fewest possible number of coins. Thus, these conditions represent an example in which the
greedy strategy does not yield an optimal solution.

4.

You are given positions of N Mice and positions of n holes on a 1-dimensional number line. Each hole can
accommodate at most 1 mouse. A mouse can stay in place, move one step right from x to x+1, or move one
step left from x to x− 1. Devise an algorithm to assign mice to holes so that the number of moves taken by
the mice is minimized. Your algorithm should return the minimum number of moves taken to assign mice
to holes and be in O(NlogN) time. (10 points).

Solution.
Note: Based on an instructor-endorsed Piazza post, I assume that n (# of holes) = N (number of mice) for
the duration of my solution.
Our algorithm will implement the Greedy strategy of pairing the mouse at the k′th largest position with the
hole at the k′th largest position. This should minimize the sum of the absolute differences between hole and
mouse positions. Since the absolute difference between the mouse position and hole position is the number
of steps the mouse needs to take to get to that hole, this should also minimize the total number of moves
taken by the mice. Our algorithm works as follows:
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assignMice(mice[n], holes[n])
Sort mouse positions in mice[n] in ascending order
Sort hole positions in holes[n] in ascending order
count = 0
for i : 1 → n

assign mice[i] to holes[i]
count + = |mice[i]− holes[i]|

endFor
return count

endAssignMice

Proof of Correctness:
First, we must show our algorithm never assigns more than one mouse to one hole. Since each mouse mice[i]
is assigned to a distinct hole holes[i], we know that each hole is assigned exactly 1 mouse, so no hole is
assigned more than 1 mouse.
Now, we must show that our algorithm returns an accurate number of moves needed to assign each mice[i]
to the corresponding holes[i]. For each i, after mice[i] is assigned to holes[i], count increments by the ab-
solute value of mice[i] − holes[i]. Since each move taken by mice[i] moves it 1 step closer to holes[i], this
is accurately updating the number of moves taken for each assignment. Thus, our algorithm returns the
correct number of moves needed to assign each mice[i] to the corresponding holes[i].
Now, we must prove that our algorithm always returns the minimum number of moves needed. Since our
algorithm accurately counts the number of moves needed to produce the assignment it simulates, we just
need to show that our assignment of mice to holes is optimal.
Assume to the contrary that there exists an optimal solution O which takes fewer moves than the one
produced by assignMice(). This means there is at least one inversion in the optimal solution at which
mice[i] > mice[j], holes[i] > holes[j], but mice[i] is assigned to holes[j], and mice[j] is assigned to holes[i].
There are 6 potential orderings < a, b, c, d > of mice[i],mice[j], holes[i], holes[j] under these conditions. We
will show that, with each of these orderings, reversing the inversion can only reduce the total number of
moves used by the solution.

1) mice[i] ≥ mice[j] ≥ holes[i] ≥ holes[j] :

=⇒ |mice[i]− holes[j]|+ |mice[j]− holes[i]| = mice[i]− holes[j] +mice[j]− holes[i]

= (mice[i]− holes[i]) + (mice[j]− holes[j])

= |mice[i]− holes[i]|+ |mice[j]− holes[j]|

So removing this type of inversion does not change the total number of moves used.

2) mice[i] ≥ holes[i] ≥ mice[j] ≥ holes[j] :

=⇒ |mice[i]− holes[j]|+ |mice[j]− holes[i]| ≥ |mice[i]− holes[j]|
≥ |mice[i]− holes[j]|+mice[j]− holes[i]

= mice[i]− holes[j] +mice[j]− holes[i]

= |mice[i]− holes[i]|+ |mice[j]− holes[j]|

So removing this type of inversion can only decrease or not change the total number of moves used.

3) mice[i] ≥ holes[i] ≥ holes[j] ≥ mice[j] :

=⇒ |mice[i]− holes[j]|+ |mice[j]− holes[i]| = mice[i]− holes[j] + holes[i]−mice[j]

≥ mice[i]− holes[i] + holes[j]−mice[j]

= |mice[i]− holes[i]|+ |mice[j]− holes[j]|
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So removing this type of inversion can only decrease or not change the total number of moves used.

4) holes[i] ≥ holes[j] ≥ mice[i] ≥ mice[j] :

=⇒ |mice[i]− holes[j]|+ |mice[j]− holes[i]| = holes[j]−mice[i] + holes[i]−mice[j]

= holes[i]−mice[i] + holes[j]−mice[j]

= |mice[i]− holes[i]|+ |mice[j]− holes[j]|

So removing this type of inversion does not change the total number of moves used.

5) holes[i] ≥ mice[i] ≥ holes[j] ≥ mice[j] :

=⇒ |mice[i]− holes[j]|+ |mice[j]− holes[i]| = mice[i]− holes[j] + holes[i]−mice[j]

≥ holes[i]−mice[i] + holes[j]−mice[j]

= |mice[i]− holes[i]|+ |mice[j]− holes[j]|

So removing this type of inversion can only decrease or not change the total number of moves used.

6) holes[i] ≥ mice[i] ≥ mice[j] ≥ holes[j] :

=⇒ |mice[i]− holes[j]|+ |mice[j]− holes[i]| = mice[i]− holes[j] + holes[i]−mice[j]

≥ holes[i]−mice[i] +mice[j]− holes[j]

= |mice[i]− holes[i]|+ |mice[j]− holes[j]|

So removing this type of inversion can only decrease or not change the total number of moves used.

Therefore, for each inversion present in O, we can remove the inversions 1 by 1 until we have the solu-
tion returned by assignMice(), and this solution is guaranteed to take ≤ as many moves as the optimal
solution O. However, we assumed that the O took fewer moves than the solution returned by assignMice().
Thus, we have a contradiction, which proves that assignMice() always returns the fewest possible number
of total moves.

Time Complexity Analysis:
Sorting the list of mice positions take O(Nlog(N)) time. Similarly, sorting the list of hole positions takes
O(Nlog(N)) time. There are N total iterations of the for loop. Inside each iteration, the work done assign-
ing a mouse to a hole (making a pair) and incrementing count takes O(1) time. Thus, the whole for loop
takes O(N) time. Therefore, the total runtime of our algorithm is O(Nlog(N)) + O(Nlog(N)) + O(N) =
O(2Nlog(N) +N) = O(Nlog(N)), as required.

5.

Farmer John has N cows (1, 2, ..., N) who are planning to escape to join the circus. His cows generally lack
creativity. The only performance they came up with is the “cow tower”. A “cow tower” is a type of stunt in
which every cow (except for the bottom one) stands on another cow’s back and supports all cows above in
a column. The cows are trying to find their position in the tower. Cow I (i = 1, 2, ..., N) has weight Wi and
strength Si. The “risk value” of cow i failing (Ri) is equal to the total weight of all cows on its back minus
Si. We want to design an algorithm to help cows find their positions in the tower such that we minimize
the maximum “risk value” of all cows. For each of the following greedy algorithms either prove that the
algorithm correctly solves this problem or provide a counter-example.
Hint: One of the two solutions is correct and the other is not.
(a) Sort cows in ascending order of Si from top to bottom
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(b) Sort cows in ascending order of Si +Wi from top to bottom. (15 points total)

Solution.
(a). This solution does NOT solve this problem.
Counterexample: Let N = 2, C1 : (S1 = 100,W1 = 10), C2 : (S2 = 10,W2 = 500). Then sorting cows in as-
cending order of Si from top to bottom puts C1 on the bottom and C2 on top. C2 has no cows on top of it, so
its risk factor is R2 = −S2 = −10. C1 has C2 on top of it, so its risk factor is R1 =W2−S1 = 500−100 = 400.
However, if we put C2 on the bottom and C1 on top, then C1’s risk factor is R1 = −S1 = −100 and C2’s
risk factor is R2 =W1 − S2 = 10− 10 = 0.
The situation returned by solution (a) has a maximum risk value of 400. The alternative situation has a
maximum risk value of only 0. Clearly, solution (a) does not result in a solution with the minimal maximum
risk value of all cows.

(b) This solution DOES solve the problem.
Proof. Assume to the contrary that there is a different ordering O that has less maximal risk than the
ordering returned by solution (b). Then some Ci must be above some Cj such that Si +Wi ≥ Sj +Wj .
As we go up from Cj to Ci, there must be at least one inversion at which Sk +Wk ≤ Sk+1 +Wk+1 (with
subscripts now denoting a cow’s position from the bottom of the tower).
At this inversion, we know Rk =W +Wk+1 − Sk and Rk+1 =W − Sk+1, where W is the weight of all cows
above Ck+1.
If we flip the inversion, we only change the risk factors of the two adjacent cows, so let’s examine how those
risk factors change. We have R∗

k =W +Wk − Sk+1 and R∗
k+1 =W − Sk.

Clearly, before flipping the inversion, since Rk−Rk+1 =Wk+1+Sk+1−Sk ≥Wk+1+Sk+1− (Sk+Wk) ≥ 0,
so the maximum risk of the two relevant cows is Rk.
After flipping the inversion, Rk −R∗

k =Wk+1 + Sk+1 − (Wk + Sk) ≥ 0, and Rk −R∗
k+1 =Wk+1 ≥ 0. Thus,

flipping the inversion can only decrease or not change the maximum risk value of all cows. Therefore, we can
flip inversions 1 by 1 until we obtain the cow tower returned by solution (b), and this tower is guaranteed to
have ≤ the maximum risk value from the optimal solution. However, we assumed that the optimal solution
O has less maximal risk than the ordering returned by solution (b), so we have a contradiction.
Thus, we have proven that solution (b) always minimizes the maximum risk value of all cows in the cow
tower.

Assignment 4

1.

[10 points] Design a data structure that has the following properties (assume n elements int he data structure,
and that the data structure properties need to be preserved at the end of each operation:

• Find median takes O(1) time

• Inser takes O(logn) time

Do the following:
(a) Describe how your data structure will work.
(b) Give algorithms that implement the Find-Median() and Insert() functions.

Solution.
(a) We will use two heaps to implement our data structure. One heap will be a max heap that stores the
smallest half of the elements and the other heap will be a min heap that stores the largest half of the ele-
ments.
Let the elements in our data structure be denoted by the set S := {s1, ..., sn} such that si ≤ sj for all i ≤ j.
If n is even, our data structure will maintain the property that both heaps have the same number of elements
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after each operation. In this way, the maximum element in the max heap will be sn
2
and the minimum ele-

ment in the min heap will be sn
2 +1. In any ordered list of n elements s1, ..., sn where n is even, the median

of the elements is
sn

2
+ sn

2 +1

2

Since we can get the min element from the min heap (sn
2 +1) and the max element from the max heap (sn

2
)

in O(1) time, maintaining our data structure like this should allow for calculating the median in O(1) time
if n is even.
If n is odd, our data structure will maintain the property that the min heap has one more element than
the max heap. This ensures that s⌈n

2 ⌉ is the minimum element in the min heap. In any ordered list of n
elements s1, ..., sn where n is odd, the median of the elements is just s⌈n

2 ⌉. Since we can get the min element
from the min heap (s⌈n

2 ⌉) in O(1) time, maintaining our data structure like this should allow for calculating
the median in O(1) time if n is odd.
Thus, for all n, our data structure should calculate the median in O(1) time.

For inserting an element into our data structure, we will always insert the first element into the min heap,
to ensure that we maintain the aforementioned property when n is odd. For each subsequent insert, we will
check if that element is greater than the minimum element in the min heap. If so, we will just insert it
into the min heap. Otherwise, we will insert it into the max heap. Afterwards, we check if the number of
elements in the max heap is greater than the number of elements in the min heap. If so, we remove the max
element from the max heap and insert it into the min heap, which ensures we maintain the aforementioned
property for when n is odd. Otherwise, we check if the difference between the number of elements in the min
heap and the number of elements in the max heap is greater than 1. If so, we remove the minimum element
from the min heap and insert it into the max heap, which ensures we maintain the aforementioned property
when n is even.
Thus, in each insert, we maximally do two heap inserts and 1 heap removal, all of which are O(logn) op-
erations, for a total of O(logn) total runtime. All comparison operations are O(1), so the insertions and
removals dominate the runtime of the function. Thus, the total runtime of our insert function should be
O(logn) for all n.

(b) Note: For both algorithms, largest refers to the min heap of the data structure’s biggest elements,
and smallest refers to the max heap of the data structure’s smallest elements.
We implement Find-Median() as follows:

Find-Median()
if(smallest.size+ largest.size%2 == 0)

return (smallest.ExtractMax+ largest.ExtractMin)/2
endIf
else

return largest.ExtractMin
endElse

endFind-Median

Time Complexity Analysis:
Since smallest and largest are both heaps, we know that smallest.size and largest.size are O(1) oper-
ations. Also, since smallest is a max heap, we know that smallest.ExtractMax is an O(1) operation.
Similarly, since largest is a min heap, we know that largest.ExtractMin is an O(1) operation. Therefore,
Find-Median() takes a constant number of O(1) operations, so it has a total of O(1) time complexity.

We implement Insert() as follows:

Insert(i)
if(largest.size == 0)
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largest.insert(i)
endIf
else if(i > largest.ExtractMin)

largest.insert(i)
endElseIf
else

smallest.insert(i)
endElse
if(smallest.size > largest.size)

temp = smallest.ExtractMax
smallest.RemoveMax
largest.insert(temp)

endIf
else if(largest.size− smallest.size > 1)

temp = largest.ExtractMin
largest.RemoveMin
smallest.insert(temp)

endElseIf
endInsert

Time Complexity Analysis:
In the worst case, there are 2 heap inserts and 1 heap removal for a single insertion into our data structure.
These each take O(logn) time, so the total runtime is O(3logn) = O(logn). Since the rest of the operations
in the algorithm take constant time, we know that Insert() has O(logn) overall time complexity.

Note: Since our algorithm inserts its first element into the largest heap, and we always check if largest.size−
smallest.size > 1 after each insertion, at which point we decrease largest.size by 1 and increase smallest.size
by 1, it is impossible for largest.size− smallest.size > 1 after an insertion. Similarly, since we always check
if smallest.size > largest.size after each insertion, at which point we increment largest.size by 1 and decre-
ment smallest.size by 1, it is impossible for our smallest.size > largest.size after an insertion. Therefore,
our insertion method maintains the two necessary properties identified in part (a) for our Find-Median()
function to work properly.

2.

[10 points] Let us say that a graph G = (V,E) is a near tree if it is connected and has at most n+ k edges,
where n = |V | and k is a constant. Give an algorithim with running time O(n) that takes a near tree G with
costs on its edges, and returns a minimum spanning tree ofG. You may assume that all edge costs are distinct.

Solution. We want to avoid sorting all of the edges in E, as this will take O((n+ k)log(n+ k)) = O(nlogn)
runtime. Our strategy will involve dealing will all of the n + k edges in linear O(n + k) = O(n) time, then
dealing with a constant k + 1 number of edges in the constant O((k + 1)log(k + 1)) = O(1) time. This
should result in O(n+k+klogk) = O(n) total runtime for our algorithm. We will utilize a Union-Find data
structure using compression as well as a heap to deal with all of the edges in linear time.
Note: In our algorithm, biggest is a heap that stores the k+1 edges from E with the heaviest costs, c(u, v) =
the cost of a specific edge (u, v), find(u) = the connected component to which a node u belongs.
Our algorithm works as follows:

NearTreeMST(V,E)
nSmallest = cost of the n’th lowest cost edge in E
MakeUnionFind(V)
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solution = null
initialize a min heap called biggest to be empty
for all edges (u, v) ∈ E

if(c(u, v) < nSmallest)
if(find(u)! = find(v))

add (u, v) to solution
UnionMerge(find(u), find(v))

endIf
endIf
else

add (u, v) to biggest
endElse

ExtractMin from biggest k + 1 times to get a sorted list of the k + 1 highest
cost edges in E, called biggestSorted
for i : 1 → k + 1

(u, v) = biggestSorted(i)
if(find(u)! = find(v))

add (u, v) to solution
UnionMerge(find(u), find(v))

endIf
endFor
return solution

endNearTreeMST

Time Complexity Analysis:
We can find the cost of the n’th lowest cost edge in E in O(n + k) = O(n) time using an algorithm like
introselect.
Using a Union-Find data structure with compression like the one described in the textbook, the MakeUnion-
Find(V) call only take O(n) runtime.
Also, each of the calls to find(u) or find(v) have an amortized runtime of O(1) using this data structure,
and the UnionMerge() calls also have O(1) runtime. There are a constant number of each of these operations
during each of the n+ k iterations of the first for loop, for a total of O(n+ k) runtime.
Each insertion into biggest takes no more than O(log(k + 1)) time, and there will be k + 1 insertions, for a
runtime bounded by O((k + 1)log(k + 1)) = O(klogk).
Therefore, over n + k iterations of our first for loop, the UnionFind operations contribute a total of
O(n + k) runtime, while the heap insert operations contribute a total of O(klogk) runtime, for a total
of O(n+ k + klogk) = O(n) runtime, since k is a constant.
Converting biggest into biggestSorted takes k + 1 calls to heap remove, each of which take no more than
O(log(k+1)) runtime. Therefore, the total runtime of converting biggest into biggestSorted is upper bounded
by O((k + 1)log(k + 1)) = O(klogk).
In the second for loop, each of the operations are just UnionFind operations with O(1) runtime. Therefore,
over the k + 1 iterations of this for loop, the total runtime is upper bounded by O(k + 1) = O(k).
Adding all of these values together, we can see that the total runtime of the function is bounded by
O(n+ n+ n+ klogk + k) = O(3n+ klogk + k) = O(n), as required.

Note: Since the MST must have n − 1 edges, the cheapest possible MST on a near tree graph would
include each of its n− 1 cheapest edges. Therefore, if any of these n− 1 cheapest edges connects two other-
wise disconnected components, it should be in the MST. For the k + 1 most expensive edges, these should
only be in the MST if they connect two components that are only otherwise connected by more expensive
edges. Our algorithm adds all of the n − 1 cheapest edges that connect disconnected components to the
solution first then adds the k + 1 most expensive edges in ascending order of cost, so the solution it returns
is a proper minimum spanning tree.
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3

[14 points] A new startup FastRoute wants to route information along a path in a communication network,
represented as a graph. Each vertex and each edge represent a router and a wire between routes respectively.
The wires are weighted by the maximum bandwidth they can suport. FastRoute comes to you and asks you
to develop an algorithm to find the path with maximum bandwidth from any source s to any destination t.
As you would expect, the bandwidth of a path is the minimum of the bandwidths of the edges on that path;
the minimum edge is the bottleneck. Explain how to modify Dijkstra’s algorithm to do this.

Solution. We need to make two essential changes to Dijkstra’s algorithm to find the path with the maximum
bandwidth from any source s to any source t.
First, note that Dijkstra’s tries to minimize path cost, while the algorithm we want needs to maximize the
bandwidth of a path. In Dijkstra’s we want to find a node v ̸∈ S and an edge (u, v) (u ∈ S) such that the
total cost from s to u added to the cost of edge (u, v) is minimized. In our algorithm, we want to find a node
v ̸∈ S and an edge (u, v) (u ∈ S) such that the minimum of the bandwith of the path from s to u and the
bandwith of the edge (u, v) is maximized.

Second, note that in Dijkstra’s, the distance array holds the sum of the cost of each edge along the cheapest
path from the start node s to some node v ∈ V , while our algorithm’s distance array holds the minimum of
the edge costs along the path with the maximal minimum edge cost from s to a node v ∈ V . Thus, instead
of updating the distance of a new v ∈ S by distance[v] = distance[u] + c(u, v), we now must update the
distance of a new v ∈ S by distance[v] = min(distance[u], c(u, v)). This ensures our distance array properly
stores the minimum cost (bandwidth) of the edges in a path from s to a node v ∈ V instead of the sum of
the costs of the edges in that path.

Applying these changes to the Dijkstra’s pseudocode found in the textbook, we can write our new algo-
rithm:
Note: For all edges, b(u, v) refers to the bandwidth of that edge. For all nodes, bandwidth[v] refers to the
highest bandwidth path from s to v.

maxBandwidth(E,V, s, t)
Let S = the set of explored nodes
Let bandwidth = the array storing the bandwidth of the path with
maximum bandwidth from s to each node in S
Initialize S = {s}, bandwidth(s) = ∞, s.predecessor = null
while (S! = V )

select the node v ̸∈ S and the edge (u, v) (u ∈ S) such that
temp = min(bandwidth[u], b(u, v)) is maximized.
Let v.predecessor = u
add v to S
let bandwidth(v) = temp
if(v == t)

break
endIf

endWhile
Let temp = t
Let maxBandwidthPath = null
while(temp! = null)

add temp to maxBandwidthPath
Let temp = temp.predecessor
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endWhile
return maxBandwidthPath

endMaxBandwidth

As you can see, the two main differences between maxBandwidth() and Dijkstra’s algorithm are the way the
node v ̸∈ S and edge (u, v) (u ∈ S) are chosen and the way that the distance array is updated.

4.

Given a connected graph G = (V,E) with positive edge weights. In V , s and t are two nodes for shortest
path computation, prove or disprove with explanation.
(a) If all edge weights are unique, then there is a single shortest path between any two nodes in V .
(b) If each edge’s weigth is increased by k, then the shortest path cost between s and t will increase by a
multiple of k.
(c) If the weight of some edge e decreases by k, then the shortest path cost between s and t will decrease by
at most k.
(d) If each edge’s weight is replaced by its square, i.e., w to w2. then the shortest path between s and t will
be the same as before but with different costs.

Solution.
(a) False. Consider the graph G = (V,E), where V = {s, t, v}, and E = {(s, v, 1), (v, t, 2), (s, t, 3)}. Then
all edge weights are unique, as required.
However, the path p = (s, v, 1), (v, t, 2) has the total cost c(p) = 1+ 2 = 3. The only other simple path from
s to t is p′ = (s, t, 3), which also has the total cost c(p′) = 3. Thus, in this example, there are two distinct
shortest paths from s to t, each with cost 3. This counterexample disproves the claim from part (a).

(b) False. Consider the graphG = (V,E), where V = {s, t, v1, v2}, and E = {(s, v1, 1), (v1, v2, 2), (v2, t, 3), (s, t, 7)}.
Then the shortest path cost from s to t is p = (s, v1, 1), (v1, v2, 2), (v2, t, 3), which has a total cost of
c(p) = 1+ 2+ 3 = 6 (this is less than the cost of the only other simple path from s to t (s, t, 7), which has a
total cost of 7).
Now, add k = 5 to the cost of each edge e ∈ E. Our new graph isG′ = (V,E′), where E′ = {(s, v1, 6), (v1, v2, 7), (v2, t, 8), (s, t, 12).
Let’s count the total cost of the two simple paths from s to t in our new graph G′. We have p1 =
(s, v1, 6), (v1, v2, 7), (v2, t, 8), which has a total cost of c(p1) = 6 + 7 + 8 = 21. We also have p2 = (s, t, 12),
which has a total cost of c(p2) = 12. Thus, the shortest cost path in G′ has a cost of 12.
However, 12−6 = 6, and 6 is not a multiple of k = 5. Therefore, after adding k = 5 to each of the edges, the
shortest cost path did not increase by a multiple of k = 5. This counterexample disproves the claim from
part (b).

(c) True.
Proof. Consider a graph G = (V,E) whose shortest path from s to t is p, where c(p) = x.
Now, decrease the weight of some arbitrary e ∈ E by k to produce a new graph G′ = (V,E′). Let p′ = the
shortest path from s to t in G′, where c(p′) = y.
We need to show that x− y ≤ k.
Case 1: p does not include edge e. Since p is the shortest cost path from s to t in G, we know that any
path p∗ from s to t that includes edge e must have cost c(p∗) ≥ x. All of these paths p∗ decrease in cost by
exactly k after e is reduced in weight by k. Therefore, after the weight of e is reduced, the cost of all paths
p∗ in G′ is c(p∗)− k. Since c(p∗) ≥ x, we know

x− (c(p∗)− k) = x− c(p∗) + k ≤ k

If p′ includes e, then c(p′) = y = c(p∗)− k for some p∗. Thus, if p′ includes e, we know x− y ≤ k. If p′ does
not include e, then the cost of p′ is the same in G and G′. Since the cost of all paths in G is ≥ x by the
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definition of x = c(p), we know that y = c(p′) ≥ x, which implies that x− y ≤ 0 ≤ k.
Thus, if p does not include edge e, we know that x− y ≤ k.

Case 2: p does include edge e.
The cost of p after reducing edge e’s weight by k is x − k. The cost of all other paths from s to t in G
are ≥ x by the definition of x = c(p). The costs of all paths from s to t that do not include e will remain
constant after the weight of e is reduced, so the costs of all these paths will still be ≥ x ≥ x− k. The costs
of all paths from s to t that do include e will decrease by exactly k, so the costs of all these paths will still
be ≥ x − k since they were ≥ x before being reduced by k. Therefore, the costs of all paths from s to t
after reducing e’s weight by k will still be ≥ x− k. Thus, the cost of the shortest path from s to t in G′ is
c(p′) = y ≥ x− k, which directly implies that

x− y ≤ x− (x− k) = k

Thus, if p does include edge e, we know that x− y ≤ k.
Thus, regardless of whether p includes or doesn’t include e, we know that x − y ≥ k for all k ∈ N. This
completes the proof that reducing one edge weight by k can reduce the shortest path from s to t by at most k.

(d) False. Consider the graphG = (V,E), where V = {s, t, v1, v2}, and E = {(s, v1, 1), (v1, v2, 2), (v2, t, 3), (s, t, 5)}.
The only two simple paths from s to t are p1 = (s, v1, 1), (v1, v2, 2), (v2, t, 3), which has a total cost of
c(p1) = 1 + 2 + 3 = 6, and p2 = (s, t, 5), which has a total cost of c(p2) = 5. Thus, the shortest cost path
from s to t just goes through the edge (s, t, 5).
Now, consider the graph G′ = (V,E′), where E′ = (s, v1, 1), (v1, v2, 4), (v2, t, 9), (s, t, 25)}. Then all edge
weights have been squared, as required.
However, the two simple paths from s to t in G′ are p3 = (s, v1, 1), (v1, v2, 4), (v2, t, 9) with a total cost of
c(p3) = 1 + 4 + 9 = 14 and p4 = (s, t, 25), which has a total cost of c(p4) = 25. Thus, the shortest cost path
from s to t in G′ goes through edges (s, v1, 1), (v1, v2, 4), and (v2, t, 9).
Therefore, after squaring each of the edge weights, the shortest path from s to t went through different edges
than before squaring the edge weights. This counterexample disproves the claim from part (d).

5.

Consider a directed, weighted graph G where all edge weights are positive. You have one Star, which allows
you to change the weight of any one edge to zero. In other words, you may change the weight of any one
edge to zero. Propose an efficient method based on Dijkstra′s algorithm to find a lowest-cost path from
node s to node t, given that you may set one edge weight to zero.

Solution. Since all the edge weights are positive, we know that the lowest-cost path from s to t will in-
evitably decrease in weight if one of its edges is set to 0. Since setting an edge to 0 is the only way we can
modify the graph, we know that the lowest-cost path from s to t, given that one edge weight may be set to
zero, must include the edge that is set to 0. Therefore if we can find the lowest-cost path from s to t that
goes through edge e when just e has weight 0, for all e ∈ E, the minimum cost path of all of these will be
the solution. Therefore, we could solve the problem with brute-force via m = |E| calls to Dijkstra’s. For
each edge, we would set that edge’s weight to 0, run Dijkstra’s, store the value of distance(t), then set the
edge back to its initial weight. We could then compare the m values of distance(t) in linear time to find the
maximum of these values, which would have the lowest-cost of any path from s to t, given that we can set
one edge weight to 0. However, Dijkstra’s runs in O(mlogn), so calling it m times would result in O(m2logn)
runtime, which is not very efficient. We want to calculate the lowest-cost path from s to t through an edge
e when just e has weight 0 for all edges e in a constant number of calls to Dijkstra’s.
Note: If edge e = (u, v) has weight 0, then the the cost of the lowest-cost path from s to t through e equals
the cost of the lowest-cost path from s to u plus the cost of the lowest-cost path from v to t. Therefore, we
just need to find the cost of the lowest-cost path from s to v and from v to t for all v ∈ V .

Page 504



A simple run of Dijkstra’s with starting node s will produce an array storing the cost of the lowest-cost path
from s to v for all v ∈ V . If we were to flip the direction of all edges e ∈ E, then run Dijkstra’s with t as the
starting node, we will get an array storing the cost of the lowest-cost path from v to t for all v ∈ V . Thus,
we only need to run Dijkstra’s twice, keeping track of both cost arrays, and we will have all the information
we need to determine which edge in e is set to 0 in the lowest-cost path from s to t. Once we have done this,
we can set the weight of e to 0, then run Dijkstra’s again on the initial graph with s as the starting node.
Based on this third run of Dijkstra’s, we can then trace predecessors from t to s to obtain the lowest-cost
path from s to t, given that one edge weight can be set to 0. Since we only require 3 calls to Dijkstra’s
regardles of m, this should be much more efficient than the brute-force method.
We can implement the described method as follows:

modifiedDijkstras(s, t, G)
let G′ = a copy of graph G
run Dijkstra’s on G with starting node s
store path costs in an array called cost1
Flip the direction of each edge in G′

run Dijkstra’s on G′ with t as the starting node
store path costs in an array called cost2
let min = ∞
let minEdge = null
for each edge (u, v) ∈ E

if(cost1(u) + cost2(v) < min)
let min = cost1(u) + cost2(v)
let minEdge = (u, v)

endIf
endFor
In initial graph, set c(minEdge) = 0
Run Dijkstra’s again on modified initial graph with start node s
store predecessors of nodes in array called predecessor
let temp = t
let path = null
while(predecessor(temp)! = null)

add temp to path
let temp = predecessor(temp)

endWhile
return path

endModifiedDijkstras

Time Complexity Analysis:
Making a copy of the graph takes O(m+ n) time.
Running Dijkstra’s the first time takes O(mlogn) time.
Flipping the edge directions in G′ takes O(m) time.
Running Dijkstra’s the second time takes O(mlogn) time.
Each iteration inside for loop takes constant time, and there are m iterations, so the for loop takes a total
of O(m) time.
Running Dijkstra’s the third time takes O(mlogn) time.
The while loop can maximally loop through every edge in the graph, and each iteration takes constant time,
so the whole while loop takes O(m) time.

Thus, the total runtime of the algorithm is O((m + n) + mlogn + m + mlogn + m + mlogn + m) =
O(n + 4m + 3mlogn) = O(mlogn) runtime. This is the same as the asymptotic complexity of Dijkstra’s
itself, which speaks to the efficiency of this solution.
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Assignment 5

1.

[20 points] For the following recurrence equations, solve for T (n) if it can be found using the master method
(make sure to show which case applies and why). Else, indicate that the master method is not applicable
and explain why.

(a) T (n) = 8T (n/2) + nlogn− 2023n

(b) T (n) = 2T (n/2) + n3(logn)3

(c) T (n) = 4T (n/2) + n2(logn)2

(d) T (n) = 3T (n/3)− nlogn

Solution.

(a) We have

T (n) = 8T (n/2) + nlogn− 2023n = aT (n/b) + f(n) =⇒ a = 8, b = 2, f(n) = nlogn− 2023n

Therefore, we can easily see that
nlogba = nlog28 = n3

Also, since nlogn > 2023n for all n > 22023, we know that

f(n) = nlogn− 2023n = Θ(nlogn)

Since nlogn ≤ n2 for all n > 2, we know that with ε = 1, we have

f(n) = Θ(nlogn) = O(nlogba−ε) = O(n3−1) = O(n2)

Therefore, applying Case 1 of the Master Theorem, we find that

T (n) = Θ(nlogba) = Θ(n3)

Thus, the overall asymptotic complexity of T (n) is

T (n) = 8T (n/2) + nlogn− 2023n = Θ(n3)

(b) We have

T (n) = 2T (n/2) + n3(logn)3 = aT (n/b) + f(n) =⇒ a = 2, b = 2, f(n) = n3log3n

We can easily compute that
nlogba = nlog22 = n1 = n

Also, since n3log3n > n2 for all n > 2, we know that with ε = 1, we have

f(n) = n3log3n = Θ(n3log3n) = Ω(n2) = Ω(nlog22+1) = Ω(nlogba+ε)

Applying Case 3 of the Master Theorem, we find that

T (n) = Θ(f(n)) = Θ(n3log3n)

Thus, the overall asymptotic complexity of T (n) is

T (n) = 2T (n/2) + n3(logn)3 = Θ(n3log3n)

Page 506



(c) We have

T (n) = 4T (n/2) + n2(logn)2 = aT (n/b) + f(n) =⇒ a = 4, b = 2, f(n) = n2log2n

We can easily compute that
nlogba = nlog24 = n2

Comparing this with the asymptotic complexity of f(n), we find that with k = 2, we have

f(n) = n2log2n = Θ(n2log2n) = Θ(nlog24log2n) = Θ(nlogbalogkn)

Applying the special case of Case 2 of the Master Theorem, we find that

T (n) = Θ(nlogbalogk+1n) = Θ(n2log3n)

Therefore, the overall asymptotic complexity of T (n) is

T (n) = 4T (n/2) + n2(logn)2 = Θ(n2log3n)

(d) We have

T (n) = 3T (n/3)− nlogn = aT (n/b) + f(n) =⇒ a = 3, b = 3, f(n) = −nlogn

Note: We can interpret f(n) as f(n) = C(n)+D(n), where D(n) is the time needed to divide a problem
into subproblems and C(n) is the time needed to combine the results from those subrproblems into a
final solution. Therefore, f(n) should always be positive asymptotically, as there is no way to complete
the divide and combine steps in negative time. However, f(n) = −nlogn < 0 for all n > 2, so f(n) does
not apply to the situation described by the Master Theorem.
Thus, we cannot apply the Master Theorem for

T (n) = 3T (n/3)− nlogn

because f(n) is asymptotically negative, so T (n) does not satisfy the conditions of the Master Theorem.

2.

[10 points] Consider the divide and conquer solution described in class to find the closest pair of points in
a 2D plane. Assume that we did not have a driver routine to sort the points. So our recursive function did
not receive the points in sorted orders of their X and Y coordinates and the sorting had to be done for each
subproblem (at every level). What would be the worst-case complexity of this algorithm assuming that the
rest of the algorithm remains the same?

Solution.
It is easiest to consider how the recurrence relation changes from the original recurrence relation when we
force the recursive function to sort the X and Y coordinates for every subproblem at every level.
For clarity:
Let L = the line dividing the plane.
Let A = the section of the plane containing the leftmost half of the points.
Let B = the section of the plane containing the rightmost half of the points.
In the original solution, for n total points, we divide the the plane into two parts, A and B, which each have
approximately n

2 points. Since the points are already sorted by x and y coordinates, we can do this in linear
O(n) time by selecting the ⌈n2 ⌉ points with the lowest x coordinates for one part, leaving the remaining
points for the other part. After our recursion returns the closest pair of points in A and the closest pair of
points in B, we take the minimum-distance pair. If we let the distance of that pair be x, we just have to
do constant work for each of the points within x from the dividing line L to determine if any pairs crossing

Page 507



L are closer together than x. If we let c be a constant, this leaves us with cn = O(n) work to combine the
recursive solutions and find the closest pair of points in the entire plane. This leaves us with a recurrence
relation of

T (n) = aT (n/b) +D(n) + C(n) = 2T (n/2) +O(n) +O(n)

When we force the recursive function to sort the X and Y coordinates for every subproblem at every level, we
still need to split the plane into two parts, A and B, each of which have approximately n

2 points. However,
since the points are not sorted, determining which points to put in A and B cannot be done in linear time.
Instead, we must first sort the list of points by X and Y coordinates, which takes a total of Θ(nlogn) time.
After sorting the coordinates, we can find the leftmost half of the points in linear O(n) time just line in the
original solution. Therefore, the total runtime of the divide step when forcing the recursive function to sort
the points by coordinates is D(n) = Θ(nlogn). Since we now have lists of the points sorted by X and Y
coordinates, when our recursion returns the closest pairs of points in A and B, we can still determine the
closest pair of points in the whole plane in O(n) time. Therefore, the recurrence relation when we force the
recursive function to sort the points for every subproblem at every level is

T (n) = aT (n/b) +D(n) + C(n) = 2T (n/2) + Θ(nlogn) +O(n)

To analyze the worst-case complexity of this recurrence relation, we apply the Master Theorem. We have

T (n) = 2T (n/2)+Θ(nlogn)+O(n) = aT (n/b)+f(n) =⇒ a = 2, b = 2, f(n) = Θ(nlogn)+O(n) = Θ(nlogn)

We can easily compute that
nlogba = nlog22 = n1 = n

Comparing this with the complexity of f(n), we find that, with k = 1, we have

f(n) = Θ(nlogn) = Θ(nlog22log1n) = Θ(nlogbalogkn)

Applying the special case of Case 2 of the Master Theorem, we find that

T (n) = Θ(nlogbalogk+1n) = Θ(nlog2n)

Therefore, the worst-case complexity when we force the recursive function to sort the X and Y coordinates
for each subproblem at every level is Θ(nlog2n).

3.

[10 points] Solve Kleinberg and Tardos, Chapter 5, Exercise 3.
Suppose you’re consulting for a bank that’s concerned about fraud detection, and they come to you with
the following problem. They have a collection of n bank cards that they’ve confiscated, suspecting them
of being used in fraud. Each bank card is a small plastic object, containing a magnetic stripe with some
encrypted data, and it corresponds to a unique account in the bank. Each account can have many bank
cards corresponding to it, and we’ll say that two bank cards are equivalent if they correspond to the same
account.
It’s very difficult to read the account number off a bank card directly, but the bank has a high-tech “equiva-
lence tester” that takes two bank cards and, after performing some computations, determines whether they
are equivalent.
Their question is the following: among the collection of n cards, is there a set of more than n/2 of them
that are all equivalent to one another? Assume that the only feasible operations you can do with the cards
are to pick two of them and plug them in to the equivalence tester. Show how to decide the answer to their
question with only O(nlogn) invocations of the equivalence tester.

Solution.
Our solution relies on the following observation.
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Observation 1: If more than n/2 of the cards are equivalent to one another, then when we split the n
cards into two equal groups of size n/2, at least one of them will have more than n/4 cards that are equiva-
lent to one another.

This observation has strong implications for the structure of our recursive Divide and Conquer approach, as
determining if there are more than n/4 cards equivalent to one another in a group of size n/2 is the exact
same as determining if more than n/2 of the cards in the group of size n are equivalent to one another.
This implies we should split our n cards into two groups of size n/2 for recursion. For each group, we can
use recursion to determine if more than n/4 cards are equivalent to one another. If so, we can return one
of those cards. If not, we can return null. If both groups return equivalent cards, then we know we have
> n/4 + n/4 = n/2 cards which are equivalent to one another. If both groups return null, then we know
there is no way for more than n/2 of the cards to be equivalent to one another by Observation 1. If the
groups return cards which are not equivalent, then we can check the equivalency of each of the n cards with
each of the returned cards to generate two separate counts. If either of these counts is > n/2, we can return
the card associated with that count. Otherwise, we can return null to indicate that there are not more than
n/2 cards which are equivalent to one another.

Observation 2. If there is a group of only n = 1 card, then that card itself is trivially more than n/2
cards equivalent to one another.

This implies that the base case of our recursion should trigger when the input list has size n = 1, at
which point it should return the one bank card in the list.

After we have written the recursive function, to answer the bank’s question can simply call our recursive
function once on the full list of bank cards. If the return value is not null, we can return true. Otherwise,
we return false.

We can implement the algorithm described above as follows, assuming that the “equivalence tester” can
be called with equiv(bankcard b1, bankcard b2):

majorityEquivalent(list bankcards)
if( majorityCard(bankcards) != null) return true
return false

endMajorityEquivalent

majorityCard(list bankcards)
let n = bankcards.size()
if (n == 1) return bankcards[1]
Let first = bankcards[1, ⌈n2 ⌉]
Let last = bankcards[⌈n2 ⌉+ 1, n]
Let majorityFirst = majorityEquivalent(first)
Let majorityLast = majorityEquivalent(last)
if (majorityFirst == majorityLast) return majorityFirst
Let count = 0
for i: 1 → n

if (equiv(majorityFirst, bankcards[i]) == true)
increment count by 1

endIf
endFor
if (count > n/2) return majorityFirst
Let count = 0
for i: 1 → n
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if (equiv(majorityLast, bankcards[i]) == true)
increment count by 1

endIf
endFor
if (count > n/2) return majorityLast
return null

endMajorityCard

Time Complexity Analysis:
We need to show that our algorithm does O(nlogn) invocations to the “equivalence tester.” To do so, we
can show that our algorithm as a whole takes Θ(nlogn) time (assuming O(1) runtime for the “equivalence
tester”), as this means that the individual lines calling the “equivalence tester” will never execute more than
cnlogn times for some constant c and all n ≥ n0 > 0. To analyze the runtime of our algorithm under the
above assumption, we can apply the Master Theorem.

We need to express our algorithm as a recurrence relation of the form

T (n) = aT (n/b) +D(n) + C(n) = aT (n/b) + f(n) (1)

We split our initial list of n bankcards into two lists of n/2 bankcards, so we have a = 2 = b. To do so,
we only need to calculate the ceiling of n/2, which can be done in constant time. Therefore, the asymptotic
complexity of the divide step is

D(n) = Θ(1)

When we combine the results from our two recursive calls, we use two for loops that each take exactly n
iterations. Assuming the calls to the “equivalence tester” take Θ(1) time, each iteration of each for loop
should only take Θ(1) time, so each foor lop should have a total of Θ(n) runtime. Therefore, the asymptotic
complexity of the combine step is

C(n) = Θ(n) + Θ(n) = Θ(2n) = Θ(n)

Plugging these results into (1), we find that

T (n) = aT (n/b) +D(n) + C(n) = 2T (n/2) + Θ(1) + Θ(n) =⇒ f(n) = Θ(1) + Θ(n) = Θ(n)

We can easily compute that
nlogba = nlog22 = n1 = n

Comparing this with the asymptotic complexity of f(n), we find

f(n) = Θ(n) = Θ(nlog22) = Θ(nlogba)

Applying Case 2 of the Master Theorem, we find that

T (n) = 2T (n/2) + Θ(1) + Θ(n) = Θ(nlogbalogn) = Θ(nlogn)

Therefore, our algorithm must have O(nlogn) invocations of the “equivalence tester,” as required.

4.

[10 points] You are given with two integers a and b, and a variation of Fibonacci series, with f(0) = a and
f(1) = b. Recall that the Fibonacci sequence is f(n) = f(n− 1) + f(n− 2). Devise an efficient algorithm to
find the n’th Fibonacci number with O(log n) time complexity and prove its time complexity using recurrence
relation. (Hint: You can represent the calculation of Fibonacci series using matrix multiplication as follows[

1 1
1 0

]
·
[
f(n− 1)
f(n− 2)

]
=

[
f(n− 1) + f(n− 2)

f(n− 1)

]
=

[
f(n)

f(n− 1)

]
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You can repetitively multiply the resultant matrix with

[
1 1
1 0

]
to get subsequent Fibonacci numbers.)

Solution.
Claim: The hint directly implies that [

1 1
1 0

]n−1

·
[
b
a

]
=

[
f(n)

f(n− 1)

]
for all n ≥ 2.

Proof. We apply mathematical induction on n.
Base Case: n = 2, we are given that f(0) = a and f(1) = b, so plugging in n = 2 to the hint equation
directly yields [

1 1
1 0

]
·
[
b = f(1) = f(n− 1)
a = f(0) = f(n− 2)

]
=

[
a+ b = f(2) = f(n)
b = f(1) = f(n− 1)

]
so the claim holds for the base case of n = 2.
Inductive Hypothesis: Assume that [

1 1
1 0

]n−1

·
[
b
a

]
=

[
f(n)

f(n− 1)

]
for all 2 ≤ n ≤ k.
Inductive Step: Consider n = k + 1. We want to show that[

1 1
1 0

]k
·
[
b
a

]
=

[
f(k + 1)
f(k)

]
From the inductive hypothesis, we know that[

1 1
1 0

]k−1

·
[
b
a

]
=

[
f(k)

f(k − 1)

]

Premultiplying both sides by

[
1 1
1 0

]
yields

[
1 1
1 0

]
·
[
1 1
1 0

]k−1

·
[
b
a

]
=

[
1 1
1 0

]k
·
[
b
a

]
=

[
1 1
1 0

]
·
[

f(k)
f(k − 1)

]
=

[
f(k) + f(k − 1)

f(k)

]
=

[
f(k + 1)
f(k)

]
which completes the inductive step. The conclusion that the claim holds for all n ≥ 2 follows by induction.

We can use this property to calculate f(n) in O(logn) time. Since we can multiply two 2 by 2 matrices to-

gether in O(1) time, we only need to compute

[
1 1
1 0

]n−1

in O(logn) time, which we can do using recursion.

We want to write a recursive function that calculates

[
1 1
1 0

]n−1

, so we should think about the various cases

our function might have to deal with.

If p = n− 1 ≤ 2, we can directly compute

[
1 1
1 0

]n−1

in O(1) through matrix multiplication.

Otherwise, if p = n − 1 is even, then

[
1 1
1 0

]n−1

=
([1 1

1 0

]n−1
2 )2

, so we can compute

[
1 1
1 0

]n−1

in O(1)

time if we first compute

[
1 1
1 0

]n−1
2

. To do so, we could use recursion with p = n−1
2 as the power of

[
1 1
1 0

]
.
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If p = n− 1 is odd, then

[
1 1
1 0

]n−1

=

[
1 1
1 0

]
·
([1 1

1 0

]n−2
2 )2

, so we can compute

[
1 1
1 0

]n−1

in O(1) time

if we first compute

[
1 1
1 0

]n−2
2

. To do so, we could use recursion with p = n−2
2 as the power of

[
1 1
1 0

]
.

Therefore, on each recursive call, p decreases to at most p
2 . Since we only recurse until p ≤ 2, and dividing p

by 2 logn times is guaranteed to result in p = 1, we know that we recurse at most O(logn) times. Further-
more, the computation done at each level of recursion is O(1), so the overall complexity of the algorithm
should be O(logn).

We could implement the algorithm described above as follows:

realFib(int n, int a, int b)
if (n == 0) return a
if (n == 1) return b

Let arr =

[
1 1
1 0

]
Let arr = power(n− 1, arr)
return b · arr[0][0] + a · arr[0][1]

endRealFib

power(int p, int[][] arr)
if (p == 0||p == 1) return arr
if(p%2 == 0)

Let arr = power(p/2, arr)
Let temp = arr
Let arr[0][0] = temp[0][0] ∗ temp[0][0] + temp[0][1] ∗ temp[1][0]
Let arr[0][1] = temp[0][0] ∗ temp[0][1] + temp[0][1] ∗ temp[1][1]
Let arr[1][0] = temp[1][0] ∗ temp[0][0] + temp[1][1] ∗ temp[1][0]
Let arr[1][1] = temp[1][0] ∗ temp[0][1] + temp[1][1] ∗ temp[1][1]

endIf
else

Let arr = power((p− 1)/2, arr)
Let temp = arr
Let arr[0][0] = temp[0][0] ∗ temp[0][0] + temp[0][1] ∗ temp[1][0]
Let arr[0][1] = temp[0][0] ∗ temp[0][1] + temp[0][1] ∗ temp[1][1]
Let arr[1][0] = temp[1][0] ∗ temp[0][0] + temp[1][1] ∗ temp[1][0]
Let arr[1][1] = temp[1][0] ∗ temp[0][1] + temp[1][1] ∗ temp[1][1]
Let temp = arr
Let arr[0][0] = temp[0][0] + temp[0][1]
Let arr[0][1] = temp[0][0]
Let arr[1][0] = temp[1][0] + temp[1][1]
Let arr[1][1] = temp[1][0]

endElse
return arr

endPower

Time Complexity Analysis:
We can use the Master Theorem. First, we need to set up a recurrence relation of the form

T (n) = aT (n/b) +D(n) + C(n) = aT (n/b) + f(n)

to describe the runtime of our Divide & Conquer algorithm. Let A =

[
1 1
1 0

]
. Then at each level of recursion,
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our power() function calculates An by performing one computation of An/2. Therefore, we are dividing our
problem into 1 subproblem of size n/2, so a = 1 and b = 2. Determining the size of our one subproblem only
requires determining if n is even or odd, which takes Θ(1) time. Therefore, the complexity of the divide step
is D(n) = Θ(1). Once we obtain the solution to our one subproblem through recursion, we can compute the
final result in constant time. Therefore, the complexity of the combine step is also C(n) = Θ(1). Combining
these results, we find that the following recurrence relation describes our algorithm:

T (n) = aT (n/b)+D(n)+C(n) = aT (n/b)+ f(n) = T (n/2)+Θ(1)+Θ(1) =⇒ f(n) = Θ(1)+Θ(1) = Θ(1)

We can easily compute that
nlogba = nlog21 = n0 = 1

Comparing this with the asymptotic complexity of f(n), we find

f(n) = Θ(1) = Θ(nlog21) = Θ(nlogba)

Applying Case 2 of the Master Theorem, we find that

T (n) = Θ(nlogbalogn) = Θ(logn)

Therefore, our algorithm has an asymptotic complexity of Θ(logn), so its runtime is indeed upper bounded
by O(logn), as required.

5.

[10 points] You are given a sorted array consisting of k + 1 values. Only one of the values appears once,
and the rest of the k values appear twice. That is, the size of the array is 2k + 1. Design an efficient Divide
and Conquer algorithm for finding which value appears only once. Partial credit (at most 6 points) will be
given for non-Divide and Conquer algorithms. Discuss the runtime for your algorithm.

Solution.
Let n = 2k + 1. Then we can solve the problem in O(n) time by brute force linear search, comparing each
element to its left and right neighbors (since the list is sorted). We want to design a Divide & Conquer
algorithm that is more efficient than brute force, so we need to limit our number of subproblems at each
level of the recursive tree to 1.
To do so, consider what happens if we examine the middle element in the array, a(m). In O(1) time, we can
compare this element to its leftmost neighbor, a(m−1). If the two elements are identical, then we can check
if there are an odd number of elements from a(0) to a(m− 2). If so, we know it is impossible to create pairs
for each of those leftmost m − 1 elements, so the unique element must be among them. Otherwise, there
must be an odd number of elements from a(m+1) to a(n−1), so we know it is impossible to create pairs for
each of those rightmost n−m−1 elements, so the unique element must be among them. If a(m) ̸= a(m−1),
we check if a(m) = a(m + 1). If so, we check if there are an odd number of elements from a(m + 2) to
a(n − 1). If so, we know it is impossible to create pairs for each of those rightmost n −m − 2 elements, so
the unique element must be among them. Otherwise, there must be an odd number of elements from a(0)
to a(m − 1), so it is impossible to create pairs for each of the leftmost m elements, so the unique element
must be among them. If the a(m) ̸= a(m+1) and a(m) ̸= a(m− 1), then a(m) must be the unique element
since the list is sorted. We can continue to recurse on the subset of the array in which we know the unique
element exists until the middle element of that subset is the unique element, which is guaranteed to happen
for all lists structured as explained in the problem description. We can also stop recursing immediately if
the input list has only 1 element, as we know this element must be the unique element.
We could implement the algorithm described above as follows:

findHelp(int[] arr)
return find(arr, 0, arr.size())
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endFindHelp

find(int[] arr, int start, int end)
Let m = (start+ end)/2
if (end− start == 1) return arr[m]
if( m > 0&&m < end− 1)

if (arr[m− 1] == arr[m])
if ((m− 1)%2 == 1)

return find(arr, start, m− 1)
endIf
else

return find(arr, m+ 1, end)
endElse

endIf
else if (arr[m+ 1] == arr[m])

if((m− 1)%2 == 1)
return find(arr, m+ 2, end)

endIf
else

return find(arr, start, m)
endElse

endElseIf
endIf
return arr[m]

endFind

Time Complexity Analysis:
We will apply the Master Theorem to analyze the asymptotic complexity of our algorithm. We first need to
describe our algorithm using a recurrence relation of the form

T (n) = aT (n/b) +D(n) + C(n) = aT (n/b) + f(n)

During each recursive call on a list of size n, we split our problem into one subproblem of size ≈ n
2 . Therefore,

we know that a = 1 and b = 2. Determining which half of the array to keep searching requires calculating the
midpoint of the array and then checking if a(m) is equivalent to a(m+1) or a(m− 1). This can all be done
in constant time, so the overall complexity of the divide step is D(n) = Θ(1). We directly return the result
of our one subproblem, so the combine step also takes constant time, and its complexity is C(n) = Θ(1).
Combining these results, we can describe our algorithm with the recurrence relation

T (n) = aT (n/b)+D(n)+C(n) = aT (n/b)+ f(n) = T (n/2)+Θ(1)+Θ(1) =⇒ f(n) = Θ(1)+Θ(1) = Θ(1)

We can easily compute that
nlogba = nlog21 = n0 = 1

Comparing this with the complexity of f(n), we find that

f(n) = Θ(1) = Θ(nlog21) = Θ(nlogba)

Applying Case 2 of the Master Theorem, we find that

T (n) = T (n/2) + Θ(1) + Θ(1) = Θ(nlogbalogn) = Θ(logn)

Thus, the overall complexity of our algorithm is Θ(logn), so it is indeed asymptotically more efficient than
the O(n) linear brute force search.
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Assignment 6

1.

From the lecture, you know how to use dynamic programming to solve the 0 − 1 knapsack problem where
each item is unique and only one of each kind is available. Now let us consider the knapsack problem where
you have infinitely many items of each kind. Namely, there are n different types of items. All the items of the
same type i have equal size wi and value vi. You are offered with infinitely many items of each type. Design a
dynamic programming algorithm to compute the optimal value you can get from a knapsack with capacityW .

(a) Define (in plain English) subproblems to be solved. (4 pts)

(b) Write a recurrence relation for the subproblems (6 pts)

(c) Make sure you specify

(a) base case and their values (2 pts)

(b) where the final answer can be found (1 pt)

(d) What is the complexity of your solution? (2 pts)

Solution.

(a) We want to find the maximum value you can get from a knapsack with capacity W when considering
infinitely many items of types 1, · · · , n. If W > wn, the maximum value could either include an object
of type n, or it could not include an object of type n. If it includes one, it could include another, but the
capacity of the knapsack decreases from W to W − wn. If it doesn’t include an object of type n, then
the capacity stays at W , but we know we have to fill the knapsack will objects of types 1, ..., n− 1. We
want to maximize the value the knapsack can hold with capacity W and all n item types, so we need
to first compute the maximum values the knapsack can hold with capacity w and k item types for all
0 ≤ w ≤W and all 0 ≤ k ≤ n. These are the subproblems we need to solve.
Let opt(k,w) := the optimal value you can get from a knapsack with capacity w using objects of types
1, ..., k. Then we just need to compute opt(k,w) for all 0 ≤ k ≤ n, 0 ≤ w ≤ W to solve all the
subproblems.

(b) We want to find a recurrence relation for opt(k,w). Consider the collection of items corresponding to
opt(k,w). This collection either includes an object of type k, or it doesn’t.
If the collection includes an object of type k, then we get vk value from that object and opt(k,w − wk)
value from the rest of the collection since our capacity decreases by wk but we can still pick objects from
all k item types. Therefore, if the collection includes an object of type k, we know

opt(k,w) = vk + opt(k,w − wk)

If the collection doesn’t include an object of type k, then our knapsack’s capacity stays at w, but we
only consider picking objects of types 1, ..., k − 1. Thus, if the collection doesn’t include an object of
type k, we know

opt(k,w) = opt(k − 1, w)

Since we don’t know whether the collection includes an object of type k or not, we take the maximum
of these to values to find

opt(k,w) = max(opt(k,max(0, w − wk)) + vk, opt(k − 1, w)) (1)

This is our recurrence relation for the subproblems.
Note: Themax(0, w−wk) appears because opt(k,w) is only defined for nonnegative k and w, but w−wk
could be negative. If we know the optimal collection includes an object of type k, we know w − wk ≥ 0
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since the optimal collection cannot exceed the knapsack’s capacity. However, since we generally do not
know if the collection includes an object of type k, the max(0, w−wk) appears to ensure we aren’t trying
to compute invalid values of opt().

(c) (a) The base cases are when k = 0 or w = 0, or both.
Case 1: k = 0, so we have no item types, so we have no items to place in the knapsack, so we cannot
put any value in the knapsack, so the optimal value of the knapsack is 0. Thus, opt(0, w) = 0 for all
w.
Case 2: w = 0, so we have no capacity in the knapsack, so we cannot put any items in it without
exceeding the capacity, so the optimal value of the knapsack is 0. Thus opt(k, 0) = 0 for all k
(assuming positive object weights).

(b) The final answer is the maximum value you can get from a knapsack with capacity W using items of
types 1, ..., n, which is stored in opt(n,W ). Thus, you can find the final answer by returning/printing
opt(n,W ).

(d) There are (n + 1)(W + 1) = Θ(nW ) unique subproblems which we must solve. We can create a 2-D
(n+ 1) by (W + 1) array to store the values of each opt(k,w) as soon as we compute it. By computing
the smaller values of opt(k,w) first, we can ensure that we can always compute opt(k,w) using (1) in
constant Θ(1) time. We need a total of (n + 1) · (W + 1) = Θ(nW ) iterations to compute each unique
subproblem. Therefore, we have a total of Θ(nW ) constant time iterations in our algorithm, which
results in an overall runtime of Θ(nW ).

2.

Solve Kleinberg and Tardos, Chapter 6, Exercise 12.
Suppose we want to replicate a file over a collection of n servers, labeled S1, S2, ..., Sn. To place a copy

of the file at server Si results in a placement cost of ci, for an integer ci > 0.
Now, if a user requests the file from server Si, and no copy of the file is present at Si, then the servers

Si+1, Si+2, Si+3, ... are searched in order until a copy of the file is finally found, say at server Sj , where j > i.
This results in an access cost of j − i. (Note that the lower-indexed servers Si−1, Si−2, ... are not consulted
in this search.) The access cost is 0 if Si holds a copy of the file. We will require that a copy of the file be
placed at server Sn, so that all such searches will terminate, at the latest, at Sn.

We’d like to place copies of the files at the servers so as to minimize the sum of placement and access
costs. Formally, we say that a configuration is a choice, for each server Si with i = 1, 2, ..., n− 1, of whether
to place a copy of the file at Si or not. (Recall that a copy is always placed at Sn.) The total cost of a
configuration is the sum of all placement costs for servers with a copy of the file, plus the sum of all access
costs associated with all n servers. Give a polynomial-time algorithm to find a configuration of minimum
total cost.

(a) Define (in plain English) subproblems to be solved. (4 pts)

(b) Write a recurrence relation for the subproblems (6 pts)

(c) Make sure you specify

(i) base case and their values (2 pts)

(ii) where the final answer can be found (1 pt)

(d) What is the complexity of your solution? (2 pts)

Solution.

(a) We want to find the the configuration of minimal cost among servers S1, S2, ..., Sn where a copy of the
file must be placed at Sn.
Consider the optimal configuration, O. The closest server to Sn that also has a copy of the file could be
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any server Si for all 0 ≤ i ≤ n− 1, where S0 indicates that Sn is the only server with a copy of the file.
Let Sk be that server. Then the cost of Sk+1, ..., Sn−1 in O is

∑n−1
i=k+1 n − i, and the cost of S1, ..., Sk

in O is the value of the optimal configuration among servers S1, ..., Sk, where a copy of the file must be
placed at Sk. Since k could be any integer from 0 to n − 1, we must compute the value of the optimal
configuration among servers S1, ..., Sk where a copy of the file must be placed at Sk for all 0 ≤ k ≤ n−1.
These are the subproblems we need to solve.
Let opt(i) = the cost of the optimal (minimum cost) configuration among servers S1, ..., Si, where a copy
of the file must be placed at Si.
Then we must compute opt(i) for all 0 ≤ i ≤ n to solve all the subproblems.

(b) We want to find a recurrence relation for opt(i). Consider the optimal configuration corresponding
to opt(i). Let Sk be the server closest to Si in that configuration that has a copy of the file s.t.
k ∈ {0, 1, ..., i− 1}. We have k = 0 when there are no servers with lower indexes than i that have copies
of the file. Then servers S1, ..., Sk contribute opt(k) to opt(i), and servers Sj , k < j < i have access costs

i − j, so they contribute
∑i−1
j=k+1 i − j to opt(i). Since we must place a copy of the file at server i, we

know we Si contributes ci to opt(i), regardless of k. Since k can be any element in {0, 1, ..., i− 1}, and
opt(i) equals the cost of the minimum cost configuration, we know that

opt(i) = ci + min
0≤k≤i−1

(opt(k) +

i−1∑
j=k+1

i− j)

This is a valid recurrence relation for the subproblems, but we can simplify it further.
Note that

i−1∑
j=k+1

i− j = i− (k + 1) + ...+ i− (i− 1) = 1 + ...+ i− k − 1 =

i−k−1∑
j=1

j =
(i− k − 1)(i− k)

2

=
(i− k − 1)(i− k)

2

(i− k − 2)!

(i− k − 2)!
=

(i− k)!

2!(i− k − 2)!
=

(
i− k

2

)
This gives us the simplified equation

opt(i) = ci + min
0≤k≤i−1

(opt(k) +

(
i− k

2

)
) (1)

This is the recurrence relation we will use for our subproblems.

(c) (i) The base case is when i = 0.
i = 0, so we have no servers, so the minimal cost configuration of the servers is 0, so opt(0) = 0.

(ii) The final answer is the minimum cost configuration associated with opt(n). We can use a predeces-
sor array to extract the configuration from the opt(n) computation in linear time. When calculating
opt(i), each time we find k s.t. opt(k) +

(
i−k
2

)
is minimized, we can set P (i) = k, after initializing

all values of P (i) to 0. Then, we can create a config() array of size n to store the configuration,
with all values initialized to 0 except config(n) = 1. Then, we can run through a while loop in
linear time, conditioning on P (n)! ̸= 0. During each iteration, we set config(P (n)) = 1, then set
n = P (n). This will produce a configuration array in which config(i) = 1 ⇐⇒ Si has a copy of
the file and config(i) = 0 otherwise. The final answer can be found in this configuration array.

(d) We must compute n = O(n) unique subproblems to arrive at a final answer. For each subproblem, we
have to loop through O(n) possibilities for k. This gives us O(n)O(n) = O(n2) iterations to find opt(n).
Since we calculate the opt(i) for smaller i first, we can always calculate opt(k) in constant time for each
iteration. Also, if we use memoization and store the value of

(
i−k
2

)
in a 2-D array at each iteration, we

can use Pascal’s Identity to always compute
(
i−k
2

)
in constant time. Therefore, it takes O(n2) constant

time iterations to compute opt(n), for a total of O(n2) runtime. To create the configuration array only
takes one run through a linear for loop with constant time iterations, which is O(n) time. Therefore,
the overall runtime of our algorithm is O(n2) +O(n) = O(n2).
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3.

Given n balloons, indexed from 0 to n − 1. Each balloon is painted with a number on it represented by
array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] ·
nums[i] · nums[right] coins. Here left and right are adjacent indices of i. After bursting the balloon, the
left and right then becomes adjacent. You may assume nums[−1] = nums[n] = 1 and they are not real
therefore you can not burst them. Design a dynamic programming algorithm to find the maximum coins
you can collect by bursting the balloons wisely. Analyze the running time of your algorithm.

(a) Define (in plain English) subproblems to be solved. (4 pts)

(b) Write a recurrence relation for the subproblems (6 pts)

(c) Make sure you specify

(i) base case and their values (2 pts)

(ii) where the final answer can be found (1 pt)

(d) What is the complexity of your solution? (2 pts)

Solution.

(a) We want to find the maximum coins that can be collected by wisely bursting balloons 0 → n− 1. Define
O = the optimal sequence of balloons that maximizes the coins collected. Suppose the last balloon to be
popped in O is balloon k where 0 ≤ k ≤ n− 1. Balloons 0, ..., k − 1 are never adjacent to any balloons
from k + 1, ..., n − 1 when they are burst, and vice versa, so the number of coins O gets for bursting
balloons 0, ..., k − 1 must be the maximum number of coins that can be collected by wisely bursting
balloons 0, ..., k − 1. Similarly, the number of coins O gets for bursting balloons k + 1, ..., n− 1 must be
the maximum number of coins that can be collected by wisely bursting balloons k + 1, ..., n − 1. Since
k can be any value from 0 to n − 1, we need to compute the maximum number of coins that can be
collected by wisely busting balloons i, i+1, ..., j−1, j for all 0 ≤ i, j ≤ n−1. These are the subproblems
we need to solve.
Let opt(i, j) = the maximum number of coins that can be collected by wisely bursting balloons i to j.
Then we need to compute opt(i, j) for all 0 ≤ i, j ≤ n− 1 to solve all of the subproblems.

(b) We want to find a recurrence relation for opt(i, j). Consider any subset of balloons i, ..., j where j ≥ i.
Let k = the index of the last balloon popped in the optimal sequence corresponding to opt(i, j). Since
k is popped last out of i, ..., j, we know it is adjacent to i − 1 and j + 1 when it bursts. Therefore, we
know k contributes exactly nums[i− 1] ·nums[k] ·nums[j+1] coins to opt(i, j). Balloons i, ..., k− 1 are
never adjacent to any balloons from k + 1, ..., j when they are burst, and vice versa, so the number of
coins opt(i, j) gets for bursting balloons i, ..., k − 1 is opt(i, k − 1) and the number of coins opt(i, j) gets
for bursting balloons k+ 1, ..., j is opt(k+ 1, j). Since k can be any value from i to j, and opt(i, j) must
be maximal, we know that

opt(i, j) = min
i≤k≤j

(opt(i, k − 1) + opt(k + 1, j) + nums[i− 1] · nums[k] · nums[j + 1])

for all 0 ≤ i ≤ j ≤ n− 1. This is the recurrence relation we use to solve our subproblems.

(c) (i) Base Case: i > j, so, from balloon i to balloon j, there are no baloons, so there is nothing to burst,
so we cannot make any coins. Thus, for all 0 ≤ j < i ≤ n− 1, opt(i, j) = 0.

(ii) If we use a 2D n by n array to store opt(i, j) for all 0 ≤ i, j ≤ n − 1, then opt[0, n − 1] will store
the maximum coins that can be collected by bursting balloons 0 through n− 1 wisely, which is all
the balloons. Thus, we know that opt[0, n− 1] stores our final answer.
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(d) We need to calculate opt(i, j) for all 0 ≤ i, j ≤ n− 1, so there are n2 distinct subproblems to compute.
Since we store values of opt(i, j) in opt[i][j] as we compute them and our recurrence relation for opt(i, j)
relies on opt(i, k−1) and opt(k+1, j), which have smaller ranges than opt(i, j), we can iterate in increasing
order of j − i. Then, for each opt(i, j), we can calculate the necessary opt(i, k − 1) and opt(k + 1, j) in
Θ(1) time. However, we need to do this for all k s.t. i ≤ k ≤ j, which means we must do O(n) work
for each opt(i, j). Since we must do this for n2 values of opt(i, j), our solution has a total runtime of
O(n2)O(n) = O(n3), which is polynomial as required.

4.

Suppose you have a rod of length N , and you want to cut up the rod and sell the pieces in a way that
maximizes the total amount of money you get. A piece of length i is worth pi dollars. Devise a Dynamic
Programming algorithm to determine the maximum amount of money you can get by cutting the rod
strategically and selling the cut pieces.

(a) Define (in plain English) the subproblems to be solved. (4 pts)

(b) Write a recurrence relation for the subproblems. (6 pts)

(c) Using the recurrence formula in part b, write pseudocode to solve the problem. (5 pts)

(d) Make sure you specify

(i) base cases and their values (2 pts)

(ii) where the final answer can be found (1 pt)

(e) What is the complexity of your solution (2 pts)

Solution. Define Oi = a set of cuts that yields the maximum amount of money for a rod of length i.

(a)
For a rod of length N , we could index the rod from 0 (left end) to N (right end). We want to find the total
money associated with ON , so we should consider the elements of ON . If ON ̸= ∅, the leftmost (lowest index)
element in ON could be anything from 1 to N − 1. If we know this leftmost element is k ∈ {1, · · · , N − 1},
we can consider the rod as being two rods of length k and N − k. Then the total money associated with ON
is the sum of the maximum money you can get by strategically cutting the two rods of length k and N − k.
Since k can range from 1 to N − 1, this means we have the following subproblems to solve:
Find the maximum amount of money you can get by cutting a rod of length k strategically and selling the
cut pieces for all 0 ≤ k ≤ N .
If we let opt(k) := the maximum amount of money you can get by cutting a rod of length k and selling the
cut pieces, then to solve all the subproblems, we just need to find opt(k) for all 0 ≤ k ≤ N .

(b)
For any rod of length k, if Ok = ∅, then opt(k) = pk since there are no cuts in the optimal solution, so the
total money is just the price of a piece of length k. Otherwise, the first (lowest index) cut in the optimal set
of cuts, Ok, could occur anywhere from 1 to k− 1. If it happens at j ∈ {1, · · · , k− 1}, then we can split the
rod into two rods of size j and k − j. At this point, we know that the maximum money from cutting the
rod of length k is

opt(k) = opt(j) + opt(k − j)

This is true for all 1 ≤ j ≤ k − 1, and we want to maximize opt(k), so if Ok ̸= ∅, we can conclude that

opt(k) = max
1≤j≤k−1

(opt(j) + opt(k − j))
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Taking the maximum between this value and the value for when Ok = ∅, we find

opt(k) = max
(
pk, max

1≤j≤k−1
(opt(j) + opt(k − j))

)
for all 1 ≤ k ≤ N , which is the recurrence relation for the subproblems.

(c)
We will provide an iterative solution that fills out opt(), an array of size N + 1, in increasing order of index
to ensure we can calculate each potential opt(j) + opt(k − j) in constant time. For each 1 ≤ i ≤ n, we will
loop through all 1 ≤ j < i to compute max

(
pi,max1≤j≤i−1(opt(j) + opt(i − j))

)
. The algorithm works as

follows:

fillFindOpt(vector<int> prices, int N)
Let opt[] = array of size N + 1
Let opt[0] = 0
if (N == 0)

return opt[N ]
endIf
for i: 1 → n

opt[i] = prices[i-1]
for j: 1 → i− 1

if (opt[j] + opt[i− j] > opt[i])
opt[i] = opt[j] + opt[i− j]

endIf
endFor

endFor
return opt[N ]

endFillFindOpt

(d)

(i) Bases Case: We have two base cases, when n = 0 and when n = 1.
Case 1: n = 0, so our rod has no length, so it is impossible to sell any pieces of our rod, so we cannot
make any money, so

opt(0) = 0

Case 2: n = 1. so our rod has length 1, so the only way we can sell pieces of our rod is by selling the
one piece of length 1 that makes up the entire rod. Pieces of length 1 have a price of p1, so we know

opt(1) = p1

(ii) The solution is the maximum amount of money we can get by cutting the rod of length N strategically
and selling the pieces. Therefore, by definition of opt(k), we know the solution is opt(N), which is
stored as the last element in the opt[] array after running fillFindOpt. Thus, the final answer can be
found at opt[N ] after running fillFindOpt. This is also the value fillFindOpt returns, so we could
find the final solution by looking at the return value of fillFindOpt with the input N .

(e)
It takes Θ(N) time to initialize the opt[] array. It takes Θ(1) time to check if N = 0 and return opt[N ] if so.
Therefore, the algorithm takes Θ(N) + Θ(1) = Θ(N) time before the for loops.
Now, let’s examine what happens at each iteration of the innermost for loop. Since we are filling out opt[]
in increasing order of indices, we can always calculate opt[j] + opt[i − j] in Θ(1) time. Therefore, each
iteration of the innermost for loop takes Θ(1) time. There are maximally N iterations of the innermost
for loop for each of the N iterations of the outermost for loop, for a total of O(N) · N = O(N2) constant
time iterations. Therefore, the for loops take O(N2) total time. Thus, the total runtime of our algorithm is
Θ(N) +O(N2) = O(N2), so our algorithm runs in polynomial time.
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5.

Solve Kleinberg and Tardos, Chapter 6, Exercise 10.
You’re trying to run a large computing job in which you need to simulate a physical system for as many

discrete steps as you can. The lab you’re working in has two large supercomputers (which we’ll call A and
B) which are capable of processing this job. However, you’re not one of the high-priority users of these su-
percomputers, so at any given point in time, you’re only able to use as many spare cycles as these machines
have available.

Here’s the problem you face. Your job can only run on one of the machines in any given minute. Over
each of the next n minutes, you have a “profile” of how much processing power is available on each machine.
In minute i, you would be able to run ai > 0 steps of the simulation if your job is on machine A, and bi > 0
steps of the simulation if your job is on machine B. You also have the ability to move your job from one
machine to the other; but doing this costs you a minute of time in which no processing is done on your job.

So, given a sequence of n minutes, a plan is specified by a choice of A, B, or “move” for each minute,
with the property that choices A and B cannot appear in consecutive minutes. For example, if your job is
on machine A in minute i, and you want to switch to machine B, then your choice for minute i+ 1 must be
move, and then your choice for minute i+ 2 can be B. The value of a plan is the total number of steps that
you manage to execute over the n minutes: so it’s the sum of ai over all minutes in which the job is on A,
plus the sum of bi over all minutes in which the job is on B.

The problem. Given values a1, a2, ..., an and b1, b2, ..., bn, find a plan of maximum value. (Such a strategy
will be called optimal.) Note that your plan can start with either of the machines A or B in minute 1.

(a) part (a) of the question (4pts)
Show that the following algorithm does not correctly solve this problem, by giving an instance on which
it does not return the correct answer

(b) part (b) of the question (answer according to the format below)

(i) Define (in plain English) subproblems to be solved. (4 pts)

(ii) Write a recurrence relation for the subproblems (6 pts)

(iii) Using the recurrence formula in part (ii), write pseudocode to solve the problem. (5 pts)

(iv) Make sure you specify

(i) base cases and their values (2 pts)

(ii) where the final answer can be found (1 pt)

(v) What is the complexity of your solution? (2 pts)

Solution. (a)
We use the following counterexample, with n = 2:

Minute 1 Minute 2
Computer A 10 1
Computer B 1 500

Let’s walk through the algorithm presented it part (a) to see show that it fails to find an optimal plan.

In minute 1, we choose A because a1 = 10 > 5 = b1.
Set i = 2
2 ≤ n = 2

choice in minute i− 1 = 2− 1 = 1 was A
bi+1 = b3 = undefined ̸> ai + ai+1 = a2 + a3 = 1 + undefined Choose A in minute i = 2

Proceed to iteration i+ 1 = 2 + 1 = 3.
i = 3 ̸≤ n = 2.
Exit while loop.
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Here the presented algorithm chooses computer A for both minute 1 and minute 2. This results in a
total of a1 + a2 = 10 + 1 = 11 steps completed, so this plan, PA, has a value of 11.
However, if we choose computer B for both minute 1 and minute 2, we would complete b1+b2 = 1+500 = 501
steps, so this plan, PB , has a value of 501.
Since 501 > 11, we know that the presented algorithm did not return the plan that maximized the total
value. Therefore, the presented algorithm failed to find an optimal plan.

(b)
We will use the following observations to help us answer this question:
Observation 1: Assuming all given values a1, · · · , an and b1, · · · , bn are positive, the optimal plan for n
minutes will never “move” on the nth minute, as it would always make more sense to stay and gain the
positive value bn or an.
Observation 2: The optimal plan through n minutes could end on either computer A or computer B.
Observation 3: Without loss of generality, if the optimal solution through n minutes ends on computer A,
then it could be on computer A on the n− 1’th minute. If it is not, then it must be on “move” during the
n− 1’th minute and be on computer B during the n− 2’th minute.

(i)
From Observation 1 and Observation 2, we know we need to find the optimal plan that ends on either com-
puter. To do this, we can find the optimal plan that ends on computer A, then compare it to the optimal
plan that ends on computer B.
From Observation 3, we know that in order to compute the optimal plan ending on each computer at minute
n, we first need to compute the optimal plan ending on each computer at minute n − 1 and minute n − 2.
These are the subproblems we need to solve.
Let opt(i) = the value of the optimal plan ending on either computer at minute i.
Let optA(i) = the value of the optimal plan ending on computer A at minute i.
Let optB(i) = the value of the optimal plan ending on computer B at minute i.
Then we need to compute optA(i) and optB(i) for all 1 ≤ i ≤ n to solve all of the subproblems. From here,
we can simply set

opt(i) = max(optA(i), optB(i)) (1)

to find the value of the optimal plan ending on either computer at minute i for all 1 ≤ i ≤ n. This will
complete solving the subproblems.

(ii)
For all 2 ≤ i ≤ n, we know we can can compute opt[i] by first computing optA[i] and optB[i].
Case 1: optA[i]. We know the plan corresponding to optA[i], which we’ll call OA ends on computer A at
minute i. By Observation 3, either OA is on computer A at minute i − 1, or OA is on “move” at minute
i− 1 and on computer B at minute i− 2. Among these two possible plans, OA corresponds to the one with
maximum value. Therefore, we know

optA[i] = max(optA[i− 1] + ai, optB[i− 2] + ai) (2)

Case 2: optB[i]. Similarly, we know the plan corresponding to optB[i], which we’ll call OB ends on computer
B at minute i. By Observation 3, either OB is on computer B at minute i−1, or OB is on “move” at minute
i− 1 and on computer A at minute i− 2. Among these two possible plans, OB corresponds to the one with
maximum value. Therefore, we know

optB[i] = max(optB[i− 1] + bi, optA[i− 2] + bi) (3)

We will use (2) and (3) as our two recurrence relations for the subproblems.

(iii)
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Using (1), (2) and (3), our algorithm becomes a simple for loop with constant time iterations.
We initialize optA[0] = optB[0] = 0 because the value of any plan that lasts 0 minutes has to be 0.
We initialize optA[1] = a1, optB[1] = b1 because there is only one option for a one minute plan that ends on
computer A and there is only one option for a one minute plan that ends on computer B.
We initialize opt[1] = max(optA[1], optB[1]) following (1).
Then we just run through all 2 ≤ i ≤ n, setting optA[i], optB[i], and opt[i] following (1), (2) and (3). Our
algorithm works as follows:

findOptimalPlan({a1, ..., an}, {b1, ..., bn})
let optA = new array of size n+ 1
let optB = new array of size n+ 1
let opt = new array of size n+ 1
let optA[0] = optB[0] = opt[0] = 0
let optA[1] = a1, optB[1] = b1, opt[1] = max(optA[1], optB[1])
for i: 2 → n

optA[i] = max(optA[i− 1] + ai, optB[i− 2] + ai)
optB[i] = max(optB[i− 1] + bi, optA[i− 2] + bi)
opt[i] = max(optA[i], optB[i])

endFor
return opt[n]

endFindOptimalPlan

(iv)

(i) Base Cases: n = 1 and n = 0.
Case 1: n = 0, so the plan must take 0 minutes, so there is no way for it to complete any number of
steps, so the plan must have a value of 0. Thus, optA[0] = optB[0] = opt[0] = 0.
Case 2: n = 1, so the plan must take 1 minute, so if it ends on A, its value must just be ai. Otherwise,
its value must just be bi. The optimal plan out of these two options is the one corresponding to the max-
imum of these two values. Therefore, optA[1] = a1, optB[1] = b1, and opt[1] = max(optA[1], optB[1]).

(ii) The final answer is the value of the optimal solution that ends at minute n, which is stored in opt[n].
This is also returned by findOptimalPlan, so the final answer can be found by looking at the return
value of findOptimalPlan.

(v)
It takes Θ(n) time to initialize each of the three size n + 1 arrays, for a total of Θ(n) + Θ(n) + Θ(n) =
Θ(3n) = Θ(n) runtime before the for loop.
Inside the for loop, since we compute the needed optA[i−1], optA[i−2], optB[i−1], optB[i−2] before entering
iteration i, we can complete iteration i in Θ(1) time for all 2 ≤ i ≤ n. There are n − 1 total constant time
iterations, for a total runtime of Θ(n) inside the for loop.
This leaves findOptimalPlan with a total runtime of Θ(n) +Θ(n) = Θ(2n) = Θ(n), so our algorithm runs
in linear time.

Assignment 7

1.

Solve Kleinberg and Tardos, Chapter 6, Exercise 5:
As some of you know well, and others of you may be interested to learn, a number of languages (including

Chinese and Japanese) are written without spaces between the words. Consequently, software that works
with text written in these languages must address the word segmentation problem—inferring likely boundaries
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between consecutive words in the text. If English were written without spaces, the analogous problem would
consist of taking a string like “meetateight” and deciding that the best segmentation is “meet at eight” (and
not “me et at eight,” or “meet ate ight,” or any of a huge number of even less plausible alternatives). How
could we automate this process?

A simple approach that is at least reasonably effective is to find a segmentation that simply maximizes
the cumulative “quality” of its individual constituent words. Thus, suppose you are given a black box that,
for any string of letters x = x1x2...xk, will return a number quality(x). This number can be either positive or
negative; larger numbers correspond to more plausible English words. (So quality(“me”) would be positive,
while quality(“ght”) would be negative.)

Given a long string of letters y = y1y2...yn, a segmentation of y is a partition of its letters into contiguous
blocks of letters; each block corresponds to a word in the segmentation. The total quality of a segmentation
is determined by adding up the qualities of each of its blocks. (So we’d get the right answer above provided
that quality(“meet”) + quality(“at”) + quality(“eight”) was greater than the total quality of any other
segmentation of the string.)

Give an efficient algorithm that takes a string y and computes a segmentation of maximum total quality.
(You can treat a single call to the black box computing quality(x) as a single computational step.)

(a) Define (in plain English) the subproblems to be solved. (4 pts)

(b) Write a recurrence relation for the subproblems. (6 pts)

(c) Using the recurrence formula in part b, write pseudocode to find the maximum total quality among all
segmentation possibilities. (5 pts)

(d) Make sure you specify

(i) base cases and their values (2 pts)

(ii) where the final answer can be found (1 pt)

(e) What is the complexity of your solution? (2 pts)

Solution.
(a)
Suppose y consists of n letters. Then we want to find the segmentation of maximum total quality among
these n letters. We can define a segmentation based on the indices of the last letters in each segment. For
example, a segmentation {n} would just be the entire string y, and a segmentation {1, 2, ..., n} would be
the string y cut into n 1-letter long segments. In this way, n ∈ every segmentation. If the segmentation of
maximal quality is not {n}, then there exists some k < n s.t. k is the index of last letter of the second to
last segment. The segmentation of maximal quality then becomes
{ segmentation of maximal quality for y1...yk} ∪ {n}
Thus, we can find the segmentation of maximal quality for y1...yn by first computing the segmentation of
maximal quality for y1...yk for all 1 ≤ k < n.
Let OPT (k) be the quality of the segmentation of maximal quality for y1...yk. Then the subproblems we
need to solve are OPT (k) for all 1 ≤ k ≤ n.
(b)
We want to find a recurrence relation for the quality of the segmentation of maximal quality for y1...yk.
This could be the entirety of y1...yk, which has quality(y1...yk) quality.
If it isn’t, then there exists some j < k such that j is the index of the second to last segment in the
segmentation of maximal quality for y1...yk. In this case, the quality of the segmentation of maximal quality
for y1...yk is the sum of the maximal quality for y1...yj and quality(yj+1...yk). Since j could be any number
from 1 → k − 1, or the segmentation of maximal quality could exist of just y1...yk itself, and we know this
segmentation has maximal quality, we know that

OPT (k) = max
(
quality(y1...yk), max

j=1→k−1
(OPT (j) + quality(yj+1...yk))

)
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This is true for all k > 1, so this is the recurrence relation we can use to solve our subproblems.
(c)
Our algorithm will use two for loops, one to loop through the values of k, and one to loop through the values
of j for each value of k. We use 1-based indexing in our pseudo-code, and we use yi to refer to the i’th letter
in the input string, as in parts (a) and (b).

FindMaxQualitySegment(y)
if (y ==“” ) return 0
let OPT be an array of size y.size()
let OPT [1] = quality(y1)
For (k: 2 → y.size())

let OPT [k] = quality(y1...yk)
For (j: 1 → k − 1)

let temp = OPT [j] + quality(yj+1...yk)
if(temp > OPT [k])

let OPT [k] = temp
endIf

endFor
endFor
return OPT [y.size()]

EndFindMaxQualitySegment

(d)

i. The base cases are when k = 0 or k = 1. When k = 0, we have the empty string, which has no quality,
so we return 0, and we have OPT (0) = 0. When we have k = 1, the only segment is the one letter string
itself, so OPT (1) = quality(y1), and we return quality(y1).

ii. The final answer is the quality of the maximal quality segmentation for y1...yn, which is stored in
OPT (n). Thus, the final answer can be found in OPT (n), which is also the return value of our Find-
MaxQualitySegment function.

(e)
It takes Θ(1) time to check if y is the empty string, return 0 if so, and set OPT [1] = y1 if not. It takes
Θ(n) time to create the OPT array. There are O(n) iterations of the outer for loop. For each of these
O(n) iterations, there are O(n) iterations of the inner for loop. Inside each inner iteration, we only add,
compare, and update values in Θ(1) time (since we compute OPT (k) for smaller k first), so each iteration
takes constant time. Therefore, there are O(n) ·O(n) constant time iterations, for a total of O(n2) runtime
for the for loops. Therefore, FindMaxQualitySegment takes a total of Θ(1)+Θ(n)+O(n2) = O(n2) runtime.

2.

[20 points] You are given an integer array a[1], ..., a[n], find the contiguous subarray (containing at least one
number) which has the largest sum and only returns its sum. The optimal subarray is not required to return
or compute. Taking a = [5, 4,−1, 7, 8] as an example: the subarray [5] is considered as a valid subarray with
sum 5, though it only has one single element; the subarray [5, 4,−1, 7, 8] achieves the largest sum 23; on the
other hand, [5, 4, 7, 8] is not a valid subarray as the numbers 4 and 7 are not contiguous.

(a) Define (in plain English) the subproblems to be solved. (4 pts)

(b) Write a recurrence relation for the subproblems. (6 pts)

(c) Using the recurrence formula in part b, write pseudocode to find the subarray (containing at least one
number) which has the largest sum. (5 pts)
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(d) Make sure you specify

(i) base cases and their values (2 pts)

(ii) where the final answer can be found (1 pt)

(e) What is the complexity of your solution? (2 pts)

Solution.
(a)
We want to find the subarray of a with the largest sum, which we’ll call the optimal subarray. Since the
optimal subarray must have at least one number, it must end on an element of a. Suppose the optimal
subarray ends on the k’th element of a, where 1 ≤ k ≤ n. Since the optimal subarray is continuous, it
either equals [a[k]], or it includes a[k − 1]. If it includes a[k − 1], then since the optimal subarray has the
largest sum, it must include the subarray with the largest sum that ends on a[k− 1]. To determine whether
the optimal subarray equals [a[k]] or includes a[k − 1], we must compare the sums of the two corresponding
arrays. Since k could be any value from 1 to n, we need to calculate the sum of the optimal subarray ending
on k for all 1 ≤ k ≤ n. Once we have done so, we can run through the array of these results in linear time,
and we will find the subarray with the largest sum.
Let OPT (k) be the sum of the optimal subarray ending on a[k]. Then we need to find OPT (k) for all
1 ≤ k ≤ n to solve the subproblems.
(b)
We want to find a recurrence relation for OPT (k). If the optimal subarray ending on a[k] is [a[k]], then
OPT (k) = a[k]. Otherwise, we know the optimal subarray includes a[k − 1]. For the optimal subarray
ending on a[k] to be optimal, there cannot be a subarray ending on a[k] with a larger sum, so since it
includes a[k − 1], it must also include all other a[j] that correspond to the array whose sum is OPT (k − 1).
Since the optimal subarray ending on a[k] must also include a[k], we know its total sum is

OPT (k) = a[k] +OPT (k − 1)

To determine whether or not the optimal array ending on a[k] includes a[k−1], we compare these two values
of OPT (k) to find

OPT (k) = max(a[k], a[k] +OPT (k − 1))

This is the recurrence relation we will use to solve our subproblems.
(c)
We will use the recurrence relation from part (b) to calculate and store OPT (k) for all 1 ≤ k ≤ n. However,
as we calculate each OPT (k), we will also calculate the length of the corresponding optimal subarray. After
doing so, we can run through the OPT () array in linear time, find the value of the optimal subarray, and
then use its length to find the subarray itself. We will use 1-based indexing in our pseudocode.

FindMaxSumSubarray(a)
let n = a.size()
Let OPT be an array of size n
Let lengths be an array of size n
Let OPT [1] = a[1]
Let lengths[1] = 1
For k: 2 → n

if (a[k] > a[k] +OPT (k − 1))
Let OPT [k] = a[k] +OPT (k − 1)
Let lengths[k] = lengths[k − 1] + 1

endIF
else

Let OPT [k] = a[k]
Let lengths[k] = 1

endElse
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endFor
let maxIndex = −1
let max = INTMIN
For (i: 1 → n)

if( opt[i] > max)
Let max = opt[i]
Let maxIndex = i

endIf
endFor
Let solution be an array of size lengths[maxIndex]
For (i: maxIndex− lengths[maxIndex] + 1 → maxIndex)

Add a[i] to solution
endFor
return solution

endFindMaxSumSubarray

(d)

i. The base case is when a.size() = n = 1, at which point OPT (n) = OPT (1) = a[1], and the subarray
with the largest sum (that contains at least one element) is [a[1]].

ii. The final answer is the subarray with the largest sum among all nonempty subarrays of a. The sum of
the subarray with the largest sum among all nonempty subarrays of a is stored in opt[maxIndex]. The
optimal subarray that corresponds to opt[maxIndex] is stored in solution, and is returned by our func-
tion. Thus, the final answer can be found in solution and in the return value of FindMaxSumSubarray.

(e)
It takes Θ(n)+Θ(n) = Θ(2n) = Θ(n) time to create the lengths and OPT arrays of size n. It takes constant
Θ(1) time to initialize n, OPT [1], and lenghts[1]. Therefore, it takes a total of Θ(1) + Θ(n) = Θ(n) time
to do the initial steps in FindMaxSumSubarray before the for loops. The first for loop has Θ(n) iterations,
each of which take constant time since we can access a[k] in constant time and we calculate OPT [k] for
smaller k first. Therefore, the first for loop has Θ(n) total runtime. The second for loop also has Θ(n)
constant time iterations for a total of Θ(n) runtime. The third for loop has O(n) constant time iterations
(since we just add an element to the back of an array each iteration) for a total of O(n) runtime. Adding
up the runtimes of each consecutive component of FindMaxSumSubarray, we find that the algorithm has
Θ(n) + Θ(n) + Θ(n) +O(n) = Θ(n) total runtime.

3.

[20 points] You are given an array of positive numbers a[1], ..., a[n]. For a subarray sequence a[i1], a[i2], .., a[it]
of array a (that is i1 < i2 < ... < it): if it is an increasing sequnce of numbers, that is, a[i1], a[i2], ..., a[it], its
happiness score is given by

t∑
k=1

k · a[ik]

Otherwise, the happiness score of this array is zero.
For example, for the input a = [22, 44, 33, 66, 55], the increasing subsequence [22, 44, 55] has happiness score
1·22+2·44+3·55 = 275; The increasing subsequence [22, 33, 55] has happiness score 1·22+2·33+3·55 = 253;
the sequence [33, 66, 55] has happiness score 0 as this sequence is not increasing. Please design an efficient
algorithm to only return the highest happiness score over all the subsequences.

(a) Define (in plain English) the subproblems to be solved. (4 pts)

(b) Write a recurrence relation for the subproblems. (6 pts)
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(c) Using the recurrence formula in part b, write pseudocode to find the highest happiness score over all the
subsequences. (5 pts)

(d) Make sure you specify

(i) base cases and their values (2 pts)

(ii) where the final answer can be found (1 pt)

(e) What is the complexity of your solution? (2 pts)

Solution.
(a)
Suppose the sequence corresponding to the maximum happiness score ends on a[k], where 1 ≤ k ≤ n. Then
this sequence must have some length l where 1 ≤ l ≤ k. Therefore a[k] contributes exactly a[k] · l to the
happiness score of this optimal sequence ending at a[k]. The rest of the happiness score must come from
a[i]’s where 1 ≤ i < k and a[i] < a[k], since the optimal sequence must be increasing. To find which a[i]
precedes a[k] in the optimal sequence, we must calculate the maximum happiness score of a sequence of
length l − 1 ending at a[i], for all i s.t. 1 ≤ i < k and a[i] < a[k]. Since k can be any value from 1 → n, we
must calculate the maximum happiness score of a sequence ending at a[k] of length l for all 1 ≤ k ≤ n and
all 1 ≤ l ≤ k.
Let OPT (k, l) be the maximum happiness score of a sequence ending at a[k] with length l. Then we just
need to find OPT (k, l) for all 1 ≤ k ≤ n and all 1 ≤ l ≤ k to solve our subproblems.
(b)
We want to find a recurrence relation for OPT (k, l). Consider the sequence corresponding to OPT (k, l). If
l > 1, then we know there are multiple elements in the sequence, so we can let a[j] be the element in the
sequence that precedes a[k], where 1 ≤ j < k. Then we know a[j] < a[k], and for the sequence to correspond
to OPT (k, l), the maximum happiness score of a length l − 1 sequence ending at a[j] must be greater than
the maximum happiness score of a length l− 1 sequence ending at a[i] for all i ̸= j s.t. i < k and a[i] < a[k].
Since a[k] itself contributes l · a[k] to OPT (k, l), this yields

OPT (k, l) = max
j<ks.t.a[j]<a[k]

(OPT (j, l − 1) + l · a[k])

This is true for all 2 ≤ l ≤ k ≤ n, and it is the recurrence relation we will use to solve our subproblems.
(c)
We create an n by n array to store the values of OPT (k, l). We then iterate through all values of OPT (k, l),
starting with l = 1 since our recursive call decreases the value of l. Each time we set a new value of
OPT (k, l), we check to see if we need to update the maximum happiness score, which we return at the end
of our function. We use 1 based indexing for our pseudocode.

MaxHappiness(a)
let n = a.size()
let OPT be an n by n array
let max = −1
let maxLength = −1
let maxIndex = −1
for (l: 1 → n)

for (k: 1 → n)
if( l > k)

OPT [k][l] = 0
endIf
else if(l == 1)

OPT [k][l] = a[k]
endElseIf
else
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let tempmax = −1
for (i: 1 → k)

if(a[i] < a[k] && l − 1 ≤ i)
if(tempmax < (l · a[k] +OPT [i][l − 1])

let tempmax = l · a[k] +OPT [i][l − 1]
endIf

endIf
endFor

endElse
if(opt[k][l] > max)

let max = opt[k][l]
let maxIndex = k
let maxLength = l

endIf
endFor

endFor
return max

endMaxHappiness

(d)

i. Case 1: l = 1, so the length of OPT (k, l) is 1, and the sequence ends on a[k], so its only element must
be a[k], so its happiness score must be OPT (k, 1) = a[k] for all 1 ≤ k ≤ n.
Case 2: l > k, so it is impossible to have a sequence of length l that ends at element a[k], as the first
element would have to be a[k − l + 1], but k − 1 + 1 <= 0 if l > k, and a[1] is the first element in a.
Thus, OPT (k, l) = 0 for all l > k.

ii. The final answer is the maximum happiness score of any sequence of length l (1 ≤ l ≤ n) ending at a[k]
(1 ≤ k ≤ n). Therefore, the final answer is the maximum value of all OPT (k, l). Since we update the
maximum value of all OPT (k, l) each time we calculate a new OPT (k, l), we know this value is stored
in the max variable from MaxHappiness, which is also the return value of the function. Therefore, the
final answer can be found in the max variable or in the return value of MaxHappiness. This is also
stored in OPT [maxIndex][maxLength].

(e)
It takes Θ(1) time to declare and initialize n, maxLength, max, and maxIndex. It takes Θ(n2) time to
initialize the OPT array of size n by n. This yields a total of Θ(1) + Θ(n2) = Θ(n2) runtime before the for
loops.
The first for loop has Θ(n) iterations. The second for loop also has Θ(n) iterations. For each iteration inside
the second for loop, the iteration either takes constant time or Θ(k) time, both of which are O(n). Therefore,
we have a total of Θ(n)Θ(n) = Θ(n2) O(n) iterations in our for loops, for a total of Θ(n2)O(n) = O(n3)
runtime.
Thus, the total runtime of MaxHappiness is O(n3).

4.

[20 points] You’ve started a hobby of retail investing into stocks using a mobile app, RogerGood. You
magically gained the power to see N days into the future and you can see the prices of one particular stock.
Given an array of prices of this particular stock, where prices[i] is the price of a given stock on the i’th day,
find the maximum profit you can achieve through various buy/sell actions. RogerGood also has a fixed fee
per transaction. You may complete as many transactions as you like, but you need to pay the transaction
fee for each transaction (only pay once per pair of buy and sell). Assume you can own at most one unit of
stock.
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(a) Define (in plain English) the subproblems to be solved. (4 pts)

(b) Write a recurrence relation for the subproblems. (6 pts)

(c) Using the recurrence formula in part b, write pseudocode to solve the problem. (5 pts)

(d) Make sure you specify

(i) base cases and their values (2 pts)

(ii) where the final answer can be found (1 pt)

(e) What is the complexity of your solution? (2 pts)

Solution.
We suppose the fixed transaction fee is t for this problem.
(a)
Since there are N total days, and each transaction (buy then sell) takes two days, there are a maximum of
⌊N2 ⌋ transactions in the sequence of transactions that maximizes profits. Let’s call this sequence the optimal

sequence. Then the optimal sequence is the same as the sequence that maximizes profits with at most N
2

transactions through the first N days. This sequence either includes a transaction on the N ’th day, or it
doesn’t. If it doesn’t, then the maximum profits over the optimal sequence through N days with at most
N
2 transactions equals the maximum profits over the optimal sequence through N − 1 days with at most
N
2 interactions. If the optimal sequence does include a transaction on the N ’th day, then it must be a sell,
since buying on the last day would not increase profits, so there is some 1 ≤ m < N s.t. buying on day m
maximizes profits. The profits contributed by the first m− 1 days must then be the maximum profits over
the first m− 1 days with at most N

2 − 1 transactions. Therefore, in order to calculate the maximum profits

over all N days with at most N
2 transactions, we must first calculate the maximum profits over the first k

days with at most j transactions for all 1 ≤ k ≤ N , 1 ≤ j ≤ N
2 .

Let OPT (k, j) be the optimal solution over the first k days with at most j transactions. Then we need to
compute OPT (k, j) for all 1 ≤ k ≤ N , 1 ≤ j ≤ N

2 to solve the subproblems.
(b)
We want to find a recurrence relation for OPT (k, j). Note that a transaction is either made on day k, or it
isn’t. If it is not, then the maximum profits are OPT (k − 1, j), since the profits do not change on day k.
If a transaction is made on day k, then it must be a sell, so there is some 1 ≤ i < k s.t. there is a buy on
day i which corresponds to the sell on day k. This contributes profits of prices[k] − prices[i] − t for days i
through k. In order to maximize the profits from buying on day i and correspondingly selling on day k, days
1 through i− 1 must produce the maximum profits from the first i− 1 days with at most j− 1 transactions.
Since i could be any value from 1 to k − 1, if there is a sell on day k, then

OPT (k, j) = max
1≤m<k

(prices[k]− prices[i]− t+OPT (i− 1, j − 1))

Since we do not know whether selling on day k maximizes profits, we compare this value with the value
when we don’t sell on day k to fin

OPT (k, j) = max(OPT (k − 1, j), max
1≤i<k

(
prices[k]− prices[i]− t+OPT (i− 1, j − 1))

)
This is the recurrence relation we will use to solve the subproblems.
(c)
We will loop through each value of k in increasing order, looping through each value of 1 ≤ j ≤ n

2 for each
value of k. Inside each iteration, we will compute the i for which prices[k]− prices[i]− t+OPT (i− 1, j− 1)
is maximal. Then, we will compare this value to OPT (k− 1, j) and set OPT (k, j) equal to the maximum of
the two. We use 1 based indexing in the pseudocode.

MaxProfits(prices, t)
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let n = prices.size()
let OPT be an n by n

2 array
if(n == 0) return 0
for(j: 1 → n

2 )
let OPT [1][j] = 0

endFor
for(k: 2 → n)

for(j: 1 → n
2 )

let OPT [k][j] = OPT [k − 1][j]
for(i: 1 → k − 1)

let temp = prices[k]− prices[i]− t+OPT [i− 1][j − 1]
if( temp > OPT [k][j])

let OPT [k][j] = temp
endIf

endFor
endFor

endFor
return OPT [n][n2 ]

endMaxProfits

(d)

i. Case 1: N = 0, so there are no days to make transactions, so there is no way to make any profit, so the
maximum profit is 0, so we return 0.
Case 2: N = 1, so we cannot make any transactions that make any profit (we could just sell and buy at
the same price), so the maximum profit we can make is 0, so we let OPT [1][j] = 0 for all j.

ii. The final answer is the maximum profit that can be obtained with any number of transactions through
all N days. This is equivalent to the maximum profit that can be obtained with at most N

2 transactions

through all N days. This value is stored in OPT [N ][N2 ], which is what our function returns. Therefore,

the final answer can be found both in OPT [N ][N2 ] and in the return value of MaxProfit.

(e)

It takes Θ(N)Θ(N2 ) = Θ(N
2

2 ) = Θ(N2) time to create the OPT array. It takes Θ(N2 ) = Θ(N) time to
initialize OPT [1][j] to 0 for all j. There are two Θ(N) nested for loops, with a total of Θ(N)Θ(N) = Θ(N2)
iterations. Inside each iteration, we doO(N) constant time iterations through. Therefore, the nested for loops
are upper-bounded by Θ(N2)O(N) = O(N3) runtime. This gives a total runtime of Θ(N2)+Θ(N)+O(N3) =
O(N3) for our MaxProfits algorithm.

Assignment 8

1.

(10pts) The following graph G has labeled nodes and edges between it. Each edge is labeled with its capacity.

(a) Draw the final residual graph Gf using the Ford-Fulkerson algorithm corresponding to the max flow.
Please do NOT show all intermediate steps.

(b) What is the max-flow value?

(c) What is the min-cut?
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Solution.
(a)
Note: We are using the representation of residual graphs that uses reverse edges, as discussed in lecture.
The final residual graph after performing Ford Fulkerson on G is Gf :

(b)
The max-flow value is equal to the sum of the edges going into the source node, S, in the final residual
graph, Gf . Therefore, the value of the max-flow of G is

v(f) = 2 + 1 = 3

(c)
The min cut is the partitioning of the nodes in V = {S,A,B,C,D,E, T} into two disjoint sets, X and Y ,
where S ∈ X and T ∈ Y for which the sum of the edge weights going from X to Y equals v(f) = 3.
If we let X = {S,A,C} and Y = {B,D,E, T}, then the only two edges going from X to Y in G are (C, T, 2)
and (S,B, 1). The sum of the weights of these edges is 2 + 1 = 3 = v(f). Therefore, the min-cut of G is

(X,Y ) = ({S,A,C}, {B,D,E, T})
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2.

(15pts) Determine if the following statements are true or false. For each statement, briefly explain your
reasoning.

(a) In a flow network, the value of flow from S to T can be higher than the maximum number of edge
disjoint paths from S to T . (Edge disjoint paths are paths that do not share any edge)

(b) For a flow network, there always exists a maximum flow that doesn’t include a cycle containing positive
flow.

(c) If you have non-integer edge capacities, then you cannot have an integer max flow.

(d) Suppose the maximum s-t flow of a graph has value f . Now we increase the capacity of every edge by
1. Then the maximum s-t flow in this modified graph will have a value of at most f + 1.

(e) If all edges are multiplied by a positive number k, then the min-cut remains unchanged.

Solution.
(a)
True. Consider the simple graph G = (V,E), where V = {S,A, T} and E = {(S,A, 2), (A, T, 2)}. Then the
only edge disjoint path from S to T is S− > A− > T , so the maximum number of edge disjoint paths from
S to T is 1. However, the maximum flow from S to T is 2, as the bottleneck of the S− > A− > T path is 2.
Since 2 > 1, the value of the flow from S to T is greater than the maximum number of edge disjoint paths
from S to T . This example proves the existence of a flow from S to T that exceeds the maximum number
of edge disjoint paths from S to T .

(b)
True. Assume to the contrary that there exists a flow network for which all maximum flows include a cycle
containing positive flow. Consider one such maximum flow, M . Consider any s-t path that goes through
a cycle with positive flow at least once in M . If the bottleneck of that path is found in the cycle, we can
create a path with a higher bottleneck by avoiding the cycle. This will increase the flow of that path without
changing the flow of any other paths, thus increasing the overall flow of the graph. However, this contradicts
the assumption that M is a maximum flow. If the bottleneck of the path is not found in the cycle, we can
create a path with the same bottleneck by avoiding the cycle. This will not change the flow of any path
in the graph, so it will not change the overall flow of the graph. We can do this for every s-t path that
goes through a positive cycle, and the overall flow of the resulting graph, M ′, will equal the flow from M .
However, M ′ now has no paths which go through positive cycles. Therefore, M ′ doesn’t include a cycle
containing positive flow, but it has the same flow as M . This contradicts the assumption that all maximum
flows include a cycle containing positive flow. By contradiction, this concludes the proof that there always
exists a maximum flow that doesn’t include a cycle containing positive flow for any flow network. For any
maximum flow that includes a cycle with positive flow, we can just remove the cycle(s) with positive flow to
create a maximum flow that doesn’t include a cycle with positive flow.

(c)
False. Consider the simple graphG = (V,E), where V = {S,A,B, T} and E = {(S,A, 0.5), (S,B, 0.5), (A, T, 0.5), (B, T, 0.5)}.
Then all edges have non-integer capacities. However, using the two paths S− > A− > T and S− > B− > T ,
which both have a bottleneck of 0.5, we find that the maximum flow of this graph is v(f) = 0.5+0.5 = 1 ∈ Z.
Therefore, although this graph has all non-integer edge capacities, the max flow value, 1, is still an integer.
This counterexample disproves the claim that if you have non-integer edge capacities, you cannot have an
integer max flow.

(d)
False. Consider the same graph G as in part (c). As discussed in part (c), the max flow of G is v(f) = f = 1.
Now, let’s increase the capacity of each edge by one. This results in the graph G′ = (V,E′) where
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V = {S,A,B, T} and E = {(S,A, 1.5), (S,B, 1.5), (A, T, 1.5), (B, T, 1.5)}. Once again, let’s use the paths
S− > A− > T and S− > B− > T to construct our max flow for G′. Both of these paths now have a
bottleneck of 1.5, so the maximum flow of G′ is v(f) = 1.5+1.5 = 3 = f +2 > f +1 = 1+1 = 2. Therefore,
after increasing all edge capacities in G by 1, the max flow in the modified graph is greater than f +1. This
counterexample disproves the claim that increasing the capacity of every edge in a graph by 1 increases the
max flow of the graph by at most 1.

(e)
True. Assume to the contrary that there exists a graph for which multiplying all edges by k changes the
min-cut. Suppose the initial graph is G with max flow f and min-cut (X,Y ), where cG(X,Y ) = f . Sup-
pose after multiplying all edges by k the graph is G′ with min-cut (X ′, Y ′), where (X ′, Y ′) ̸= (X,Y ) and
(X,Y ) is not a min-cut of G′. Since (X,Y ) is the min-cut in G, we know the capacity of (X ′, Y ′) in G is
≥ f = cG(X,Y ). Suppose (X,Y ) has edges with capacities w1, ..., wn going from X to Y in G and (X ′, Y ′)
has edges with capacities v1, ..., vm going from X ′ to Y ′ in G. Then we know

f = cG(X,Y ) = w1 + · · ·+ wn ≤ v1 + · · · vm = cG(X
′, Y ′)

After multiplying all edge capacities by k, we have

cG′(X,Y ) = kw1 + · · ·+ kwn = k(w1 + · · ·wn) ≤ k(v1 + · · ·+ vm) = kv1 + · · · kvm = cG′(X ′, Y ′)

since k > 0. Therefore, the capacity of (X,Y ) in G′ is less than or equal to the capacity of (X ′, Y ′) in G′.
Since (X ′, Y ′) is the min-cut of G′, this implies (X,Y ) is a min-cut of G′, which contradicts our assumption
that multiplying the edge capacities by k would not change the min-cut. By contradiction, this concludes
the proof that the min-cut will not change after all edge capacities are multiplied by a positive number k.

3.

(15pts) You are given a flow network with unit-capacity edges. It consists of a directed graph G = (V,E)
with source s and sink t, and ce = 1 for every edge e. You are also given a positive integer parameter k.
The goal is to delete k edges so as to reduce the maximum s-t flow in G by as much as possible. In other
words, you should find a subset of edges F ⊆ E such that |F | = k and the maximum s-t flow in the graph
G′ = (V,E − F ) is as small as possible. Give a polynomial-time algorithm to solve this problem and briefly
explain its correctness.

Follow up: If the edges have more than unit capacity, will your algorithm produce the smallest possible
max-flow value?.

Solution.
Note: Since ce = 1 for all edges e ∈ E, we know that, if the maximum flow of G is v(f), then the
min-cut, (X,Y ) has v(f) edges from X to Y (since c(X,Y ) = v(f)). Consider a different cut (X ′, Y ′)
where cG(X

′, Y ′) > v(f). Then removing k edges from X ′ to Y ′ results in a capacity of cG′(X ′, Y ′) =
cG(X

′, Y ′) − k > v(f) − k. However, if we remove k edges from X to Y , we have cG′(X,Y ) = v(f) − k.
Since removing edges from X to Y results in a cut with smaller capacity than removing edges from X ′ to
Y ′, we know that we should remove edges from X to Y in order to minimize the maximum flow in G′. We
can use Edmond-Karp and BFS to find the min-cut in G, (X,Y ), in O(nm2) time. We can add edges to F
that go from X to Y one-by-one until |F | = k or all edges from X to Y are in F . If all edges from X to Y
are in F before |F | = k, we can arbitrarily add edges to F until |F | = k, because the maximum flow in G′

will already be 0.
The described algorithm works as follows:

FindEdgesForRemoval(G, k)
Let Gf = the final residual graph from running Edmond-Karp on G with
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start node s and sink node t
Run BFS on Gf with source node s, adding all reachable nodes to the set X
Add all nodes in V −X to Y
Let count = 0
Let F = ∅
For all edges (u, v) ∈ E

if u ∈ X and v ∈ Y
if count < k

add (u, v) to F
increment count by 1

endIf
endIf

endFor
if count < k

For all edges (u, v) ∈ E
if u ̸∈ X or v ̸∈ Y

if count < k
add (u, v) to F
increment count by 1

endIf
endIf

endFor
endIf
return F

endFindEdgesForRemoval

Time Complexity Analysis:
It takes O(nm2) time to run Edmond-Karp and store the final residual graph in Gf .
It takes O(m+ n) time to run BFS on Gf .
It takes O(nlogn) time to create the X and Y sets.
It takes constant time to initialize count and F .
There are O(n) iterations of the first for loop, each of which takes maximally O(log2m) time, for a total
runtime of O(nlog2m) for the first for loop.
There are O(n) iterations of the second for loop, each of which takes maximally O(log2m) time, for a total
runtime of O(nlog2m) for the second for loop.
This results in a total runtime of O(nm2)+O(m+n)+O(nlogn)+O(1)+O(nlog2m)+O(nlog2m) = O(nm2)
for our algorithm. Thus, our algorithm has O(nm2) total runtime, so it is polynomial as required.

Follow Up:
This algorithm will not produce the smallest possible max-flow value if the edges have more than unit ca-
pacity. Our algorithm relies on the assumption that the cut (X,Y ) with the least edges from X to Y is
the min-cut. However, this assumption only holds when all edges have capacity 1. When edges have more
than unit capacity, there could be one cut with only one edge from X to Y that has capacity 100, while
another cut has 2 edges from X to Y , both with capacity 2. The min-cut in this case would be the cut
with 2 edges from X to Y , showing how the assumption breaks down with edge capacities greater than 1.
Thus, the assumption central to our algorithm breaks down when edges have capacities greater than 1, so
our algorithm will not work for edges with more than unit capacity.

4.

(20pts) A toursit group needs to convert their USD into various international currencies. There are n tourists
t1, ..., tn and m currencies c1, ..., cm. Each tourist ti has Fi Dollars to convert. For each currency cj , the
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bank can convert at most Bj Dollars to cj . Tourist ti is willing to trade as much as Sij of his Dollars for
currency cj . (For example, a tourist with 1000 dollars might be willing to convert up to 200 of his USD for
Indian Rupees, up to 500 of his USD for Japanese Yen, and up to 300 of his USD for Euros). Assume that
all tourists give their requests to the bank at the same time.

(a) Design an algorithm that the bank can use to satisfy all the requests (if it is possible). To do this,
construct and draw a network flow graph, with appropriate source and sink nodes, and edge capacities.

(b) Prove your algorithm is correct by making a claim and proving it in both directions.

Solution. We will use a network flow graph, G = (V,E), with source node s and sink node t. There will be
a node for each ti and a node for each cj . That is, V = {s, t1, ..., tn, c1, ..., cm, t}.
There will be a directed edge from s to each ti with capacity Fi. This ensures no tourist ti converts more
than Fi Dollars to different currencies. There will be a directed edge from each tourist ti to each currency cj
with capacity Sij . This ensures no tourist ti converts more than Sij Dollars to cj . There will be a directed
edge from each currency cj to the sink node t with capacity Bj . This ensures the bank never converts more
than Bj Dollars to currency cj . That is, E = {(s, ti, Fi), (ti, cj , Sij), (cj , t, Bj)|1 ≤ i ≤ n, 1 ≤ j ≤ m}.
Drawn out, the graph looks as follows:

Once we construct the network flow graph, G, we can simply run Ford-Fulkerson on G. If all tourists can con-
vert all Fi of their Dollars, then the flow through the graph should be

∑n
i=1 Fi. Therefore, we can determine

if the Bank can satisfy all the requests by comparing the max-flow, v(f), found by running Ford-Fulkerson
on G to

∑n
i=1 Fi. If the values are equal, then the return value of Ford-Fulkerson, f , is the flow network

that shows the banks how satisfy all requests. Thus, creating G essentially solves the problem for us, as we
can just use the return value of Ford-Fulkerson to determine whether all requests can be satisfied and, if so,
how to satisfy them.
Therefore, our algorithm works as follows:

canSatisfyRequests(t, c, F, B)
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Construct G = (V,E) as described above
Let f = return value of running Ford-Fulkerson on G with source node s
and sink node t
Let v(f) = 0
Let needed =

∑n
i=1 Fi

For all edges (s, v) in f
add the flow through (s, v) to v(f)

endFor
if v(f) ̸= needed return false
return true

endCanSatisfyRequests

If the algorithm returns true, the flow network needed to satisfy all requests is stored in f . Otherwise,
there is no way to satisfy all requests.

(b) Proof of Correctness:
Claim: The algorithm returns true ⇐⇒ all tourists can convert all Fi of their Dollars.
We must show that, if the algorithm returns true, all tourists can convert all Fi of their Dollars. Assume
to the contrary that the algorithm returns true but some tourist cannot convert all Fi of his dollars. Since
the algorithm returns true, we know v(f) = needed =

∑n
i=1 Fi. Therefore, the max flow from s to t in G

is the sum of all Fi. Since the only edges exiting s in G are edges to ti with capacity Fi, (s, ti) must be
saturated for all 1 ≤ i ≤ n. Since the flow into each ti must equal the flow exiting each ti in f , this means
that the flow through each ti equals Fi for all 1 ≤ i ≤ n. Thus, each tourist ti can convert all Fi of their
dollars, which contradicts our assumption that some tourist ti cannot convert all Fi of his Dollars. This
contradiction completes the proof that, if our algorithm returns true, all tourists can convert all Fi of their
Dollars.
Now, we must show that, if all tourists can convert all Fi of their dollars, the algorithm will return true. If
each tourist can convert all Fi of their dollars, then the max flow through each ti will be (simultaneously)
Fi for all 1 ≤ i ≤ n. Since the flow into each ti must equal the flow out of each ti, this means there is Fi
flow into each ti in f for all 1 ≤ i ≤ n. Since the only edges into ti come from s, this means that there is
an edge out of s with flow Fi in f for all 1 ≤ i ≤ n. Since the max flow is the sum of the flows through
edges exiting s in f , this means the max flow in G is v(f) =

∑n
i=1 Fi. Therefore, after our algorithm uses

a for loop to calculate v(f), v(f) will always equal
∑n
i=1 Fi if all tourists can convert all Fi of their dollars.

Therefore, our algorithm will always return true after comparing v(f) and
∑n
i=1 Fi.

This concludes the proof that our algorithm returns true ⇐⇒ all tourists can convert all Fi of their dollars.

5.

You have successfully computed a maximum s-t flow f for a network G = (V ;E) with integer edge capacities.
Your boss now gives you another network G′ that is identical to G except that the capacity of exactly one
edge is decreased by one. You are also explicitly given the edge whose capacity was changed. Describe how
you can compute a maximum flow for G′ in O(|V |+ |E|) time.

Solution.
Note: We are using the representation of residual graphs that uses reverse edges, as discussed in lecture.
Suppose that the edge with decreased capacity is (u, v) ∈ E.
Suppose the final residual graph of G is Gf .
Suppose the max flow graph for G′ is f ′.
Suppose the final residual graph for G′ is Gf ′ .
If (u, v) is the bottleneck of some s-t path(s) in f , then the flow through (u, v) in f must equal c(u, v). Since
the capacity of (u, v) decreases by 1 in G′, this means the flow through (u, v) must equal c(u, v) − 1 in f ′.
Therefore, the flow out of v and the flow into u must decrease by 1 in f ′ compared to f . Therefore, in one
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s-t path through (u, v), the flow through each edge on that path must decrease by 1 in f ′ compared to f to
maintain conservation of flow. Therefore, if (u, v) is the bottleneck of some s-t path(s) in f , we can reduce
the capacity of all edges along one such path in f by 1 to produce f ′. To produce Gf ′ , we simply reduce
the capacity of each edge in the reverse t-s path in Gf by 1 and increase the capacity of the forward edges
in the s-t path in Gf by 1, excluding (u, v) itself.
If (u, v) is not the bottleneck any s-t path in f , then the residual capacity of (u, v) in Gf is positive, so we
can reduce this value by 1, and the all s-t paths through (u, v) will still have the same flow. Thus, we can
find Gf ′ by simply reducing the residual capacity of (u, v) in Gf by 1 and not changing any other capacities.
In this case, the max flow network for G′ is the same as the max flow network for G, so f ′ = f .
Therefore, we just need to determine if (u, v) is the bottleneck of some s-t path(s) in f , which we can do by
checking if (u, v) is in Gf . If it is not, we can run BFS on Gf twice, once from t to v and once from u to s,
to find an s-t path through (u, v). Once we have found one such path, we can alter the edge capacities in
Gf and f as described above to construct Gf ′ and f ′.
This algorithm works as follows:

alteredMaxFlow(f, G, Gf , (u, v))
let Gf ′ = Gf
let f ′ = f
if (u, v) ∈ Gf

reduce capacity of (u, v) in Gf ′ by 1
return f ′

endIf
Run BFS on Gf ′ with start node t until v is explored
let path = null
let temp = v
while predecessor(temp)! = null

add (predecessor(temp), temp) to path
let temp = predecessor(temp)

endWhile
Run BFS on Gf ′ starting from u until s is explored
let temp = s
while predecessor(temp)! = null

add (predecessor(temp), temp) to path
let temp = predecessor(temp)

endWhile
for all (x, y) in path

decrease the capacity of (x, y) by 1 in Gf ′

if x ̸= u or y ̸= v
increase the capacity of (y, x) by 1 in Gf ′

endIf
decrease the capacity of (y, x) by 1 in f ′

endFor
return f ′

endAlteredMaxFlow

Time Complexity Analysis:
It takes O(|V |+ |E|) time to initialize f ′ and Gf ′ .
It takes O(log|E|) time to check if (u, v) a bottleneck by checking if it is in Gf .
It takes O(|V | + |E|) time to run BFS on Gf ′ from t to v and it takes O(|V | + |E|) time to run BFS on
Gf ′ from u to s.
For each BFS call, it takes O(|V |) time to update path.
It takes O(|E|) time to update the edge capacities in Gf ′ and f ′ after constructing path.
Thus, the algorithm has a total runtime of O(|V |+ |E|)+O(log|E|)+O(|V |+ |E|)+O(|V |+ |E|)+O(|V |)+
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O(|V |) +O(|E|) = O(|V |+ |E|), as required.

Assignment 9

Problem 1

In the network G below, the demand values are shown on vertices (supply value if negative). Lower bounds
on flow and edge capacities are shown as (lower bound, capacity) for each edge. Determine if there is a
feasible circulation in this graph. You need to show all your steps. (25 pt)

(a) Reduce the Feasible Circulation with Lower Bounds problem to a Feasible Circulation problem without
lower bounds. (10 pt)

(b) Reduce the Feasible Circulation problem obtained in part (a) to a Maximum Flow problem in a Flow
Network. (10 pt)

(c) Using the solution to the resulting Max Flow problem, explain whether there is a Feasible Circulation
in G. (5 pt)

Solution. Note: We assume G = (V,E).

(a) To reduce the Feasible Circulation with Lower Bounds problem to a Feasible Circulation problem without
lower bounds, for all e ∈ E, we simply push flow equal to the lower bound of e through e. We can do so
as follows:
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The graph G′ = (V ′, E′) is now a Feasible Circulation problem in which all Lower Bounds equal 0, so we
can treat it as a feasible circulation problem without Lower Bounds. There is a Feasible Circulation in
G′ ⇐⇒ there is a Feasible Circulation in G, so we have successfully reduced the problem to a Feasible
Circulation problem without Lower Bounds.

(b) To reduce the Feasible Circulation problem without Lower Bounds from part (a) to a Maximum Flow
problem in a Flow Network, we need to construct a valid Flow Network G” = (V ”, E”) from G′. To do
this, we add a source node s and a sink node t. We then add a directed edge from s to all supply nodes
from G′ (all nodes with negative demand) and a directed edge from all demand nodes in G′ (all nodes
with positive demand) to t. We can do this as follows:

The graph G” is now a valid flow network for which we can compute the Maximum Flow. There is a
Feasible Circulation in G ⇐⇒ there is a Feasible Circulation in G′ ⇐⇒ the value of the Max Flow in
G” is

v(f1) = DG′ =
∑

v∈V ′:dv>0

dv = 7 + 5 = 12

Thus, we have successfully reduced the problem to a Maximum Flow problem in a Flow Network.

(c) To find the value of the Maximum Flow v(f1) in G”, we run Ford-Fulkerson on G” to produce:
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The sum of the flow exiting s in f1 is 6 + 4 = 10, so the value of the Max Flow in G” is v(f1) = 10.
Since

v(f1) = 10 ̸= 12 = D =
∑

v∈V ′:dv>0

dv

we know that there is no Feasible Circulation in G′, which implies there is no Feasible Circulation in G.
We could also note that the value of the Min-Cut in G” is v(f1) = 3+ 3+ 4 = 10 ̸= 12 to conclude that
there is no Feasible Circulation in either G′ or G.

Thus, by reducing the Feasible Circulation with Lower Bounds problem into a Feasible Circulation without
Lower Bounds problem and then a Maximum Flow in a Flow Network problem, we determined that there
is no Feasible Circulation in G.

Problem 2

Solve Kleinberg and tardos, Chapter 7, Exercise 31. (25 pt)

Some of your friends are interning at the small high-tech company WebExodus. A running joke among the
employees there is that the back room has less space devoted to high-end servers than it does to empty boxes
of computer equipment, piled up in case something needs to be shipped back to the supplier for maintainence.

A few days ago, a large shipment of computer monitors arrived, each in its own large box; and since there
are many different kinds of monitors in the shipment, the boxes do not all have the same dimensions. A
bunch of people spent some time in the morning trying to figure out how to store all these things, realizing
of course that less space would be taken up if some of the boxes could be nested inside others.

Suppose each box i is a rectangular parallelepiped with side lengths equal to (i1, i2, i3); and suppose each
side length is strictly between half a meter and one meter. Geometrically, you know what it means for one
box to nest inside another: It’s possible if you can rotate the smaller so that it fits inside the larger in each
dimension. Formally, we can say that box i with dimensions (i1, i2, i3) nests inside box j with dimensions
(j1, j2, j3) if there is a permutation a, b, c of the dimensions {1, 2, 3} so that ia < j1, and ib < j2, and ic < j3.
Of course, nesting is recursive: If i nests in j, and j nests in k, then by putting i inside j inside k, only box
k is visible. We say that a nesting arrangement for a set of n boxes is a sequence of operations in which a
box i is put inside another box j in which it nests; and if there were already boxes nested inside i, then these
end up inside j as well. (Also notice the following: Since the side lengths of i are more than half a meter
each, and since the side lengths of j are less than a meter each, box i will take up more than half of each
dimension of j, and so after i is put inside j, nothing else can be put inside j.) We say that a box k is visible
in a nesting arrangement if the sequence of operations does not result in its ever being put inside another box.

Here is the problem faced by the people at WebExodus: Since only the visible boxes are taking up any
space, how should a nesting arrangement be chosen so as to minimize the number of visible boxes?
Give a polynomial-time algorithm to solve this problem.

Solution. Suppose there are n boxes in total, which we will call b1, · · · , bn. Let x = the number of vis-
ible boxes in some nesting arrangement. Let y = the number of nested boxes in some nesting arrangement.
Then

x = n− y

so we can minimize the number of visible boxes in a nesting arrangement by maximizing the number of
nested boxes. We know that the we can use Edmonds Karp to find the value of maximum flow v(f) in a
flow network G = (V,E), so we just need to construct G s.t. the value of maximum flow in G is v(f) = the
maximum number of nested boxes in any nesting arrangement. To do so, we can create two nodes for each
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box bi: a source node si and a sink node ti. The source node si represents a box being nested inside box bi.
The sink node tj represents the box bj being nested inside another box. To satisfy the conditions of a flow
network, we also create a supersource node s and a supersink node t. Thus, we have

V = {s, s1, · · · , sn, t1, · · · , tn, t}

For edges, we need a directed edge from the supersource node s to all source nodes si of capacity 1 to ensure
that each path out no box bi has more than one box nested directly inside of it (i.e. without being recursively
nested). We also need a directed edge from all sink nodes ti to the supersink node t of capacity 1 to ensure
no box bi is nested directly inside more than one box (i.e. without being recursively nested). Between source
nodes si and sink nodes tj s.t. i ̸= j, we need a directed edge from si to tj of capacity 1 ⇐⇒ box bj can
be nested inside box si. This ensures that the maximum flow in G represents a valid nesting arrangement.
Thus, we have

E = {(s, s1, 1), · · · , (s, sn, 1), (t1, t, 1), · · · (tn, t, 1), A}

where A = {(si, tj , 1)| box bj can be nested inside of box bi}. Drawn out, the graph looks as follows:

Once we run Edmonds Karp to find the value of max flow v(f) = the number of nested boxes in any nesting
arrangement, we know that the minimum number of visible boxes is x = n−v(f), so we can return this value.

In summary, our algorithm works as follows:

(i) Let n = the number of boxes

(ii) Construct G = (V,E) as described above

(iii) Run Edmonds-Karp on G to find the value of max flow v(f)

(iv) Return n− v(f)

Proof of Correctness:
It suffices to show that the number of nested boxes in any nesting arrangement is y ⇐⇒ there is a valid
flow f in G s.t. v(f) = y.
First, we will show that number of nested boxes in any nesting arrangement is y =⇒ the value of the a
valid flow f in G is v(f) = y:
If the number of nested boxes in any nesting arrangement is y, then we know that there are y pairs (bi, bj) s.t.
box bj can be nested in box bi, and if (bi, bj) is a pair, then (bi, bk) and (bk, bj) are not pairs for all 1 ≤ k ≤ n.
Therefore, we can create a matching of size y between {s1, · · · , sn} and {t1, · · · , tn}. Suppose Y = the set
of such pairs, where |Y | = y. Then we can push 1 flow through each edge (si, tj , 1) s.t. (bi, bj) ∈ Y . Then,
to satisfy conservation of flow, for all (bi, bj) ∈ Y , we push 1 flow from s to si and 1 flow from tj to t. This
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results in a valid flow f with y edge disjoint paths from s to t, each of which has a bottleneck of 1, which has
value v(f) = y. Therefore, we have shown that, if the number of nested boxes in any nesting arrangement
is y, there exists a valid flow f in G s.t. v(f) = y.
Next, we will show that the existence of a valid flow f in G of value v(f) = y =⇒ there exists a nesting
arrangement in which y boxes are nested.
If there is a valid flow f in G s.t. v(f) = y, then we must have y edge disjoint paths from s to t in G (since
all edges have unit capacities). This means we can find y edges entering y distinct nodes tj from y distinct
nodes si s.t. box bj can be nested inside box bi. To construct a valid nesting arrangement s.t. the number
of nested boxes is y, we simply nest box bj inside box bi for all (si, tj , 1) in f . Therefore, if there is a valid
flow f in G of value v(f) = y, there exists a nesting arrangement in which exactly y boxes are nested.
This completes the proof that the number of nested boxes in any nesting arrangement is y ⇐⇒ there is a
valid flow f in G s.t. v(f) = y. A direct corollary of this proof is that the value of max flow v(f) in G is
y ⇐⇒ y = the maximum number of nested boxes in any nesting arrangement. This corollary proves the
correctness of our algorithm.

Time Complexity Analysis:
There are 2n+2 = O(n) nodes in G, which take O(n) time to create. There are n edges involving s, n edges
involving t, and ≤ n2 edges between si and tj , for a total of n+ n+ n2 = O(n2) total edges. Since all edges
e have capacity ce = 1, it takes constant time to create each edge, so it takes O(n2) time to create them all.
Therefore, it takes O(n+ n2) = O(n2) time to create G.
It takes O(|V ||E|2) time to run Edmonds-Karp, at which point it takes constant time to compute the max
flow value v(f) and compute/return the minimum number of visible boxes in any nesting arrangement.
Based on the previous calculations, in terms of n, Edmonds-Karp takes O(n(n2)2) = O(n ·n4) = O(n5) time.
Thus, the overall worst-case asymptotic complexity of our algorithm is O(n2) + O(n5) = O(n5), so our
algorithm runs in polynomial time as required.

Problem 3

At a dinner party, there are n families {a1, ..., an} andm tables {b1, ..., bm}. The ith family ai has gi members
and the jth table bj has hj seats. Everyone is interested in making new friends, and the dinner part planner
wants to seat people such that no two members of the same family are seated in the same table. Design an
algorithm that decides if there exists a seating assignment such that everyone is seated and no two members
of the same family are seated at the same table. (25 pt)

Solution.
We will reduce this problem to a Maximum Flow problem in a Flow Network. To construct our flow network
G = (V,E), we need to create a source node s and a sink node t. To represent our families, we will use n
nodes a1, · · · , an. To represent our tables, we will use m nodes b1, · · · , bm. Thus, we have

V = {s, a1, · · · , an, b1, · · · , bm}

We need a directed edge from the source node s to each family node ai of capacity gi to represent the gi
family members in ai. We need a directed edge of capacity 1 from each ai to all bj . This ensures that each
family can send one member to any table, but no family can send more than one member to the same table.
To ensure that no table bj receives more than hj assignments, we need a directed edge of capacity hj from
each table node bj to the sink node t. Thus, we have

E = {(s, a1, g1), · · · , (s, an, gn),
(a1, b1, 1), · · · , (a1, bm, 1), (a2, b1, 1), · · · , (a2, bm, 1), · · · (an, b1, 1), · · · , (an, bm, 1),
(b1, t, h1), · · · (bm, t, hm)}
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Drawn out, G looks as follows:

We can run Edmonds-Karp on G to find the value of the max flow, v(f). Let

P =

n∑
i=1

gi

Then we can return true if v(f) = P and false otherwise.

In summary, our algorithm works as follows:

(i) Let P =
∑n
i=1 gi

(ii) Construct G = (V,E) as described above

(iii) Run Edmonds-Karp on G to find the value of the max flow v(f)

(iv) Return v(f) == P

Proof of Correctness:
It suffices to show that the value of max flow in G is v(f) = P ⇐⇒ all guests can be seated such that no
two members of the same family are seated at the same table and no table bj has more than hj assignments.
First, we will show that value of max flow in G is v(f) = P =⇒ all guests can be seated such that no two
members of the same family are seated at the same table such that no table bj has more than hj assignments.
Since v(f) = P , we know all edges from s to ai are saturated with gi flow. By the conservation of flow, and
since each edge exiting ai has capacity 1, there must be gi edges, each with flow 1, exiting each ai. For each
ai, each of these gi edges ends up at a unique bi, so we know each member of each family can be assigned
without any table receiving two members. Since f is a valid flow, we know that none of the bj have more
than hj edges entering them. Therefore, if v(f) = P , we know that each member of each family can be
assigned such that no two members of the same family are seated at the same table and no table bj has more
than hj assignments.
Next, we will show that the ability to seat all guests such that no two members of the same family are seated
at the same table and no table bj has more than hj assignments =⇒ the value of the max flow in G is
v(f) = P .
Since we can seat all guests in this way, we know we can direct gi edges with flow 1 to unique tables bj for
each family ai such that no table bj has more than hj assignments. Thus, we can direct edges with flow
≤ hj from each table bj to the sink node t. Since we know we have gi flow out of each ai for all 1 ≤ i ≤ n,
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we can direct gi flow from the source node s to each family ai to complete the construction of a valid flow.
At this point, the flow out of s is

v(f) =

n∑
i=1

gi = P

Also, since all edges out of s are saturated, we know that v(f) = P is the value of the max flow in G. Thus,
if we can seat all guests such that no two members of the same family are seated at the same table and no
table bj has more than hj assignments, we know that the value of max flow in G is v(f) = P .
This completes the proof that the value of max flow in G is v(f) = P ⇐⇒ all guests can be seated such
that no two members of the same family are seated at the same table and no table bj has more than hj
assignments. The correctness of our algorithm follows from its return statement.

Time Complexity Analysis:
There are n +m + 2 = O(n +m) nodes in G, which take a total of O(n +m) time to create. There are n
edges involving the source node s, m edges involving the sink node t, and nm edges between a family and a
table. This results in a total of m + n +mn = O(mn) edges, which take a total of O(mn) time to create.
Thus, it takes a total of O(m+ n) +O(mn) = O(mn) time to create G.
We can calculate P in O(n) time directly. It takes constant time to return the answer once we run Edmonds-
Karp and calculate the value of max flow v(f) in G. It takes O(|V ||E|2) time to run Edmonds-Karp. Since
|V | = O(m+n) and |E| = O(mn), we know it takes O((m+n)(mn)2) = O((m+n)m2n2) = O(m3n2+n3m2)
total runtime to perform Edmonds-Karp on G.
Thus, our algorithm has an overall worst-case asymptotic complexity of O(m+n)+O(n)+O(m3n2+n3m2) =
O(m3n2 + n3m2), so it is polynomial with respect to input size, as required.

Problem 4

Due to large-scale flooding in a region, paramedics have identified a set of n injured people distributed
across the region who need to be rushed to hospitals. There are k hospitals in the region, and each of the
n people needs to be brought to a hospital that is within a half-hour’s drive to their current location. (So
different patients will be able to be served by different hospitals depending upon the patients’ locations.)
However, overloading one hospital with too many patients at the same time is undesirable, so we would like
to distribute the patients as evenly as possible across all the hospitals. So the paramedics (or a centralized
service advising the paramedics) would like to work out whether they can choose a hospital for each of the
injured people in such a way that each hospital receives at most (nk + 1) patients. (25 pt)

(a) Describe a procedure that takes the given information about the patients’ locations (hence specifying
which hospital each patient could go to) and determines whether a balanced allocation of patients is
possible (i.e. each hospital receives at most (nk + 1) patients). (11 pt)

(b) Provide proof of correctness for your procedure. (10 pt)

(c) What is the asymptotic running time of your procedure (in terms of n and k)? (4 pt)

Solution.

(a) We will reduce this problem to a Maximum Flow problem in a Flow Network. To construct our flow
network G = (V,E), we need to create a source node s and a sink node t. We also need to create a node
for each patient p1, ..., pn and for each hospital h1, ..., hk. Thus, we have

V = {s, p1, ..., pn, h1, ..., hk, t}

We need a directed edge to connect our source node s each of our patients pi with a capacity of 1 to
indicate that each pi represents only 1 patients. We need a directed edge to connect each patient node
pi to each hospital node hj s.t. hj is within a 30 minute drive from pi. Each of these edges should also
have capacity 1 to indicate that each patient pi represents a single patient. Since each hospital can hold
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a maximum of n
k + 1 patients, we need a directed edge from each hospital hk to the sink node t with

capacity n
k + 1. Thus, we have

E = {(s, p1, 1), ..., (s, pn, 1), (h1, t,
n

k
+ 1), ..., (hk, t,

n

k
+ 1), A}

where
A = {(pi, hj , 1)| hospital hj is within a 30 minute drive from patient pi}. Drawn out, the graph G looks
as follows:

Once we perform Edmonds-Karp on G to find the value of maximum flow in G, v(f), we can return true
if v(f) = n and false otherwise.

In summary, our algorithm works as follows:

(i) Let n = the number of patients

(ii) Construct G = (V,E) as described above

(iii) Run Edmonds-Karp to find the value of max flow v(f) in G

(iv) Return v(f) == n

(b) Proof of Correctness:
It suffices to show that the value of max flow in G is v(f) = n ⇐⇒ a balanced allocation of patients is
possible.
First, we will show that the value of max flow in G is v(f) = n =⇒ a balanced allocation of patients
is possible.
Since v(f) = n, we know all edges exiting s are saturated. By conservation of flow, we know there is
an edge exiting each pi of capacity 1. Also by conservation of flow, we know the total number of edges
entering each hj is ≤ n

k +1. Thus, we can assign each patient pi to the hospital hj corresponding to the
edge exiting pi in f . This is a balanced allocation of patients. Thus, we have shown that v(f) = n =⇒
a balanced allocation of patients is possible.
Next, we will show that the possibility of a balanced allocation =⇒ the value of the max flow in G is
v(f) = n.
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Since a balanced allocation is possible, we can assign each of the n patients to one of the k hospitals
such that no hospital receives > n

k + 1 patients. To construct a valid flow f in G, we can push 1 flow
from each pi to the hospital hj that it is assigned to in the balanced allocation. We can then push flow
equal to the number of patients assigned to each hospital hj from hj to t. To satisfy conservation of
flow and complete the construction of f , we can push 1 flow from s to each patient pi (since each pi
has 1 flow exiting it). At this point, f is a valid flow, and all n of the edges exiting the source node s
are saturated with flow 1, so the value of flow is v(f) = n. Since the sum of the capacities of all edges
exiting s in G is n, the max flow of any valid flow in G is always ≤ n. Thus, since v(f) = n, we know f
is a max flow. Thus, we have shown that, if a balanced allocation is possible, the value of the max flow
in G is v(f) = n.
This completes the proof that the value of max flow in G is v(f) = n ⇐⇒ a balanced allocation of
patients is possible. The correctness of our algorithm follows from its return statement.

(c) There are n + k + 2 = O(n + k) nodes, which take a total of O(n + k) runtime to create. There are n
edges involving s, k edges involving t, and O(nk) edges involving one patient pi and one hospital hj ,
for a total of k + n + O(nk) = O(nk) edges. These take a total of O(nk) runtime to create. Thus, the
creation of G takes a total of O(nk) +O(n+ k) = O(nk) runtime.
Edmonds-Karp takes O(|V ||E|2) runtime. Since |V | = O(n + k) and |E| = O(nk), we know running
Edmonds-Karp on our algorithm takes

O((n+ k)(nk)2) = O((n+ k)n2k2) = O(n3k2 + k3n2)

runtime. It takes constant time to compute and return the solution once we find v(f) using Edmonds-
Karp.
Thus, the worst-case asymptotic complexity of our algorithm is O(n3k2+k3n2)+O(nk) = O(n3k2+k3n2)
runtime, so it is polynomial with respect to input size, as required.

Assignment 10

Problem 1 (25pts)

Consider the partial satisfiability problem, denoted as 3-Sat(α). We are given a collection of k clauses, each
of which contains exactly three literals, and we are asked to determine whether there is an assignment of
true/false values to the literals such that at least αk clauses will be true. Note that 3-Sat(1) is exactly the
3-SAT problem from lecture.

Prove that 3-Sat( 1516 ) is NP-complete.

Hint: If x, y, and z are literals, there are eight possible clauses containing them: (x ∨ y ∨ z), (!x ∨ y ∨ z),
(x∨!y ∨ z), (x ∨ y∨!z), (!x∨!y ∨ z), (!x ∨ y∨!z), (x∨!y∨!z), (!x∨!y∨!z).

Proof. First, we must show that 3−Sat( 1516 ) is NP . In this case, the certificate t is an assignment of boolean
values to all the literals, which is polynomial in length with respect to the number of clauses. To check if a
certificate t is a valid assignment, we can just count how many clauses t satisfies and return true if t ≥ k 15

16 ,
false otherwise. It takes constant time to evaluate each clause, so it takes polynomial time to certify the
certificate t. Thus, 3− Sat( 1516 ) has both polynomial length certificate and a polynomial time certifier, so it
has an efficient certification, so 3− Sat( 1516 ) is NP .
Next, we must reduce a known NP-Complete problem to 3− Sat( 1516 ). We will reduce 3− Sat(1), which we
know from lecture is NP-Complete. Consider any 3 − Sat(1) instance with k clauses. Consider any clause
c = (xi ∨ xj ∨ xk). Following the hint, the eight disjunctions of the literals xi, xj , xk and their complements
are (xi ∨ xj ∨ xk), (xi ∨ xj∨!xk), (xi∨!xj ∨ xk), (xi∨!xj∨!xk), (!xi ∨ xj ∨ xk), (!xi ∨ xj∨!xk), (!xi∨!xj ∨ xk),
and (!xi∨!xj∨!xk). For any truth assignment (xi = a, xj = b, xk = c), where a, b, c ∈ { true, false } the
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only disjunction that evaluates to false is (!a∨!b∨!c). Therefore, for any truth assignment to the literals
(xi, xj , xk), exactly 7 of the the eight disjunctions evaluate to true. We want to modify the 3 − Sat(1)
instance such that using our 3−Sat( 1516 ) blackbox on the modified instance returns true ⇐⇒ we can satisfy
the original 3− Sat(1) instance.Thus, for each clause c = (xi ∨ xj ∨ xk) in the 3 − Sat(1) instance, we can
create 16 new clauses. 9 of these clauses will be duplicates of c. The other 7 clauses will be the remaining
disjunctions of xi, xj , xk, namely (xi ∨ xj∨!xk), (xi∨!xj ∨ xk), (xi∨!xj∨!xk), (!xi ∨ xj ∨ xk), (!xi ∨ xj∨!xk),
(!xi∨!xj ∨ xk), and (!xi∨!xj∨!xk). We can then use our 3− Sat( 1516 ) blackbox with 16k clauses to determine
if there is an assignment that satisfies ≥ 15

16 · 16k = 15k of the clauses. Note that we are creating 16 = O(1)
new clauses, each in O(1) time, for each of the k clauses in the initial 3− Sat(1) instance, so it takes O(k)
time to create the modified 3− Sat( 1516 ) instance. Thus, we have reduced in polynomial time the 3− Sat(1)
problem to the 3 − Sat( 1516 ) problem. To prove our reduction is valid, we must now prove that there is a
satisfying assignment in the modified 3−Sat( 1516 ) instance ⇐⇒ there is a satisfying assignment in the initial
3− Sat(1) instance.
Consider any clause c from the initial 3 − Sat(1) instance. If c = (xi ∨ xj ∨ xk) evaluates to true, then all
9 copies of c in the modified 3 − Sat( 1516 ) instance evaluate to true, and 6 of the 7 remaining disjunctions
of xi, xj , xk and their complements evaluate to true. The last part follows since only (!xi∨!xj∨!xk) would
evaluate to false. Thus, if c evaluates to true in some truth assignment, then exactly 9 + 6 = 15 of the
16 clauses in the modified 3 − Sat( 1516 ) instance evaluate to true. Similarly, if if c evaluates to false, then
all 9 copies of c in the modified instance evaluate to false, while the remaining 7 evaluate to true. In
this case, exactly 7 out of the 16 clauses corresponding to c evaluate to true. This also implies that the
number of clauses in the modified instance that evaluate to true should always be between 7

16 · 16k = 7k and
15
16 · 16k = 15k.
If there is a satisfying assignment in the modified 3 − Sat( 1516 ) instance, then we know at least 15

16k clauses
evaluate to true under that assignment. Since maximally 15

16k clauses in the modified instance evaluate to
true under any assignment, we know exactly 15

16k clauses evaluate to true. If any clause c′ from the initial
instance evaluate to false, then we would have less than 15

16k clauses evaluating to true in the modified
instance. This follows from only 7 of the 16 clauses corresponding to c′ would evaluate to true under any
truth assignment in the modified instance. Thus, if there is an assignment satisfying the modified 3−Sat( 1516 )
instance, that assignment also satisfies the initial 3− Sat(1) instance.
Similarly, if there is a satisfying assignment for the initial 3−Sat(1) instance, then we know, for each clause
c in the initial instance, that assignment causes 15 out of the 16 clauses corresponding to c to evaluate to
true in the modified 3 − Sat( 1516 ) instance. Since this is true for all k clauses independently, we know that
exactly 15k of the 16k clauses in the modified instance evaluate to true under the satisfying assignment for
the initial instance. Thus, if there is an assignment satisfying the initial 3− Sat(1) instance with k clauses,
it also satisfies the modified 3− Sat( 1516 ) with 16k clauses.
This completes the proof that 3− Sat( 1516 ) is NP-Complete.

Problem 2

[25 pts.] Consider a graph G = (V,E) and two integers k,m.
2a
A k-clique is a subset of nodes ui ∈ G, i = 1, ..., k such that there is an edge connecting each pair of distinct
vertices ui, uj . In other words, the k-clique is a complete sub-graph of G. Prove that finding a clique of
size k is NP-Complete. [15 pts.]

2b
The Dense Subgraph problem is to find a subset V ′ of V , whose size is at most k and is connected by at
least m edges. Prove that the Dense Subgraph problem is NP-Complete. [10 pts.]

Solution.
(a)

Proof. First, we must show that finding a clique of size k is NP .

Page 550



In this case the certificate t is a subset U ⊆ G. The subset must have size k, so it is polynomial length with
respect to the input, and it must be complete. We can check if U has size k in O(1) time. To check if U is
complete, we must make sure that all nodes u ∈ U have exactly k− 1 edges between other nodes in U . This
takes O(k− 1) = O(k) time for each of the k nodes in U , for a total of O(k2) time. Thus, it takes a total of
O(k2) time to check if a subset of nodes U represents a valid clique of size k, so finding a clique of size k has
a polynomial time certifier. Thus, finding a k-clique has an efficient certification, so it is NP.
Next, we must reduce a known NP-Complete problem to finding a clique of size k in a graph G. We can
reduce the 3 − SAT problem, which we know from lecture is NP-Complete. Consider a 3 − SAT instance
with k clauses. We will construct G = (V,E) based on these clauses. For each literal xi in each clause cj , we
will create a vertex vxi,cj . We will create edges between all vertices vxi,cj , vxk,cl s.t. xi ̸=!xk and j ̸= l. Then
we will call our blackbox to see if we can find a k-clique in G. Note that there are O(3k) = O(k) vertices,
which take O(k) time to create. There are O(k − 3) = O(k) edges for each of the O(k) vertices, which take
a total of O(k2) time. Thus, it takes polynomial time to create G, so we have reduced in polynomial time
the 3 − SAT problem to a finding a k-clique in a graph G. To prove our reduction is valid, we must now
show that we can find a k-clique ⇐⇒ the 3− SAT instance is satisfiable.
If we can find a k-clique in G, then we know there is a complete subgraph with k vertices. Since no edges
exist between literals in the same clause, we know these k vertices represent literals from k distinct clauses.
Also, since no edges exist between a literal and its complement, we know we can set all literals corresponding
to vertices in the k-clique to true without creating any contradictions. At this point, we have at least one
literal from each of the k clauses in the 3− SAT instance set to true without contradictions, so we know all
clauses evaluate to true. We can set all literals that do not appear in any vertices of the k-clique to false,
and we have satisfied the 3− SAT instance.
If we have a satisfying assignment of literals for the 3−SAT instance, then we know at least one literal from
each of the k clauses is set to true without contradictions. We can select the vertices corresponding to one
such literal from each of these clauses and all the edges between them to be part of our k-clique. We know
none of the corresponding literals are complements of each other because the satisfying assignment does not
produce contradictions. Since there are edges between all vertices that are not part of the same clause, and
since none of the selected vertices represent complements of each other, we know there are edges between
each distinct pair of the k selected vertices in G. Therefore, we know we have formed a valid k-clique.
This completes the proof that finding a k-clique is NP-Complete

(b)

Proof. First, we must show that the Dense Subgraph problem is NP . In this case, the certificate t is a
subset V ′ of V , which is polynomial length with respect to the graph G. The certifier must check if |V ′| ≤ k,
which can be done in O(1) time. It must also check if there are at least m edges connecting the vertices in
V ′. To do this, we can count all distinct edges between vertices in V ′ and compare the count to m. This can
be done in O(n2) time, where n is the number of vertices in G, as each vertex v has maximally n−1 edges to
distinct nodes. Thus, the Dense Subgraph problem has a polynomial length certificate and a polynomial
time certifier, so it has an efficient certification, so it is NP .
Next, we must reduce a known NP-Complete problem to the Dense Subgraph problem. We will reduce
the k-clique problem, which we know from part (a) is NP-Complete. Note that, in a k-clique, since each
vertex has k− 1 edges, but an edge from u to v is the same as an edge from v to u (assuming an undirected

graph), there are exactly k(k−1)
2 edges in a k-clique. By definition, there are k vertices in a k-clique. Since

a k-clique is a complete subgraph, we know that any collection of k vertices can have at most k(k−1)
2 edges

connecting them.

Thus, to determine if there exists a k-clique in G, we can let m = k(k−1)
2 and use our blackbox to determine

if there is a subset V ′ of V whose size is at most k and is connected by at least m = k(k−1)
2 edges. It takes

O(1) time to calculate the value of m, so we have reduced in polynomial time the k-clique problem to a

Dense Subgraph problem with k = k, m = k(k−1)
2 . To prove our reduction is valid, we must show that

there is a k-clique in G = (V,E) ⇐⇒ there is a subset V ′ of V of size at most k connected by at least
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k(k−1)
2 edges.

If there exists a valid k-clique, then there exists a subgraph of G with k vertices and k(k−1)
2 edges. Thus,

the k-clique itself forms subset V ′ of V of size at most k connected by at least k(k−1)
2 edges. This subset is

our valid solution to the Dense Subgraph problem.

If there exists a subset V ′ of V of at most k vertices connected by at least k(k−1)
2 edges, then, since any

subset of ≤ k − 1 vertices has at most (k−1)(k−2)
2 edges, we know that V ′ has exactly k vertices. Moreover,

since any subset of k vertices is connected by at most k(k−1)
2 edges, we know V ′ is connected by exactly

k(k−1)
2 edges. Thus, V ′ and the edges connecting distinct vertices in V ′ form a complete subgraph of size k.

This is our valid k-clique.
This concludes the proof that the Dense Subgraph problem is NP-Complete.

Problem 3 (25 pts)

Consider a modified SAT problem, SAT’, in which, given a CNF formula having m clauses and n variables
x1, x2, ..., xn, the output is YES if there is an assignment to the variables such that exactly m − 2 clauses
are satisfied, and NO otherwise. Prove that SAT’ is NP-Complete.

Proof. First, we must show that SAT ′ is NP. In this case, the certificate t is an assignment of true and false
values to the n variables in the SAT’ instance. This is polynomial in length with respect to n. The certifier
must count how many of the m clauses are satisfied by the truth assignment. If this count equals m− 2, the
certifier should return true. Otherwise, the certifier should return false. It takes O(n) to evaluate each of
the m clauses under the truth assignment t, for a total of O(mn) time. Thus, SAT’ has both a polynomial
length certificate and a polynomial time certifier, so it has an efficient certificate, so SAT’ is NP.
Next, we must show that we can reduce a known NP-Complete problem to a SAT’ problem in polynomial
time. We will reduce SAT, which we know from discussion is NP-Complete. We want to produce a SAT’
instance from a SAT instance such that the SAT’ instance outputs YES ⇐⇒ the initial SAT instance is
satisfiable. Consider a SAT instance with m clauses and n variables. To create our SAT’ instance, we can
add two new variables, y and z, and four new clauses, each which consist of one literal: (y), (!y), (z), (!z)
Thus, if the initial SAT instance had a logic formula of

c1 ∧ c2 ∧ ... ∧ cm

then the modified SAT’ instance has a logic formula of

c1 ∧ c2 ∧ ... ∧ cm ∧ y∧!y ∧ z∧!z

Thus, SAT’ has
m′ = m+ 4

clauses and
n′ = n+ 2

variables. In any truth assignment, exactly two of (y), (!y), (z), and (!z) are true, and the other two are false.
Therefore, in any truth assignment, at most m′ − 2 = m + 2 clauses are true in the SAT’ instance. Thus,
to determine if there is a truth assignment that satisfies all m clauses from the initial SAT instance, we can
use our SAT’ blackbox to determine if there is a truth assignment that satisfies exactly m′ − 2 clauses in
the modified SAT’ instance. It takes constant time to to add the additional variables and clauses to create
the modified SAT’ instance, so we have reduced in polynomial time a SAT problem with m clauses and n
variables to a SAT’ problem with m′ clauses and n′ variables. To prove our reduction is correct, we must
show that there exists a truth assignment that satisfies all m clauses from the initial SAT instance ⇐⇒
there exists a truth assignment that satisfies exactly m′−2 = m+2 clauses from the modified SAT’ instance.
If there exists a truth assignment that satisfies all m clauses from the initial SAT instance, then since all m
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clauses are also in the modified SAT’ instance, we know at least m clauses are satisfied in the SAT’ instance.
Furthermore, since exactly two of (y), (!y), (z), and (!z) are true under any truth assignment, the satisfying
truth assignment for the SAT instance must satisfy exactly m + 2 = m′ − 2 clauses in the modified SAT’
instance (assuming we modify it to assign values arbitrarily to y and z), so the truth assignment for the SAT
instance also satisfies the SAT’ instance for any y, z.
If there exists a truth assignment that satisfies exactly m′−2 = m+2 clauses in the modified SAT’ instance,
then since there are only m′ clauses, and two of (y), (!y), (z), and (!z) must always evaluate to false, the
truth assignment must satisfy exactly m clauses excluding (y), (!y), (z), and (!z). The only other m clauses
in the SAT’ instance are the m clauses from the initial SAT instance, so we know all m clauses from the
initial SAT instance must evaluate to true under this truth assignment. Thus, the truth assignment that
satisfies m′ − 2 = m+ 2 clauses in the SAT’ instance also satisfies all m clauses from the SAT instance.
This completes the proof that SAT’ is NP-Complete.

Problem 4 (25 pts)

Show that Vertex Cover is still NP-Complete even when all vertices in the graph are restricted to have even
degree.

Proof. First, we must show that Vertex Cover with even degrees is NP. In this case, the certificate t is a
subset V ′ of V , where G = (V,E), so it has polynomial length with respect to input size. For each edge, the
certifier ensure that at least one of the two points endpoints is an element of V ′. This takes constant time
for each of m = |E| edges, so the certifier takes O(m) time. Thus, Vertex Cover with even degrees has both
a polynomial length certificate and polynomial time certifier, so it has efficient certification, so it is NP.
Next, we must reduce a known NP-Complete problem to Vertex Cover with even degrees. We will reduce
Vertex Cover, which we know from lecture is NP-Complete. We want to modify the graph G = (V,E) such
that G has a vertex cover of size k ⇐⇒ the modified graph G′ = (V ′, E′) has a vertex cover with even
degrees of size k + 2. Since all degrees must be even, we can create a new vertex u in G’, and connect to u
edges from all vertices in V with odd degrees. This will make all nodes from V have even degrees. It will
make u have degree equal to the number of nodes with odd degrees in V .

Claim: the number of nodes with odd degrees in V is even.

Proof. The sum of the degrees of all vertices in V is the number of endpoints of edges in G. Since each edge
has two endpoints, and m = |E| is an integer, the sum of the degrees of all vertices is equal to 2m = 2|E|,
which is even. Suppose the sum of the even-degree nodes in V is s. Then s is a sum of even numbers, so it
is also even. The sum of the odd-degree nodes is 2m− s, which is also even since it is the difference between
two even numbers. For the sum of odd numbers to be even, there must be an even number of them added
together. Therefore, since the sum of the degrees of the odd-degree vertices is even, we know there are an
even number of nodes with odd-degrees.

Since u has degree equal to the number of nodes with odd degrees in V , we know u has even degree. To
ensure that a Vertex Cover in G’ includes two removable nodes, we add two mode vertices to V’, v and w,
which are only attached to u and to each other. Note that v and w both have the even degree of 2. Now,
if a vertex cover doesn’t have u, it must have both v and w to cover the cycle between the three vertices.
Since v and w are not connected to any nodes or edges from G, we can switch one of them with u, and we
still have a vertex cover. Therefore, if we can produce a Vertex Cover in G’ of size k, then we can produce
a vertex cover in G’ of size k that includes v. Since we removed nothing from G to produce G′, this vertex
cover should also act as vertex cover for G, with appropriate vertices removed. Thus, once we add u, v, w
and corresponding edges to G to form G′, we can determine if there is a Vertex Cover in G of size k by using
our Vertex Cover with even-degrees blackbox to determine if there is a Vertex Cover in G′ of size k + 2. It
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takes O(|V |) = O(n) time to add the edges from odd-degree nodes in G to u. It takes constant time to add
v, w, and their edges. Thus, we have reduced in polynomial time a Vertex Cover problem to a Vertex Cover
with even degrees problem. To prove our reduction is valid, we must show that there is a Vertex Cover with
even degrees of size k + 2 in G′ ⇐⇒ there is a Vertex Cover of size k in G.
If we have a Vertex Cover VG of size k in G, then the only edges in G′ that might not be connected are
edges involving u and the edge between v and w. Thus, we can add u and either of v and w to VG to create
a Vertex Cover VG′ in G’. Since VG has size k, and we add two vertices to VG to create VG′ , we know VG′ is
a Vertex Cover of size k + 2 in G’.
If we have a Vertex Cover VG′ of size k + 2 in G′, then we know we must have at least two vertices among
u, v, w in VG′ in order to cover all edges in the cycle between these three vertices. Since none of these vertices
cover any edges in G, we can remove two of them from VG′ to create a Vertex Cover VG in G. Since VG′

has size k + 2, and we removed two nodes to create VG, we know VG is a Vertex Cover in G of size k. One
technicality is if all three of u, v, and w are in VG′ . After removing u and v, we have w left in our VG, which
doesn’t make sense since w is not in G. However, since w covers none of the edges in G, we can just pick any
vertex from G that is not yet in VG to replace w. This results in a Vertex Cover VG in G of size k, where all
vertices are guaranteed to be in G itself.
Thus, there exists a Vertex Cover of size k + 2 in G′ ⇐⇒ there exists a Vertex Cover of size k in G. This
concludes the proof that Vertex Cover is still NP-Complete, even when all vertices in the graph are restricted
to have even degree.

Assignment 11

Problem 1 (15pts)

Determine if the following statements are true or false. For each statement, briefly explain your reasoning.

(a) If Ham-Cycle is polynomial time reducible to interval scheduling problem then P = NP.

(b) The NP-Hard class of problems does not contain any decision problems.

(c) If there exists an algorithm that solves problem X with pseudo-polynomial runtime, then X must be
NP-Hard.

(d) Suppose there is a 7-approxmiation algorithm for the general Traveling Salesman Problem. Then there
exists a polynomial time solution for the 3-SAT problem.

(e) A vertex that is part of a minimum vertex cover can never be a part of a maximum independent set.

Solution.

(a) True. If X ≤p Y , then we know we can solve X by solving Y and doing polynomial time additional
work. We know from lecture that we can solve interval scheduling in O(nlogn) time using a greedy
algorithm. Therefore, if Ham-Cycle ≤p Interval Scheduling, we know we can solve Ham-Cycle by doing
O(nlogn) time to solve the Interval Scheduling problem and some polynomial p additional work. This
results in polynomial total work to solve Ham-Cycle using Interval Scheduling. If Ham-Cycle ∈ P , then
since Ham-Cycle is NP-Complete, we know the hardest problem in NP is ∈ P , so we know everything in
NP is in P . Since every polynomial time algorithm has an efficient certificate, this completes the proof
that Ham-Cycle ≤p Interval Scheduling =⇒ P = NP .

(b) False. By definition, all problems in NP-Complete are decision problems. Also by definition, all problems
in NP-Complete are in NP-Hard. Therefore, we can take any problem in NP-Complete, such as 3-SAT
from lecture, and it serves as a counterexample to the claim that NP-Hard doesn’t contain any decision
problems.
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(c) False. Consider a problem which belongs to P such as the Max-Flow problem. We know that Edmonds-
Karp finds Max-Flow in polynomial time. We also know that the unspecified Ford-Fulkerson finds Max-
Flow in pseudo-polynomial runtime. Thus, Max-Flow is a problem X for which there exists an algorithm
with pseudo-polynomial runtime. However, since we can solve Max-Flow in polynomial time, we know
Max-Flow ∈ P , so we know Max-Flow ̸∈ NP-Hard. Thus, Max-Flow serves as a counterexample to the
claim that the existence of a pseudo polynomial time algorithm for X implies X must be NP-Hard.

(d) True. Assuming the 7-approximation algorithm is itself polynomial, then we know the general TSP is
polynomial. Since we know from lecture that the general TSP is in NP , this implies that P = NP .
Since 3-SAT is in NP , this implies 3-SAT is in P . This proves that the existence of a polynomial time
7-approximation algorithm for the general TSP problem =⇒ the existence of a polynomial time solution
for the 3-SAT problem.

Note: if we do not assume that the approximation algorithm for the general TSP has polynomial runtime,
then the answer is false. If the runtime of the 7-approximation algorithm is exponential, for example,
then there might not be a polynomial time solution to 3-SAT, even though there is a 7-approximation
algorithm for the general TSP.

(e) False Consider the graph G = (V,E), where V = {A,B} and E = {(a, b)}. Then there are two minimum
vertex cover sets, V1 = {A} (since the only edge has one endpoint in A(, and V2 = {B} (since the only
edge has one endpoint in B). There are also two maximum independent sets, V3 = {A} = V1 and
V4 = {B}. Thus, V3 = V1 = {A} is both a maximum independent set an a minimum vertex cover.
Thus, the vertex A belongs to both a minimum vertex cover set and a maximum independent set.
This disproves the claim that no vertex can belong to both a minimum vertex cover and a maximum
independent set.

Problem 2 (15 pts)

Given an undirected graph with positive edge weights, the BIG-HAM-CYCLE problem is to decide if it
contains a Hamiltonian cycle C such that the sum of weights of edges in C is at least half of the total sum
of weights of edges in the graph. Show that finding BIG-HAM-CYCLE in a graph is NP-Complete.

Sodlution.
First, we must show that finding BIG-HAM-CYCLE is NP. In this case, the certificate is an ordered list of
edges. There are ≤ |E| edges in this list, so the certificate is polynomial. The certifier must determine both

(i) if the certificate has exactly n edges in it, which it can do in constant time.

(ii) if the edges in the certificate pass through each node exactly once, which it can do in linear time.

Thus, the certifier takes linear time to verify the certificate, so it is polynomial with respect to the input
length. Since BIG-HAM-CYCLE has both a polynomial length certificate and a polynomial time certifier,
it has an efficient certification, so it is NP .

To show BIG-HAM-CYCLE is NP-Complete, we must reduce a known NP-Complete problem to a BIG-
HAM-CYCLE problem in polynomial time. We will reduce the Ham-Cycle problem, which we know from
lecture in NP-Complete. Consider any unweighted, undirected graph G. We need to construct a graph G′

such that G′ has a BIG-HAM-CYCLE ⇐⇒ G has a Ham-Cycle. By definition of a BIG-HAM-CYCLE C,
the sum of the weights of edges in C must be at least half of the total sum of weights of edges in the graph.
Therefore, if each edge e has weight we, we can write∑

e∈C
we ≥

∑
e∈E we

2
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Note: if we = 0 for all e ∈ E, than any subset of edges S ⊆ E satisfies∑
e∈S

we ≥
∑
e∈E we

2

Thus, we can construct G′ as a weighted graph by setting we = 0 for all e ∈ E. Then, to determine if there
is a Ham-Cycle in G, we can just use our blackbox to determine if there is a BIG-HAM-CYCLE in G′. It
takes O(|E|) time to set the edge weights of all edges to 0. Thus, we have reduced the known NP-Complete
Ham-Cycle problem to the NP BIG-HAM-CYCLE problem in polynomial time. To show our reduction is
valid, we must prove that there is a Ham-Cycle in G ⇐⇒ there is a BIG-HAM-CYCLE in G′.
If there is a Ham-Cycle C in G, then we can take the same set of edges C in G′, and since we have not added
any edges or nodes, we know C is a Ham-Cycle in G′. Also, since∑

e∈C
we = 0 ≥ 0

2
=

∑
e∈E we

2

we know C is a BIG-HAM-CYCLE in G′.
If we have a BIG-HAM-CYCLE C in G′, then since we have not added or removed any nodes or edges, we
know C is a Ham-Cycle in G.
This completes the proof that BIG-HAM-CYCLE is NP-Complete.

Problem 3 (15 pts)

Given an undirected connected graph G = (V,E) in which a certain number of tokens t(v) = 1 or 2 placed
on each vertex v. You will now play the following game. You pick a vertex u that contains at least two
tokens, remove two tokens from u and add one token to any one of adjacent vertices. The objective of the
game is to perform a sequence of moves such that you are left with exactly one token in the whole graph.
You are not allowed to pick a vertex with 0 or 1 token. Prove that the problem of finding such a sequence
of moves is NP-Hard by reduction from Hamiltonian Path.

Solution.
Consider a graph G = (V,E). We need to construct a graph G′ such that G has a Hamiltonian Path ⇐⇒
G′ has a winning sequence of moves.
Note: If one vertex has two tokens, and all other vertices have one token, then a sequence of k moves (that
passes through each vertex at most once) must leave k vertices with 0 tokens, 1 vertex with 2 tokens, and
n− k − 1 vertices with 1 token (for all 1 ≤ kleqn− 2). Proof. We can induct on k.
Base Case: If k = 1, then we only have one move. The only legal first move is to move from the one vertex
with 2 tokens to one of its neighbors. This causes the one vertex with 2 tokens to have 0 tokens, its neighbor
to have 1+1 = 2 tokens, and the remaining n-1-1 = n-2 vertices to have 1 token.
Inductive Hypothesis: Assume the claim holds for all 1 ≤ k ≤ j.
Inductive Step: Consider k = j + 1. By the inductive hypothesis, we know that there are j vertices with
0 tokens, 1 vertex with two tokens, and n − j − 1 vertices with 1 token. Therefore, the only legal j + 1th
move is to go from the one vertex with two tokens to one of its neighbors with 1 token. This leaves
n− (j + 1)− 1 = n− j − 2 vertices with 1 token, 1 vertex with 2 tokens, and j + 1 vertices with 0 tokens.
The conclusion follows by induction.
We can use this result to construct G′. We just need to add a vertex v∗ and edges connecting v∗ to all
vertices in V . That is, G′ = (V ′, E′), where V ′ = {V ∪ v∗} and E′ = E ∪ {(v∗, v)|v ∈ V }. Then, following
the intuition provided by the inductive result, we can set t(v∗) = 2, and t(v) = 1 for all v ∈ V . To determine
if there is a Hamiltonian Path in G, we can just use our blackbox to determine if there is a winning sequence
in G′. It takes O(1) time to add v∗, O(|E|) time to add all of the edges with endpoints in v∗, and O(|V |)
time to set the token values for each vertex. Thus, we have reduced Hamiltonian Path to the token moving
problem in polynomial time. To prove our reduction is valid, we need to show that there is a Hamiltonian
Path in G ⇐⇒ there is a winning strategy to the token moving problem in G′.
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If there is a Hamiltonian Path P in G, then we can go from v∗ to either endpoint of P . This results in
v∗ having 0 tokens and the chosen endpoint of P having 2 tokens. By our inductive result, we know that
tracing a sequence of n moves from v∗ to one endpoint of P and then through P will result in one endpoint
of P having 2 tokens and all other nodes having 0 tokens. To complete the winning strategy, we can simply
move from the vertex with 2 tokens to v∗. v∗ will then be the only vertex with tokens, and it will only have
1 token.
If there is a winning strategy in G′, we know it must start from v∗ since that is the only legal first move.
Since there is a winning strategy, we know all nodes from V were both moved to and from. Also we know
that if we revisit a node v ∈ V after moving to it once, we will leave that node with 1 token, so we will have
no moves left. Thus, the only way for us to have a winning strategy is if we go from v∗ to some v ∈ V then
through all other u ∈ V , then back to v∗. This traces a Hamiltonian Cycle in G′ which forms a Hamiltonian
path in G when we exclude edges incident to v∗ and the vertex v∗ itself. Thus, the existence of a winning
strategy in G′ implies the existence of a Hamiltonian Path in G.
Thus, our polynomial time reduction from Hamiltonian Path to the token moving problem is valid.
This completes the proof that finding a winning strategy in the token moving problem is NP-Hard.

Problem 4 (20 pts)

In a certain town, there are many clubs, and every adult belongs to at least one club. The town’s people
would like to simplify their social life by disbanding as many clubs as possible, but they want to make sure
that afterwards everyone will still belong to at least one club. Formally the Redundant Clubs problem has
the following input and output. INPUT: List of people; list of clubs; list of members of each club; number
K. OUTPUT: Yes if there exists a set of K clubs such that, after disbanding all clubs in this set, each person
still belongs to at least one club. No otherwise. Prove that the Redundant Clubs problem is NP-Complete.

Solution.
First, we must show that the Redundant Clubs problem is NP. In this case, the certificate is a set of clubs
to remove. If there are n clubs in the town, there are ≤ n clubs in the certificate, so it is polynomial length
with respect to the input. The certifier must check both

(i) if the certificate is a set of size k, which can be done in O(1) time.

(ii) if each person belongs to at least one club not in the set of size k, which can be done in polynomial
time by brute force.

Thus, the Redundant Clubs problem has both a polynomial length certificate and a polynomial time certifier,
so it has a n efficient certification. Thus, the Redundant Clubs problem is NP.
Now, we must reduce a known NP-Complete problem to the Redundant Clubs problem. We will reduce the
Set Cover problem, which we know from lecture is NP-Complete. Consider an instance of Set Cover. We
have a set P of p elements, a collection N of n subsets Ni ⊆ P , and we want to determine if there is a
collection of k subsets whose union is all of P . This is essentially the complement of finding a collection of
n − k subsets Ni ⊆ P such that removing those n − k subsets still leaves each element of P in at least one
of the remaining subsets. Thus, we can convert our Set Cover instance into a Redundant Clubs instance by
letting P be our set of people and each Ni be the member list of one of the n clubs. To determine if there is
a Set Cover of size k, we can simply use our blackbox to determine if there is a solution to the Redundant
Clubs problem with the input n− k. It takes O(p) time to copy the p elements into a list of people. It takes
O(np) time to copy the lists of club members for each club. Thus, we have reduced the Set Cover problem
to the Redundant Clubs problem in polynomial time. To prove our reduction is valid, we must show that
there is a Set Cover of size k ⇐⇒ there is a set of n− k clubs that can be removed while maintaining that
each person remains in at least one club.
If there is a set cover of size k, then we know the k corresponding clubs combine to have every single person
in P as a member. Therefore, we know we can remove the other n− k while guaranteeing that each person
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remains in at least one club.
If there is a set of n − k clubs that can be removed while maintaining that each person remains in at least
one club, then we know the remaining k clubs must combine to have every single person in P as a member.
Thus, the k corresponding subsets Ni ⊆ P form a Set Cover of size k.
Thus, our polynomial time reduction from Set Cover to Redundant Clubs is valid.
This completes the proof that the Redundant Clubs is NP-Complete.

Problem 5 (15 pts)

Given a graph G=(V, E) with an even number of vertices as the input, the HALF-IS problem is to decide

if G has an independent set of size |V |
2 . Prove that HALF-IS is in NP-Complete.

Solution.
First, we must show that HALF-IS is NP. In this case, the certificate is a subset S′ ⊆ S of ≤ |V | vertices.
Therefore, the certificate has polynomial length with respect to the input length. The certifier must both

(i) Verify that the set S′ has size |V |
2 , which can be done in constant time.

(ii) Verify that, for all e ∈ E, both endpoints of E are not in S′, which can be done in O(|E|log(|V |)) time.

Thus, HALF-IS has both a polynomial length certificate and a polynomial time certifier, so it has an efficient
certification. Thus, HALF-IS is NP.
Now, we must reduce a known NP-Complete problem to a HALF-IS problem. We will reduce the Independent
Set problem, which we know from lecture is NP-Complete. Consider a graph G = (V,E), on which we want
to determine if there is an independent set of size k. Suppose |V | = n. Then if k = n

2 , we can directly
call our blackbox to determine if there is an independent set of size k. Otherwise, we need to construct

G′ = (V ′, E′) such that there is an independent set of size |V ′|
2 ⇐⇒ there is an independent set of size k in

G. We do this in two different ways:

(i) If k < n
2 , we need to add j nodes to V to form V ′ such that those j nodes can always be part of an

independent set, and k+j
n+j = 1

2 . Solving this equation for j yields

j = n− 2k

Thus, if k < n
2 , we construct G′ with V ′ = V ∪ {x1, x2, · · · , xn−2k}, and we let E′ = E so that

x1, ..., xn−2k can always be part of any independent set.

(ii) If k > n
2 , we need to add j nodes to V to form V ′ such that those j nodes can never be part of an

independent set of size > 1 and k
n+j = 1

2 . Solving this equation for j yields

j = 2k − n

Thus, if k > n
2 , we construct G′ with V ′ = V ∪ {x1, · · · , x2k−n} and E′ = E ∪ {(xi, xj), (xi, v)|1 ≤

i, j ≤ 2k − n, v ∈ V } so that x1, · · · , x2k−n can never be part of an independent set of size > 1.

Then, we can determine if there is an independent set of size k in G by using our blackbox to determine if

there is an independent set of size |V ′|
2 in G′. In both cases, we add O(|V ||E|) edges and O(|V |) nodes to G

to form G′, so we have reduced the Independent Set problem to the HALF-IS problem in polynomial time.
To show our reduction is valid, we need to show that G has an independent set of size k ⇐⇒ G′ has an

independent set of size |V ′|
2 .

If G has an independent set of size k, then

1. If k < n
2 , we know that the union of the independent set of size k in G and the x1, · · · , xn−2k in G′

form an independent set of size

n− k =
n+ n− 2k

2
=

2n+ 2k

2
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2. If k > n
2 , we know that the independent set of size k forms an independent set of size

k =
n+ 2k − n

2
=

2k

2

So we can form an independent set of size |V ′|
2 in both cases.

If we can form an independent set of size |V ′|
2 in G′, then

(i) If k < n
2 , then if all of x1, · · · , xn−2k are in the independent set of size |V ′|

2 , we know removing them
produces an independent set of size

n− k − (n− 2k) = k

in G. If not all of x1, · · · , xn−2k are in the independent set of size |V ′|
2 , then we know the set consists

of more than k independent vertices from G, any subset of size k of which forms an independent set of
size k in G.

(ii) If k > n
2 , then we know the independent set of size |V ′|

2 in G′ consists only of nodes from G, and has
size k, since none of the x1, · · · , x2k−n can be in an independent set of size > 1. Thus, the independent

set of size |V ′|
2 in G′ itself forms an independent set of size k in G.

Thus, our polynomial time reduction from Independent Set to HALF-IS is valid.
This completes the proof that HALF-IS is NP-Complete.

Assignment 12

Problem 1 (25pts)

Suppose you are designing a scheduling algorithm for a manufacturing plant that has a set of M machines
and a set of N tasks to be completed. Each task can be assigned to only one machine, and each machine
can only perform one task at a time. Let pij be the processing time of task i on machine j. The goal is to
minimize the overall time it takes to complete all tasks. How would you formulate this problem as an ILP?
What decision variables would you use, and what constraints and the objective function would you include?

Solution.
For each task i, we need to decide whether or not we should complete it using machine j. Therefore, we can
introduce

xij =

{
1 if task i is completed on task j

0 otherwise.

Then, since we only need to complete each task once, we know xij = 1 for some j = k and xij = 0 for all
{j|1 ≤ j ̸= k ≤M}. Thus, the total time to complete task i will be

M∑
j=1

xijpij

Since different tasks can be completed consecutively on different machines, to minimize the total time it
takes to complete all tasks, we must minimize the time at which the last task is completed. Let C = the
time at which the last task is completed. We know C will be equal to the amount of time taken by the
machine which takes the most time. For each machine j, we know that the tasks assigned to that machine
take a total of

N∑
i=1

xijpij
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time to complete. Thus, we know

C ≥
N∑
i=1

xijpij

for all j ∈ {1, ...,M}. In summary, we have xij as our decision variables, C as our objective function which
we want to minimize, and our constraints are

M∑
j=1

xij = 1 for all i

xij ∈ {0, 1}

C ≥
N∑
i=1

xijpij for all j

The first constraint ensures all tasks are assigned to exactly 1 machine. The second constraint ensures that
the xijs function properly as decision variables corresponding to the assignment of task i to machine j. The
third constraint ensures that no individual machine takes more time to complete its tasks than the total
time to complete all tasks. These allow us to minimize the total time taken to complete all N tasks by using
ILP to minimize C.

Problem 2 (25 pts)

Formulate the problem of finding a Min-S-T-cut of a directed network with source s and sink t as an Integer
Linear Program and explain your program.

Solution.
For decision variables, we need to decide which nodes are in the S set and which nodes are in the T set.
Thus, we can define

xi =

{
1 if i ∈ S

0 otherwise.

for all i ∈ V .
We also need to determine which edges cross from the S cut to the T cut. Thus, we can define

yi,j =

{
1 if (i, j) crosses the S − T cut

0 otherwise

for all (i, j) ∈ E.
We need to make sure that any edge (i, j) s.t. i ∈ S, j ∈ T crosses the S − T cut. Thus, we need

xj − xi + yi,j ≥ 0

for all (i, j) ∈ E. If i, j ∈ S or i, j ∈ T , the statement is trivially true by the definitions of xi, xj , and yi,j .
If j ∈ S, i ∈ T , then the statement is trivially true. However, when i ∈ S, j ∈ T , we need xi,j = 1 to satisfy
the statement. This makes sense because any such (i, j) would have to cross the S-T cut. Since x ∈ S and
t ∈ T by definition, we know xs = 1 and xt = 0.

To find the min S-T cut under these constraints, we minimize the objective function

C =
∑

(i,j)∈E

ci,jyi,j

where ci,j is the capacity of the edge (i, j).
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In summary, we can find the Min-S-T-cut of a directed network with source s and sink t by setting up
the following integer linear programming problem:
Decision Variables: yi,j for all (i, j) ∈ E, xi for all i ∈ V .
Objective Function: Minimize C =

∑
(i,j)∈E ci,jxi,j

Constraints:

(i) xs = 1

(ii) xt = 0

(iii) xi ∈ {0, 1} for all i ∈ (V − {s, t})

(iv) yi,j ∈ {0, 1} for all (i, j) ∈ E

(v) xj − xi + yi,j ≥ 0 for all (i, j) ∈ E

When minimizing C, we minimize the sum of the capacities of all edges crossing any S-T cut in G. Since
the value of a cut is just the sum of the edges crossing it, minimizing C minimizes the value of any S-T cut
in G. Thus, minimizing C finds the Min-S-T-Cut in G.

Problem 3 (25 pts)

A set of n space stations need your help in building a radar system to track spaceships traveling between
them. The ith space station is located in 3D space at coordinates (xi, yi, zi). The space stations never move.
Each space station “i” will have a radar with power ri, where ri is to be determined. You want to figure out
how powerful to make each space station’s radar transmitter is, so that whenever any spaceship travels in a
straight line from one station to another, it will always be in the radar range of either the first space station
(its origin) or the second space station (its destination). A radar with power r is capable of tracking space
ships anywhere in the sphere with radius r centered at itself. Thus, a spaceship is within radar range through
its strip from space station i to space station j if every point along the line from (xi, yi, zi) to (xj , yj , zj) falls
within either the sphere of radius ri centered at (xi, yi, zi) or the sphere of radius rj centered at (xj , yj , zj).
The cost of each radar transmitter is proportional to its power, and you want to minimize the total cost of
all of the radar transmitters. You are given all of the (x1, y1, z1), ..., (xn, yn, zn) values, and your job is to
choose values for r1, ..., rn. Express this problem as a linear program.

(a) Describe your variables for the linear program (5 pts).

(b) Write out the object function (8 pts).

(c) Describe the set of constraints for LP. You need to specify the number of constraints and describe what
each constraint represents (12 pts).

Solution.

(a) The variables are the r1, ..., rn for which we must determine values that minimize the total cost of all
radar transmitters.

(b) We want to minimize the total cost of all radar transmitters. Since the cost of each radar transmitter i
is proportional to its power ri, we can minimize the total cost of all radar transmitters by minimizing

C =

n∑
i=1

ri

(c) We know that any spaceship traveling in a straight line from station i to station j must be inside either
the sphere of radius ri centered at (xi, yi, zi) or the sphere of radius rj centered at (xj , yj , zj) for all
i, j ∈ {1, ..., n}. The distance between station i and station j is

Dij =
√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2
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We know that any spaceship traveling from station i to station j can travel ri distance along the line
of distance Dij while inside the sphere of radius ri and rj distance along the line of distance Dij while
inside the sphere of radius rj . Thus, for the spaceship to be contained by either or both of the spheres
during the entirety of its D distance journey from station i to station j, we need

ri + rj ≥ Dij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2

for all i, j ∈ {1, · · · , n}. This is the constraint upon which we can minimize C.

Since there are
(
n
2

)
= n(n−1)

2 unique paths between the n stations, we have
(
n
2

)
constraints, where each

constraint corresponds to a unique path between stations.

Problem 4 (25 pts)

Recall the maximum-bipartite-matching problem. Write a linear program that solves this problem given a
bipartite graph G = (V,E), where the set of vertices on the left is L, and the set on the right is R, i.e.
L ∪R = V .

Solution.
We will solve this problem using max-flow. Create a graph G′ = (V ′, E′) such that V ′ = s ∪ V ∪ t and
E′ = {(s, li)|li ∈ L}∪E ∪{(ri, t)|ri ∈ R} where all edges e ∈ E′ have capacity ce = 1. Then the value of the
max flow of G′ equals the maximum size of a bipartite matching in G.

If G′ has a max flow value of v(f), then since all edges have capacity 1, we know we have v(f) edge
disjoint paths in G′ such that no vertex (excluding s and t) has more than one path through it in the max
flow f . Thus, we have v(f) pairs (li, rj) such that li ∈ L, rj ∈ R, and the edge (li, rj) ∈ E. Thus, we can
create a matching of size v(f) in G.
If G has a maximum bipartite matching size of v(f), then we know there are v(f) edges (li, rj) s.t. li ∈ L,
ri ∈ R, and the lis and ris are all distinct. Since we have (s, li) ∈ E′ for all li ∈ L and (ri, t) ∈ E′ for all
ri ∈ R, we know we can create v(f) edge disjoint paths in G′ from s to t. Since each edge has capacity 1,
we know each of these v(f) paths will have a bottleneck of 1, so we know we can construct a flow of value
v(f) in G′.
This completes the proof that the value of max flow in G′ is the maximum size of a bipartite matching in G.
Once we have made this reduction, we can easily construct a linear program to solve the problem. We have:

Variables: fi,j for all (i, j) ∈ E′

Objective Function: maximize flow v(f) =
∑

(s,li)∈E′ fs,li
Constraints: We need to add the typical constraints for a maximum flow problem. That is,

(i) ∑
(i,v)∈E′

fi,v =
∑

(v,j)∈E′

fv,j

(ii) 0 ≤ fi,j ≤ 1 for all (i, j) ∈ E′

The first constraint maintains conservation of flow, while the second ensures that all edges e have non-
negative flow that doesn’t exceed ce.
Since we know that maximizing v(f) in G′ maximizes the size of the bipartite matching in G, we can find
the maximum size bipartite matching in G by using this linear program to maximize the s-t flow through G′
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MATH 430: Theory of Numbers

All assignments in this section were written by Masoud Zargar, RTPC Assistant Professor of Mathematics,
USC. Solutions to assignments 4 through 11 are provided.

Assignment 4

Problem 1

(6 Points). Using the Euclidean Algorithm, do the following:

(a) Find gcd(53, 187) and find x, y ∈ Z such that 53x+ 187y = gcd(53, 187).

Claim: gcd(53, 187) = 1 = 53(60) + 187(−17), and 60,−17 = x, y ∈ Z such that
53x+ 187y = gcd(53, 187)

Proof. We use the Euclidean Algorithm.

Note: ∀a, b ∈ N, gcd(a, b) = gcd(a, b− ka) ∀k ∈ Z

Also Note: The division algorithm guarantees that ∀a, b ∈ N, a = bq + r for some unique q, r ∈ Z, 0 ≤ r < b.

Now, we find:

187 =3(53) + 28 =⇒ gcd(53, 187) =gcd(53, 187− 3(53)) =gcd(53, 28)

53 =1(28) + 25 =⇒ =gcd(53− 1(28), 28) =gcd(25, 28)

28 =1(25) + 3 =⇒ =gcd(25, 28− 1(25) =gcd(25, 3)

25 =8(3) + 1 =⇒ =gcd(25− 8(3), 3) =gcd(1, 3)

3 =3(1) + 0 =⇒ =gcd(1, 3− 3(1)) =gcd(1, 0)

=⇒ gcd(53, 187) = gcd(1, 0) = 1 = 25− 8(3)

= 25− 8(28− 25) = 9(25)− 8(28)

= 9(53− 28)− 8(28) = 9(53)− 17(28)

= 9(53)− 17(187− 3(53)) = 60(53)− 17(187)

=⇒ gcd(53, 187) = 1 = 53(60) + 187(−17)
=⇒ 60,−17 = x, y ∈ Z such that 53x+ 187y = 1 = gcd(53, 187)

(b) Find gcd(12345, 1234) and find x, y ∈ Z such that 12345x+ 1234y = gcd(12345, 1234).

Claim: gcd(12345, 1234) = 1 = 12345(247) + 1234(−2471), and 247,−2471 = x, y ∈ Z such that
12345x + 1234y = gcd(12345,1234)

Proof. Similar to part (a), we use the Euclidean Algorithm.
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We find:

12345 =10(1234) + 5 =⇒ gcd(12345, 1234) =gcd(12345− 10(1234), 1234) =gcd(5, 1234)

1234 =246(5) + 4 =⇒ =gcd(5, 1234− 246(5)) =gcd(5, 4)

5 =1(4) + 1 =⇒ =gcd(5− 1(4), 4) =gcd(1, 4)

4 =4(1) + 0 =⇒ =gcd(1, 4− 4(1)) =gcd(1, 0)

=⇒ gcd(12345, 1234) = gcd(1, 0) = 1 = 5− 4

= 5− (1234− 246(5)) = 247(5)− 1234

= 247(12345− 10(1234))− 1234 = 12345(247) + 1234(−2471)

=⇒ gcd(12345, 1234) = 1 = 12345(247) + 1234(−2471)
=⇒ 247,−2471 = x, y ∈ Z such that 12345x+ 1234y = 1 = gcd(12345, 1234)

(c) Find gcd(76, 633) and find x, y ∈ Z such that 76x+ 633y = gcd(76, 633).

Claim: gcd(76, 633) = 1 = 76(25) + 633(−3), and 25,−3 = x, y ∈ Z such that
76x+ 633y = gcd(76, 633)

Proof. Similar to parts (a) and (b), we use the Euclidean Algorithm.

We find:

633 =8(76) + 25 =⇒ gcd(633, 76) =gcd(633− 8(76), 76) =gcd(25, 76)

76 =3(25) + 1 =⇒ =gcd(25, 76− 3(25)) =gcd(25, 1)

25 =25(1) + 0 =⇒ =gcd(25− 25(1), 1) =gcd(0, 1)

=⇒ gcd(76, 633) = gcd(0, 1) = 1 = 76− 3(25)

= 76− 3(633− 8(76)) = 76(25) + 633(−3)

=⇒ gcd(76, 633) = 1 = 76(25) + 633(−3)
=⇒ 25,−3 = x, y ∈ Z such that 76x+ 633y = gcd(76, 633)

Problem 2

(4 points). Show that if gcd(a, b) = 1 for a, b ∈ N, then

lcm(a2 + b3, b5 + a2b+ b4) = b(a2 + b3)(b4 + a2 + b3).

Proof. Note: ∀a, b ∈ N, lcm(a, b) = ab
gcd(a,b)

Also note: ∀a, b ∈ N, (a2 + b3), (b5 + a2b+ b4) ∈ N

=⇒ lcm(a2 + b3, b5 + a2b+ b4) =
(a2 + b3)(b5 + a2b+ b4)

gcd(a2 + b3, b5 + a2b+ b4)
=

b(a2 + b3)(b4 + a2 + b3)

gcd(a2 + b3, b5 + a2b+ b4)
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=⇒ It is sufficient to show that gcd(a2 + b3, b5 + a2b+ b4) = 1

By Bézout’s Theorem, since gcd(a, b) = 1, ∃x, y ∈ Z such that 1 = ax+ by. Squaring both sides, we get:

12 = 1 = (ax+ by)2 = a2x2 + 2axby + b2y2 = a2(x2) + b(2axy + by2).

Since a2(x2) + b(2axy + by2) = 1 is an integer linear combination of a2 and b, =⇒ gcd(a2, b) = 1.

Note: ∀a, b ∈ N, gcd(a, b) = gcd(a, b± ka), ∀k ∈ Z

=⇒ 1 = gcd(a2, b) = gcd(a2 + b2(b), b) = gcd(a2 + b3, b).

By Bézout’s Theorem, since gcd(a2 + b3, b) = 1, ∃x1, y1 ∈ Z such that 1 = (a2 + b3)x1 + by1.

Raising both sides to the fifth power, we get:

15 = 1 = ((a2 + b3)x1 + by1)
5

= (a2 + b3)5x51 + 5(a2 + b3)4x41by1 + 10(a2 + b3)3x31b
2y21 + 10(a2 + b3)2x21b

3y31 + 5(a2 + b3)x1b
4y41 + b5y51

= (a2 + b3)((a2 + b3)4x51 + 5(a2 + b3)3x41by1 + 10(a2 + b3)2x31b
2y21 + 10(a2 + b3)x21b

3y31 + 5x1b
4y41) + b5(y51)

Since 1 = (a2 + b3)((a2 + b3)4x51 + 5(a2 + b3)3x41by1 + 10(a2 + b3)2x31b
2y21 + 10(a2 + b3)x21b

3y31 + 5x1b
4y41) + b5(y51)

is an integer linear combination of (a2 + b3) and b5, =⇒ gcd(a2 + b3, b5) = 1

=⇒ 1 = gcd(a2 + b3, b5) = gcd(a2 + b3, b5 + b(a2 + b3)) = gcd(a2 + b3, b5 + a2b+ b4),

which is exactly what we want to show. Thus, ∀a, b ∈ N such that gcd(a, b) = 1

lcm(a2 + b3, b5 + a2b+ b4) =
(a2 + b3)(b5 + a2b+ b4)

gcd(a2 + b3, b5 + a2b+ b4)
=

(a2 + b3)(b5 + a2b+ b4)

1

= (a2 + b3)(b5 + a2b+ b4) = b(a2 + b3)(b4 + a2 + b3)

which concludes the proof.

Problem 3

(5 points). Suppose a1, ..., an are integers, at least one of which is nonzero. Prove that there are integers x1, ..., xn such that

a1x1 + ...+ anxn = gcd(a1, ..., an).

Proof. Let S = {a1x1 + ...+ anxn|x1, ..., xn ∈ Z, a1x1 + ...+ anxn > 0}

Without loss of generality, assume a1 ̸= 0.

If a1 < 0, then x1 = −1, x2, ..., xn = 0 gives a1(−1) + 0(a2 + ...+ an) = |a1| > 0 ∈ S.

If a1 > 0, then x1 = 1, x2, ..., xn = 0 gives a1(1) + 0(a2 + ...+ an) = |a1| > 0 ∈ S.

=⇒ S ̸= ∅.

Since all elements in S are greater than 0, the Well-Ordering Principle guarantees that S has a minimal element d.
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We claim that d = gcd(a1, ..., an).

First, we must show d|a1, ..., an, starting with a1.

Note that the division algorithm guarantees ∃ unique q, r ∈ Z such that a1 = dq + r, 0 ≤ r < d.

And d ∈ S =⇒ d = a1x1 + ...+ anxn, for some x1, ..., xn ∈ Z, so a1 = (a1x1 + ...+ anxn)q + r.

=⇒ r = a1(1− x1q)− a2(qx2)− ...− an(qxn), so r is an integer linear combination of a1, ..., an,

so r > 0 =⇒ r ∈ S, which contradicts the minimality of d.

Thus, r = 0, so d|a1. We apply the exact same logic to show d|a2, ..., an.

Thus, d is a common divisor of a1, ..., an, and we need to show d is the greatest common divisor of a1, ..., an.

Consider another common divisor of a1, ..., an, which we’ll call c.

Note: c|a1, ..., an =⇒ c|a1x1 + ...+ anxn = d =⇒ |c| ≤ |d| = d.

Therefore, d = gcd(a1, ..., an), and d ∈ S,

so we have proven that, if at least one of a1, ..., an ̸= 0, ∃x1, ..., xn ∈ Z such that

a1x1 + ...+ anxn = gcd(a1, ..., an).

Problem 4

(5 points). Prove that gcd(a, b, c) = gcd(gcd(a, b), c) from the basics.

Proof. Note: gcd(a, b, c) | a, b =⇒ gcd(a, b, c) | ax+ by = gcd(a, b) for some x, y ∈ Z (By Bézout’s Theorem).

And we know gcd(a, b, c) | c, so we know gcd(a, b, c) is a common divisor to gcd(a, b) and c,

=⇒ gcd(a, b, c) ≤ gcd(gcd(a, b), c).

Similarly, gcd(gcd(a, b), c) | gcd(a, b), c, and we know gcd(a, b) | a, b, so we know gcd(gcd(a, b), c) | a, b, c.

=⇒ gcd(gcd(a, b), c) is a common divisor to a, b, c =⇒ gcd(gcd(a, b), c) ≤ gcd(a, b, c).

Thus, gcd(gcd(a, b), c) ≤ gcd(a, b, c) and gcd(a, b, c) ≤ gcd(gcd(a, b), c), so we know gcd(a, b, c) = gcd(gcd(a, b), c).

Problem 5

(Bonus, 5 points). Suppose s, t are distinct natural numbers such that

s2 + st+ t2 | st(s+ t)

Prove that | s− t |≥ 3
√
st.
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Proof. Note: ∀k ∈ Z, gcd(a, b) = gcd(a, b± ka). We’ll call this property Property 1.

Also Note: By Bézout’s Theorem, if gcd(a, b) = 1, ∃x, y ∈ Z such that 1 = ax+ by. Squaring both sides, we get:

12 = 1 = (ax+ by)2 = a2x2 + 2axby + b2y2 = a2(x2) + b(2axy + by2).

Since a2(x2) + b(2axy + by2) = 1 is an integer linear combination of a2 and b, =⇒ gcd(a2, b) = 1.

Therefore, ∀a, b ∈ N, gcd(a, b) = 1 =⇒ gcd(a2, b) = 1. We’ll call this property Property 2.

Also Note: (a | bc & gcd(a, b) = 1) =⇒ a|c. We’ll call this property Property 3.

We will apply these 3 properties throughout the rest of the proof.

If we let gcd(s, t) = d ∈ N, then we can write s = dx, t = dy for some x, y ∈ Z such that gcd(x, y) = 1.

Substituting into the divisibility statement, we obtain:

(dx)2 + (dx)(dy) + (dy)2 = d2(x2 + xy + y2) | (dx)(dy)(dx+ dy) = d3(xy)(x+ y)

=⇒ x2 + xy + y2 | d(xy)(x+ y)

We know gcd(x, y) = 1, and Property 1 tells us that 1 = gcd(x, y) = gcd(x, y + (1)x) = gcd(x, x+ y).

Furthermore, Property 2 tells us that 1 = gcd(x, x+ y) = gcd(x2, x+ y).

Applying Property 1 again, we find that 1 = gcd(x2, x+ y) = gcd(x2 + y(x+ y), x+ y) = gcd(x2 + xy + y2, x+ y).

Returning to our divisibility statement, we find that Property 3 guarantees that

x2 + xy + y2 | d(xy).

Similarly we can apply Property 2 to find that

1 = gcd(x2 + xy + y2, x+ y) = gcd(x2 + xy + y2, (x+ y)2) = gcd(x2 + xy + y2, x2 + 2xy + y2).

Applying Property 1 again, we find that

1 = gcd(x2 + xy + y2, x2 + 2xy + y2) = gcd(x2 + xy + y2, x2 + 2xy + y2 − (x2 + xy + y2) = gcd(x2 + xy + y2, xy).

Returning once more to our divisibility statement, we find that Property 3 guarantees that

x2 + xy + y2 | d, =⇒ x2 + xy + y2 ≤ d

Now, we want to show that |s− t| = |dx− dy| = d|x− y| ≥ 3
√
st = ((dx)(dy))1/3 = d2/3(xy)1/3.

Note that this is true if and only if d1/3|x− y| ≥ (xy)1/3

If x > y, we must show that d1/3(x− y) ≥ (xy)1/3, which is true if and only if d(x− y)3 ≥ xy

Since x2 + xy + y2 ≤ d, we know d(x− y)3 ≥ (x2 + xy + y2)(x− y)3.

Since x, y are distinct natural numbers, and x > y, we know that x− y ≥ 1 =⇒ (x− y)3 ≥ 1.
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Therefore, d(x− y)3 ≥ (x2 + xy + y2)(x− y)3 ≥ (x2 + xy + y2), and we know x2 + xy + y2 > xy

since x, y ∈ N =⇒ x2, y2 > 0.

Thus,

d(x− y)3 ≥ xy

=⇒ d1/3(x− y) ≥ (xy)1/3

=⇒ d(x− y) ≥ d2/3(xy)1/3 = 3
√
d2xy

=⇒ (dx− dy) = s− t =|s− t| ≥ 3
√
(dx)(dy) =

3
√
st

which is exactly what we want to show.

Note: If y > x, we apply the exact same argument, but now |x− y| = y − x, so we just replace

every instance of (x− y) with (y − x), and the identical conclusion follows.

For clarity, we do that here:

If y > x, we must show that d1/3(y − x) ≥ (xy)1/3, which is true if and only if d(y − x)3 ≥ xy

Since x2 + xy + y2 ≤ d, we know d(y − x)3 ≥ (x2 + xy + y2)(y − x)3.

Since x, y are distinct natural numbers, and y > x, we know that y − x ≥ 1 =⇒ (y − x)3 ≥ 1.

Therefore, d(y − x)3 ≥ (x2 + xy + y2)(y − x)3 ≥ (x2 + xy + y2), and we know x2 + xy + y2 > xy

since x, y ∈ N =⇒ x2, y2 > 0.

Thus,

d(y − x)3 ≥ xy

=⇒ d1/3(y − x) ≥ (xy)1/3

=⇒ d(y − x) ≥ d2/3(xy)1/3 = 3
√
d2xy

=⇒ (dy − dx) = t− s =|s− t| ≥ 3
√
(dx)(dy) =

3
√
st

which is exactly what we want to show.

Thus, we have proven that, if s, t are distinct natural numbers such that s2 + st+ t2 | st(s+ t), then |s− t| ≥ 3
√
st.

Assignment 5

Problem 1

(6 points). (a) Find gcd(56, 311) and find all solutions (x, y) ∈ Z × Z to the equation 56x+ 311y = 3gcd(56, 311).
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Claim: gcd(56, 311) = 1, and x = 150− 311t, y = −27 + 56t, t ∈ Z represents all solutions

(x, y) ∈ Z x Z to the equation 56x+ 311y = 3gcd(56, 311) = 3(1) = 3

Proof. We use the Euclidean Algorithm.

Note: ∀a, b ∈ N, gcd(a, b) = gcd(a, b− ka) ∀k ∈ Z

Now, we find:

311 =5(56) + 31 =⇒ gcd(56, 311) =gcd(56, 311− 5(56)) =gcd(56, 31)

56 =1(31) + 25 =⇒ =gcd(56− 1(31), 31) =gcd(25, 31)

31 =1(25) + 6 =⇒ =gcd(25, 31− 1(25)) =gcd(25, 6)

25 =4(6) + 1 =⇒ =gcd(25− 4(6), 6) =gcd(1, 6)

6 =6(1) + 0 =⇒ =gcd(1, 6− 6(1)) =gcd(1, 0)

=⇒ gcd(56, 311) = gcd(1, 0) = 1.

Note: Since gcd(56, 311) = 1|3gcd(56, 311) = 3, if we can find a single solution (x0, y0) ∈ Z x Z to the equation

56x+ 311y = 3gcd(56, 311) = 3(1) = 3, then we know x = x0 − 311t, y = y0 + 56t, t ∈ Z

represents all solutions (x, y) ∈ Z x Z to the equation 56x+ 311y = 3gcd(56, 311) = 3(1) = 3.

To find (x0, y0), note that:

gcd(56, 311) = 1 = 25− 4(6)

= 25− 4(31− 25) = 5(25)− 4(31)

= 5(56− 31)− 4(31) = 5(56)− 9(31)

= 5(56)− 9(311− 5(56)) = 50(56)− 9(311)

So, 56(50) + 311(−9) = gcd(56, 311) = 1 =⇒ 3(56(50) + 311(−9)) = 56(150) + 311(−27) = 3gcd(56, 311) = 3(1) = 3

=⇒ (150,−27) = (x0, y0) ∈ Z x Z

=⇒ x = 150− 311t, y = −27 + 56t, t ∈ Z represents all solutions (x, y) ∈ Z x Z to the equation

56x+ 311y = 3gcd(56, 311) = 3, which is exactly what we want to show, and thus concludes the proof.

(b) Find gcd(42, 123) and find all solutions (x, y) ∈ Z × Z to the equation 42x+ 123y = 5gcd(42, 123).

Claim: gcd(42, 123) = 3, and x = 15− 41t, y = −5 + 14t, t ∈ Z represents all solutions

(x, y) ∈ Z x Z to the equation 42x+ 123y = 5gcd(42, 123) = 5(3) = 15

Proof. We use the Euclidean Algorithm. We find:

123 =2(42) + 39 =⇒ gcd(42, 123) =gcd(42, 123− 2(42)) =gcd(42, 39)

42 =1(39) + 3 =⇒ =gcd(42− 1(39), 39) =gcd(3, 39)

39 =13(3) + 0 =⇒ =gcd(3, 39− 13(3)) =gcd(3, 0)
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=⇒ gcd(42, 123) = gcd(3, 0) = 3.

Note: Since gcd(42, 123) = 3|5gcd(42, 123) = 15, if we can find a single solution (x0, y0) ∈ Z x Z to the equation

42x+ 123y = 5gcd(42, 123) = 5(3) = 15, then we know x = x0 − (123/3)t = x0 − 41t, y = y0 + (42/3)t = y0 + 14t, t ∈ Z

represents all solutions (x, y) ∈ Z x Z to the equation 42x+ 123y = 5gcd(42, 123) = 5(3) = 15.

To find (x0, y0), note that:

gcd(42, 123) = 3 = 42− 39

= 42− (123− 2(42)) = 3(42)− 123

So, 42(3) + 123(−1) = gcd(42, 123) = 3 =⇒ 5(42(3) + 123(−1)) = 42(15) + 123(−5) = 5gcd(42, 123) = 5(3) = 15

=⇒ (15,−5) = (x0, y0) ∈ Z x Z

=⇒ x = 15− 41t, y = −5 + 14t, t ∈ Z represents all solutions (x, y) ∈ Z x Z to the equation

42x+ 123y = 5gcd(42, 123) = 15, which is exactly what we want to show, and thus concludes the proof.

Problem 2

(4 points). Prove that if n > 1 is composite, then n has a prime factor not exceeding
√
n.

Proof. (By contradiction). Assume to the contrary that all of n’s prime factors exceed
√
n,

and let q be the number of n’s prime factors (not necessarily distinct). Since n is composite, q ≥ 2

(if n = p2, p prime, q = 2 since n = p ∗ p).

Note: q ≥ 2 =⇒ n = p1...pq, where p1, ..., pq >
√
n are (not necessarily distinct) primes =⇒ n = p1...pq >

√
n
√
n = n,

which is a contradiction since n = n, so our initial assumption must be incorrect.

Thus, by contradiction, we have proven that if n > 1 is a composite, then n has a prime factor not exceeding
√
n.

Problem 3

(5 points). In this exercise, we show that:

S := 1 +
1

2
+ ...+

1

n

is never an integer when n > 1.

(a) Let k ∈ N be the largest power of 2 at most n so that 2k ≤ n < 2k+1. Let m be the least common multiple of

1, 2, 3, ..., n, excluding 2k. Show that m
2k

is not an integer while m
1 ,

m
2 , ...,

m
n , excluding

m
2k

are all integers.
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Proof. Note: By the definition of the least common multiple, 1, 2, 3, ..., n (excluding 2k) all divide m.

Therefore, m1 ,
m
2 , ...,

m
n , excluding

m
2k

are trivially all integers, so we just need to show that m
2k

/∈ Z.

Note that, since 2k ≤ n < 2k+1, 2k−1 is the largest power of 2 found in the unique prime factorizations of 1, 2, 3, ..., n,

excluding 2k. To show this, consider the set A := {x ∈ N|x ≤ n, x ̸= 2k}. Since 2k /∈ A, if 2k was found in the unique

prime factorization of any a ∈ A, then a = p2k, where p is a prime. However, for all primes p, p ≥ 2

=⇒ a ≥ 2(2k) = 2k+1, which is a contradiction since, ∀a ∈ A, a ≤ n < 2k+1.

=⇒ ∀a ∈ A, 2k is not in the unique prime factorization for a.

Thus, by unique prime factorization and the definition of least common multiple, m = 2k−1pa22 ...p
aj
j , where p2, ..., pj

are distinct primes > 2 and a2, ..., aj ∈ Z, ≥ 0. Therefore, m
2k

=
p
a2
2 ...p

aj
j

2 .

Since p2, ...pj are distinct primes > 2, they are all odd, so pa22 ...p
aj
j is odd, so

p
a2
2 ...p

aj
j

2 /∈ Z.

Therefore, m
2k

/∈ Z, which is exactly what we want to show.

(b) Write:

mS = m+
m

2
+ ...+

m

n
,

And use the previous part to conclude that S is not an integer.

Proof. By the definition of the least common multiple, we know m ∈ Z

From part (a), we know that m, m2 , ...,
m
n are all integers except m

2k
, which we know is not an integer.

Therefore, b = m+ m
2 + ...+ m

n (excluding m
2k
) is an integer.

Thus, mS = b+ m
2k
. The sum of any integer with any non-integer is a non-integer, so we know mS /∈ Z.

Furthermore, the product of any two integers is an integer, and m ∈ Z, so S /∈ Z since S ∈ Z =⇒ mS ∈ Z.

Thus, S := 1 + 1
2 + ...+ 1

n /∈ Z, ∀n ∈ N, n > 1, which concludes the proof.

Problem 4

(5 points). Suppose p and q are prime numbers, not necessarily distinct. Show that
√
p+

√
q +

√
pq is irrational.

First, we must prove that, ∀ primes p,
√
p is irrational.

Proof. (By Contradiction) Assume to the contrary that
√
p is rational, that is, ∃a, b ∈ N such that

√
p = a

b .

=⇒ b
√
p = a =⇒ b2p = a2 =⇒ vp(b

2p) = vp(a
2) =⇒ vp(p) + vp(b) + vp(b) = vp(a) + vp(a).
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=⇒ 1 + 2vp(b) = 2vp(a), but 1 + 2vp(b) is odd while 2vp(a) is even, so we have a contradiction,

and our initial assumption must be incorrect. Thus, by contradiction, ∀ primes p,
√
p is irrational.

We use this result to prove that
√
p+

√
q +

√
pq is irrational.

Proof. (By Contradiction) Assume to the contrary that
√
p+

√
q +

√
pq is rational, that is, ∃c, d ∈ N such that

√
p+

√
q +

√
pq = c

d

=⇒ √
p+

√
pq = c

d −√
q =⇒ p+ 2p

√
q + pq = c2

d2 − 2c
d

√
q + q

=⇒ (2p+ 2c
d )

√
q = c2

d2 + q − p− pq

=⇒ √
q =

c2

d2
+q−p−pq
2p+ 2c

d

=⇒ √
q is rational since

c2

d2
+q−p−pq
2p+ 2c

d

is rational (rational numbers are closed under addition,

multiplication, subtraction, and division), which is a contradiction since we know
√
q is irrational since q is prime,

so our initial assumption must be incorrect.

Thus, by contradiction,
√
p+

√
q +

√
pq is irrational ∀ primes p, q (not necessarily distinct).

Problem 5

(Bonus, 5 points). Show that
∞∑
n=0

1

3n!

is irrational.

Proof. (By Contradiction). Assume to the contrary that
∑∞
n=0

1
3n! is rational, that is, ∃a, b ∈ N such that

∞∑
n=0

1

3n!
=
a

b

Note: ∀q ∈ Q, q = c
d , for some c, d ∈ N, such that gcd(c, d) = 1, d ̸= 0.

Multiplying both sides by 1 = k
k yields q kk = q = kc

kd , ∀k ∈ Z.

Therefore, by letting a = kc, b = kd, we find that a and b can both be arbitrarily large natural numbers

if
∑∞
n=0

1
3n! =

a
b ∈ Q.

Also note: if e, f ∈ N, then

(e+f)!−e! = (e+f)(e+f −1)...(e+2)(e+1)e!−e! ≥ (e+1)fe!−e! ≥ (ef +1)e!−e! = (ef +1−1)e! = efe!

We will call this Property 1
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Also Note: By definition, ∀x ∈ N, x! ≥ 1 =⇒ x(x!) ≥ x =⇒ 3x(x!) ≥ 3x =⇒ x
3x(x!)−1

≤ x
3x−1 .

Using L’Hopital’s Rule, we find:

lim
x→∞

x

3x(x!) − 1
≤ lim
x→∞

x

3x − 1
= lim
x→∞

1

ln(3)3x
= 0 =⇒ 3x(x!) − 1 > x for sufficiently large x

since x
3x(x!)−1

≥ 0 ∀x ∈ N =⇒ limx→∞
x

3x(x!)−1
= 0

We will call this property Property 2

Also Note: Using L’Hopital’s Rule, we find, ∀j ∈ N

lim
x→∞

jx

xj
= lim
x→∞

j

jxj−1
= lim
x→∞

1

xj−1
= 0 =⇒ xj > jx for sufficiently large x

We call this property Property 3

Now, consider:

S = b3b!(
a

b
−

b∑
n=0

1

3n!
) = a3b! − b

b∑
n=0

3b!

3n!

Since a, 3b! ∈ Z, a3b! ∈ Z

Also, since n ranges from 0 to b, n! ≤ b! =⇒ b!− n! ∈ Z,≥ 0 =⇒ 3b!

3n! = 3b!−n! ∈ Z

=⇒ b
∑b
n=0

3b!

3n! ∈ Z since every term in the sum is an integer and b is an integer.

Therefore, S is the difference between two integers, so S is an integer.

Since ∀x ∈ Z, x /∈ (0, 1), showing that 0 < S < 1 will yield a contradiction.

First, we show S > 0. Note that S = b3b!
∑∞
n=b+1

1
3n! .

b3b! > 0 since b ∈ N, and 1
3n! > 0 ∀n ≥ b+ 1, so every term in S is strictly greater than 0, so S > 0

Now, we show that S < 1. Note that:

S = b3b!
∞∑

n=b+1

1

3n!
= b

∞∑
n=b+1

3b!

3n!
= b

∞∑
n=b+1

1

3n!−b!
= b(

1

3(b+1)!−b! +
1

3(b+2)!−b! +
1

3(b+3)!−b! + ...)

Applying Property 1, we find:

S ≤ b(
1

3bb!
+

1

3b2b!
+

1

3b3b!
+ ...) = b(

1

(3b!)b
+

1

(3b!)b
2 +

1

(3b!)b
3 + ...)

Applying Property 3, and choosing b sufficiently large such that bj > jb ∀j ∈ N we find:

S ≤ b(
1

(3b!)b
+

1

(3b!)2b
+

1

(3b!)3b
+ ...) = b(

1

3b(b!)
+

1

(3b(b!))2
+

1

(3b(b!))3
+ ...) =

b

3b(b!)
(1 +

1

3b(b!)
+

1

(3b(b!))2
+ ...)

Note: Since (1 + 1
3b(b!)

+ 1
(3b(b!))2

+ ...) is a geometric series,

(1 +
1

3b(b!)
+

1

(3b(b!))2
+ ...) =

1

1− 1
3b(b!)

=
1

3b(b!)

3b(b!)
− 1

3b(b!)

=
1

3b(b!)−1
3b(b!)

=
3b(b!)

3b(b!) − 1
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Therefore,

S ≤ b

3b(b!)
3b(b!)

3b(b!) − 1
=

b

3b(b!) − 1

From Property 2, we know 3b(b!) − 1 > b for sufficiently large b.

Since b can be arbitrarily large, choose b sufficiently large such that 3b(b!) − 1 > b

Now, b
3b(b!)−1

< 1, and S ≤ b
3b(b!)−1

, so we know S < 1, so we know 0 < S < 1, which is a contradiction,

so our initial assumption must be incorrect.

Thus, by contradiction, we have proven that
∞∑
n=0

1

3n!

is irrational.

Assignment 6

Problem 1

(5 points). Suppose a1, ..., an ∈ Z such that at least one of them is nonzero.

Show that gcd(a1, ..., an) = 1 ⇐⇒ ∃ x1, ..., xn ∈ Z such that

a1x1 + ...+ anxn = 1

Proof. Note: Completing this proof requires both showing that

(gcd(a1, ..., an) = 1) =⇒ ∃ x1, ..., xn ∈ Z such that a1x1 + ...+ anxn = 1 and that

(∃ x1, ..., xn ∈ Z such that a1x1 + ...+ anxn = 1) =⇒ gcd(a1, ..., an) = 1

From Problem 3 of Homework 4, we know that, since at least one of a1, ..., an is nonzero,

∃x1, ..., xn ∈ Z such that a1x1 + ...+ anxn = gcd(a1, ..., an)

Therefore, (gcd(a1, ..., an) = 1) =⇒ ∃ x1, ..., xn ∈ Z such that a1x1 + ...+ anxn = gcd(a1, ..., an) = 1

Now, we just have to show that (∃ x1, ..., xn ∈ Z such that a1x1 + ...+ anxn = 1) =⇒ gcd(a1, ..., an) = 1

By definition, gcd(a1, ..., an) | a1, ..., an =⇒ gcd(a1, ..., an) | a1x1 + ...+ anxn

=⇒ |gcd(a1, ..., an)| = gcd(a1, ..., an) ≤ |a1x1 + ...+ anxn|.

Since gcd(a1, .., an) ∈ N by definition, we know that gcd(a1, ..., an) ≥ 1.

Therefore, a1x1 + ...+ anxn = 1 =⇒ 1 ≤ gcd(a1, ..., an) ≤ |1| = 1 =⇒ gcd(a1, ..., an) = 1.

Thus, (gcd(a1, ..., an) = 1) =⇒ ∃ x1, ..., xn ∈ Z such that a1x1 + ...+ anxn = 1 and

(∃ x1, ..., xn ∈ Z such that a1x1 + ...+ anxn = 1) =⇒ gcd(a1, ..., an) = 1, so
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gcd(a1, ..., an) = 1 ⇐⇒ ∃ x1, ..., xn ∈ Z such that a1x1 + ...+ anxn = 1, which concludes the proof.

Problem 2

(5 points). Compute gcd(15, 21, 35) and find x, y, z ∈ Z such that

15x+ 21y + 35z = 101gcd(15, 21, 35)

Claim: gcd(15, 21, 35) = 1, and 3636,−2424,−101 is one solution x, y, z ∈ Z such that
15x+ 21y + 35z = 101gcd(15, 21, 35).

Proof. Note: ∀a, b ∈ N, gcd(a, b) = gcd(a, b− ka) ∀k ∈ Z

By Problem 4 of Homework 4, we know gcd(15, 21, 35) = gcd(gcd(15, 21), 35).

To find gcd(15, 21), we apply the Euclidean Algorithm and find:

21 = 1(15) + 6 =⇒ gcd(15, 21) = gcd(15, 21− 1(15)) = gcd(15, 6)

15 = 2(6) + 3 =⇒ = gcd(15− 2(6), 6) = gcd(3, 6)

6 = 2(3) + 0 =⇒ = gcd(3, 6− 2(3)) = gcd(3, 0)

=⇒ gcd(15, 21) = gcd(3, 0) = 3

=⇒ gcd(15, 21, 35) = gcd(3, 35) = gcd(3, 35− 11(3)) = gcd(3, 2) = gcd(3− 2, 2) = gcd(1, 2)

= gcd(1, 2− 2(1)) = gcd(1, 0) = 1

=⇒ gcd(15, 21, 35) = gcd(1, 0) = 1 = 3− 2 = 3− (35− 11(3)) = 12(3)− 35 = 12(15− 2(6))− 35

= 12(15)− 24(6)− 35 = 12(15)− 24(21− 15)− 35 = 36(15)− 24(21)− 35

=⇒ 101gcd(15, 21, 35) = 101(1) = 101 = 101(36(15)− 24(21)− 35) = 3636(15)− 2424(21)− 101(35).

=⇒ 3636,−2424,−101 = x, y, z ∈ Z such that 15x+ 21y + 35z = 101gcd(15, 21, 35) = 101,

which is exactly what we want to show, and thus concludes the proof.

Problem 3

(5 points). Show that ∀a, b, c ∈ N,

gcd(a, b, c)2 | gcd(a, b)gcd(b, c)gcd(c, a)

Proof. Note: if a1 = p
b1,1
1 p

b1,2
2 ...p

b1,k
k , ..., an = p

bn,1

1 p
bn,2

2 ...p
bn,k

k , then

gcd(a1, ..., an) = p
min{b1,1,b2,1,...,bn,1}
1 ...p

min{b1,k,b2,k,...,bn,k}
k .

Also Note: Since d|n ⇐⇒ for all primes p, vp(d) ≤ vp(n), it suffices to show that, for all primes p,

vp(gcd(a, b, c)
2) ≤ vp(gcd(a, b)gcd(b, c)gcd(c, a))

For the left hand side,
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vp(gcd(a, b, c)
2) = vp(gcd(a, b, c)) + vp(gcd(a, b, c)) = 2vp(gcd(a, b, c)) = 2min{vp(a), vp(b), vp(c)}

On the other hand, for the right hand side,

vp(gcd(a, b)gcd(b, c)gcd(c, a)) = vp(gcd(a, b)) + vp(gcd(b, c)) + vp(gcd(c, a))

= min{vp(a), vp(b)}+min{vp(b), vp(c)}+min{vp(c), vp(a)}. Since both of these sides are symmetric with

respect to a, b, and c, we can assume, without loss of generality, that

vp(a) ≤ vp(b), vp(c) =⇒ min{vp(a), vp(b), vp(c)} = vp(a).

Note that this implies that vp(a) = min{vp(a), vp(b)} = min{vp(c), vp(a)}

Now, the left hand side of the inequality becomes 2vp(a), while the right hand side becomes 2vp(a) +min{vp(b), vp(c)}

Since min{vp(a), vp(b), vp(c)} = vp(a), we know min{vp(b), vp(c)} ≥ vp(a) =⇒ 2vp(a) +min{vp(b), vp(c)} ≥ 3vp(a)

Combining the left and right hand sides, our inequality becomes

vp(gcd(a, b, c)
2) = 2vp(a) ≤ 3vp(a) ≤ 2vp(a) +min{vp(b), vp(c)} = vp(gcd(a, b)gcd(b, c)gcd(c, a))

Since a ∈ N, vp(a) ≥ 0, so 2vp(a) ≤ 3vp(a) is true ∀a, so vp(gcd(a, b, c)2) ≤ vp(gcd(a, b)gcd(b, c)gcd(c, a)) ∀a, b, c ∈ N,

and ∀ primes p, =⇒ gcd(a, b, c)2 | gcd(a, b)gcd(b, c)gcd(c, a) ∀a, b, c ∈ N,

which is exactly what we want to show and thus concludes the proof.

Problem 4

(5 points). For n ∈ N, let
ψ(n) =

∑
α∈N

p prime
pα≤n

log(p)

Show that
eψ(n) = lcm(1, 2, ..., n)

Proof. First, consider a1, ..., an ∈ N

We can write a1 = p
c1,1
1 ...p

c1,k
k , ..., an = p

cn,1

1 ...p
cn,k

k and lcm(a1, ..., an) = pd11 ...p
dk
k ,

where p1, ..., pk are distinct primes and ci,j , dj ≥ 0, ∈ Z, ∀1 ≤ i ≤ n, 1 ≤ j ≤ k.

By definition, a1, ..., an | lcm(a1, ..., an) =⇒ dj ≥ max{c1,j , ..., cn,j}, ∀1 ≤ j ≤ k.

If, for any 1 ≤ j ≤ k, dj > max{c1,j , ..., cn,j}, then lcm(a1,...,an)
pj

would be a common multiple of a1, ..., an

that is strictly less than lcm(a1, ..., an), which contradicts the definitional minimality of lcm(a1, ..., an).

Thus, ∀1 ≤ j ≤ k, dj = max{c1,j , ..., cn,j}.
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Therefore, lcm(a1, ..., an) = p
max{c1,1,...,cn,1}
1 ...p

max{c1,k,...,cn,k}
k .

If we let (a1, ..., an) = (1, 2, ..., n) and bi = the maximum power of pi that divides some element of {1, 2, ..., n},

∀1 ≤ i ≤ k, then lcm(a1, ..., an) = lcm(1, 2, ..., n) = pb11 p
b2
2 ....p

bk
k

Now, we can analyze ψ(n)

ψ(n) =
∑
α∈N

p prime
pα≤n

log(p) = (log(p1) + ...+ log(p1))︸ ︷︷ ︸
α1 times

+(log(p2) + ...+ log(p2))︸ ︷︷ ︸
α2 times

+...+ (log(pk) + ...+ log(pk))︸ ︷︷ ︸
αk times

= α1log(p1) + α2log(p2) + ...+ αklog(pk)

= log(pα1
1 ) + log(pα2

2 ) + ...+ log(pαk

k )

= log(pα1
1 pα2

2 ...pαk

k )

=⇒ eψ(n) = elog(p
α1
1 p

α2
2 ...p

αk
k ) = pα1

1 pα2
2 ...pαk

k where p1, ..., pk are distinct primes as before.

Since αi is the maximum power of pi such that pαi
i ≤ n, αi = the maximum power of pi

that divides some element of {1, 2, ..., n}. (Since pαi
i ∈ {1, 2, ..., n} and, if pαi+1

i divides some element of {1, 2, ..., n},

then pαi+1
i ≤ n, which contradicts the maximality of αi.)

Therefore, ∀1 ≤ i ≤ k, αi = bi.

Therefore,
eψ(n) = pα1

1 pα2
2 ...pαk

k = pb11 p
b2
2 ...p

bk
k = lcm(1, 2, ..., n)

which is exactly what we want to show, and thus concludes the proof.

Problem 5

(Bonus, 5 points). Suppose s, t are distinct natural numbers. Show that

lcm(s, t) + lcm(s+ 1, t+ 1) >
2st√
|s− t|

Proof. First, since the inequality is symmetric with respect to s and t, we can assume, without loss of generality,

that s > t, meaning
√
|s− t| =

√
s− t.

Note: ∀n ∈ N, gcd(n, n+ 1) = gcd(n, n+ 1− n) = gcd(n, 1) = gcd(n− n(1), 1) = gcd(0, 1) = 1,

so all consecutive natural numbers are coprime. Since gcd(s, t) = gcd(s− t, t), we know gcd(s, t)|s− t, t.

Similarly, gcd(s+ 1, t+ 1) = gcd(s+ 1− (t+ 1), t+ 1) = gcd(s− t, t+ 1) =⇒ gcd(s+ 1, t+ 1)|s− t, t+ 1

If d := gcd(gcd(s, t), gcd(s+ 1, t+ 1)) > 1, then, for some x, y ∈ N, t = xd, t+ 1 = yd =⇒ gcd(t, t+ 1) ≥ d > 1,

which is a contradiction since ∀t ∈ N, gcd(t, t+ 1) = 1. Therefore, d := gcd(gcd(s, t), gcd(s+ 1, t+ 1)) = 1

Since gcd(s, t), gcd(s+ 1, t+ 1)|s− t, and gcd(gcd(s, t), gcd(s+ 1, t+ 1)) = 1, we know gcd(s, t)gcd(s+ 1, t+ 1)|s− t
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=⇒ |gcd(s, t)gcd(s+ 1, t+ 1)| = gcd(s, t)gcd(s+ 1, t+ 1) ≤ s− t = |s− t|. We will call this Property 1.

Also note that, ∀a, b ∈ N, lcm(a, b) = ab
gcd(a,b) =⇒ lcm(s, t) = st

gcd(s,t) , and lcm(s+ 1, t+ 1) = (s+1)(t+1)
gcd(s+1,t+1) .

Therefore, it is sufficient to show that:

st

gcd(s, t)
+

(s+ 1)(t+ 1)

gcd(s+ 1, t+ 1)
>

2st√
|s− t|

⇐⇒ stgcd(s+ 1, t+ 1) + (s+ 1)(t+ 1)gcd(s, t)

gcd(s, t)gcd(s+ 1, t+ 1)
>

2st√
s− t

(
√
|s− t| =

√
s− t since s > t.)

Note: (s+ 1)(t+ 1) > st

=⇒ stgcd(s+ 1, t+ 1) + (s+ 1)(t+ 1)gcd(s, t)

gcd(s, t)gcd(s+ 1, t+ 1)
>
stgcd(s+ 1, t+ 1) + stgcd(s, t)

gcd(s, t)gcd(s+ 1, t+ 1)

So it is sufficient to show that:

stgcd(s+ 1, t+ 1) + stgcd(s, t)

gcd(s, t)gcd(s+ 1, t+ 1)
=
st(gcd(s+ 1, t+ 1) + gcd(s, t))

gcd(s, t)gcd(s+ 1, t+ 1)
≥ 2st√

s− t

Dividing both sides of the inequality by st yields a new inequality we need to prove:

gcd(s+ 1, t+ 1) + gcd(s, t)

gcd(s, t)gcd(s+ 1, t+ 1)
≥ 2√

s− t

Note: By the AM-GM inequality, we know that ∀a, b ∈ N, a+b2 ≥
√
ab =⇒ a+ b ≥ 2

√
ab.

By definition of the greatest common divisor, we know gcd(s, t), gcd(s+ 1, t+ 1) ∈ N

=⇒ gcd(s, t) + gcd(s+ 1, t+ 1) ≥ 2
√
gcd(s, t)gcd(s+ 1, t+ 1). Therefore, we know:

gcd(s+ 1, t+ 1) + gcd(s, t)

gcd(s, t)gcd(s+ 1, t+ 1)
≥

2
√
gcd(s, t)gcd(s+ 1, t+ 1)

gcd(s, t)gcd(s+ 1, t+ 1)
=

2√
gcd(s, t)gcd(s+ 1, t+ 1)

And we want to show that 2√
gcd(s,t)gcd(s+1,t+1)

≥ 2√
s−t . Note:

2√
gcd(s, t)gcd(s+ 1, t+ 1)

≥ 2√
s− t

⇐⇒ 2
√
s− t ≥ 2

√
gcd(s, t)gcd(s+ 1, t+ 1)

⇐⇒
√
s− t ≥

√
gcd(s, t)gcd(s+ 1, t+ 1)

⇐⇒ s− t ≥ gcd(s, t)gcd(s+ 1, t+ 1)

By Property 1, we already know that s− t ≥ gcd(s, t)gcd(s+ 1, t+ 1). Therefore, we also know:

2√
gcd(s, t)gcd(s+ 1, t+ 1)

≥ 2√
s− t

=⇒ gcd(s+ 1, t+ 1) + gcd(s, t)

gcd(s, t)gcd(s+ 1, t+ 1)
≥

2
√
gcd(s, t)gcd(s+ 1, t+ 1)

gcd(s, t)gcd(s+ 1, t+ 1)
=

2√
gcd(s, t)gcd(s+ 1, t+ 1)

≥ 2√
s− t

Multiplying the leftmost and rightmost terms by st yields:

=⇒ st
gcd(s+ 1, t+ 1) + gcd(s, t)

gcd(s, t)gcd(s+ 1, t+ 1)
=
stgcd(s+ 1, t+ 1) + stgcd(s, t)

gcd(s, t)gcd(s+ 1, t+ 1)
≥ st

2√
s− t

=
2st√
s− t

Page 578



Since st < (s+ 1)(t+ 1), we also know:

stgcd(s+ 1, t+ 1) + (s+ 1)(t+ 1)gcd(s, t)

gcd(s, t)gcd(s+ 1, t+ 1)
>
stgcd(s+ 1, t+ 1) + stgcd(s, t)

gcd(s, t)gcd(s+ 1, t+ 1)
≥ 2st√

s− t

Note:

stgcd(s+ 1, t+ 1) + (s+ 1)(t+ 1)gcd(s, t)

gcd(s, t)gcd(s+ 1, t+ 1)
=

st

gcd(s, t)
+

(s+ 1)(t+ 1)

gcd(s+ 1, t+ 1)
= lcm(s, t) + lcm(s+ 1, t+ 1)

Thus, we have shown that:

lcm(s, t) + lcm(s+ 1, t+ 1) >
stgcd(s+ 1, t+ 1) + stgcd(s, t)

gcd(s, t)gcd(s+ 1, t+ 1)
≥ 2st√

s− t
=

2st√
|s− t|

which is exactly what we want to show, and thus concludes the proof.

Assignment 7

Problem 1

(5 points). Solve the following system of congruences:


x ≡ 20 (mod 19)

x ≡ 3 (mod 23)

x ≡ 4 (mod 5)

Note that since 19, 23, and 5 are all prime, 19, 23, and 5 are all coprime, and so the Chinese Remainder Theorem

guarantees the existence of a unique solution x (mod (19)(23)(5)) to the system.

To find x, we will apply the Chinese Remainder Theorem:

First, let a1 = 20, a2 = 3, a3 = 4, n1 = 19, n2 = 23, n3 = 5, N1 = n2n3 = 23(5), N2 = n1n3 = 19(5), N3 = n1n2 = 19(23)

We want to find x1 such that N1x1 ≡ 1 (mod 19).

Note: N1 = 23(5) ≡ 4(5) = 20 ≡ 1 (mod 19) =⇒ N1x1 ≡ x1 ≡ 1 (mod 19), so we can take x1 = 1.

Now, we want to find x2 such that N2x2 ≡ 1 (mod 23).

Note: N2 = 19(5) = 95 ≡ 3 (mod 23) =⇒ N2x2 ≡ 3x2 ≡ 1 (mod 23) =⇒ 8(3x2) = 24x2 ≡ x2 ≡ 8(1) = 8 (mod 23),

so we can take x2 = 8.

Now, we want to find x3 such that N3x3 ≡ 1 (mod 5).

Note: N3 = 19(23) ≡ (4)(3) = 12 ≡ 2 (mod 5) =⇒ N3x3 ≡ 2x3 ≡ 1 (mod 5)

=⇒ 3(2x3) = 6x3 ≡ x3 ≡ 3(1) = 3 (mod 5), so we can take x3 = 3.

Now, the Chinese Remainder Theorem guarantees that

x = a1N1x1 + a2N2x2 + a3N3x3 = 20(23)(5)(1) + 3(19)(5)(8) + 4(19)(23)(3) = 9824 = 4(19)(23)(5) + 1084

≡ 1084 (mod (19)(23)(5))

is the unique solution (mod (19)(23)(5)) to the system of congruences.
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Problem 2

(5 points). Solve the following system of congruences: (System 1 )


2x ≡ 11 (mod 17)

3x ≡ 12 (mod 21)

4x ≡ 13 (mod 31)

Note:


2x ≡ 11 (mod 17) ⇐⇒ 9(2x) = 18x ≡ x ≡ 9(11) = 99 ≡ 14 (mod 17)

3x ≡ 12 (mod 21) ⇐⇒ 3x− 12 = 21y ⇐⇒ x− 4 = 7y ⇐⇒ x ≡ 4 (mod 7)

4x ≡ 13 (mod 31) ⇐⇒ 8(4x) = 32x ≡ x ≡ 8(13) = 104 ≡ 11 (mod 31)

Now we can define another system: (System 2 )


x ≡ 14 (mod 17)

x ≡ 4 (mod 7)

x ≡ 11 (mod 31)

Note: Since 17, 7, and 31 are all prime, they are all coprime, so the Chinese Remainder Theorem

guarantees the existence of a unique solution x (mod (17)(7)(31)) to System 2.

System 1 and System 2 are logically equivalent, and the Chinese Remainder Theorem guarantees the existence of a

unique solution x (mod (17)(7)(31)) to System 2, so it also guarantees the existence of that same unique solution x

(mod (17)(7)(31)) to System 1. To find x, we will apply the Chinese Remainder Theorem.

First, let a1 = 14, a2 = 4, a3 = 11, n1 = 17, n2 = 7, n3 = 31,

N1 = n2n3 = 7(31), N2 = n1n3 = 17(31), N3 = n1n2 = 17(7).

We want to find x1 such that N1x1 ≡ 1 (mod 17). Note: N1 = 7(31) ≡ 7(14) = 98 ≡ 13 (mod 17)

=⇒ N1x1 ≡ 13x1 ≡ 1 (mod 17) =⇒ 4(13x1) = 52x1 ≡ x1 ≡ 4(1) = 4 (mod 17), so we can take x1 = 4.

Now, we want to find x2 such that N2x2 ≡ 1 (mod 7). Note: N2 = 17(31) ≡ 3(3) = 9 ≡ 2 (mod 7)

=⇒ N2x2 ≡ 2x2 ≡ 1 (mod 7) =⇒ 4(2x2) = 8x2 ≡ x2 ≡ 4(1) = 4 (mod 7), so we can take x2 = 4.

Now, we want to find x3 such that N3x3 ≡ 1 (mod 31). Note: N3 = 17(7) = 119 ≡ 26 (mod 31)

=⇒ N3x3 ≡ 26x3 ≡ 1 (mod 31) =⇒ 6(26x3) = 156x3 ≡ x3 ≡ 6(1) = 6 (mod 31), so we can take x3 = 6.

Now, the Chinese Remainder Theorem guarantees that

x = a1N1x1 + a2N2x2 + a3N3x3 = 14(7)(31)(4) + 4(17)(31)(4) + 11(17)(7)(6) = 28438 = 7(17)(7)(31) + 2615

≡ 2615 (mod (17)(7)(31))

is the unique solution (mod (17)(7)(31)) to both System 2 and System 1.

Problem 3

(5 points). A man had a near fatal encounter, as a result of which he lost most of his memory. An FBI agent
pays him a visit and asks him what he was doing the previous day. The man says that he only remembers
that he walked a certain distance (denote it by d meters). He remembers that, for some reason, when d was
divided into 1 kilometer pieces, 53 meters remained. When he divided it into 13 meters, 3 meters remained.
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He knows also that he walked less than 15 kilometers. How many meters d did the man walk? Perhaps a
mathematician is involved...
Note that we can solve for d by solving the following system of congruences, under the condition 0 < d < 15000:{
d ≡ 53 (mod 1000)

d ≡ 3 (mod 13)
Note: 13 is prime, and 1000 = 10(10)(10) = (5)(2)(5)(2)(5)(2) = 2353,

so 13 and 1000 are coprime. Therefore, the Chinese Remainder Theorem guarantees the existence of a unqiue solution

x (mod (13)(1000)) to the system. To find x, we apply the Chinese Remainder Theorem.

First, let a1 = 53, a2 = 3, n1 = 1000, n2 = 13, N1 = n2 = 13, N2 = n1 = 1000

We want to find x1 such that N1x1 ≡ 1 (mod 1000). Note: N1 = 13 ≡ 13 (mod 1000)

=⇒ N1x1 = 13x1 ≡ 1 (mod 1000) =⇒ 77(13x1) = 1001x1 ≡ x1 ≡ 77(1) = 77 (mod 1000), so we can take x1 = 77.

Now, we want to find x2 such that N2x2 ≡ 1 (mod 13). Note: N2 = 1000 ≡ 12 (mod 13)

=⇒ N2x2 ≡ 12x2 ≡ −x2 ≡ 1 (mod 13) =⇒ x2 ≡ −1 ≡ 12 (mod 13), so we can take x2 = 12

Now, the Chinese Remainder Theorem guarantees that

x = a1N1x1 + a2N2x2 = 53(13)(77) + 3(1000)(12) = 89053 = 6(13)(1000) + 11053

≡ 11053 (mod (13)(1000))

is the unique solution (mod (13)(1000)) to the system of congruences.

Since 11053 ≡ 11053 (mod (13)(1000)), and since 0 < 11053 < 15000, d = 11053,

so the man must have walked 11053 meters.

Problem 4

(5 points). Find 22022 (mod 21)

Claim: 22022 ≡ 1 (mod 21)

Proof. Let r ≡ 22022 (mod 21). Since 21 = 7(3), this yields the system of congruences:

(System 1)

{
r ≡ 22022 (mod 7)

r ≡ 22022 (mod 3)

Since 7 and 3 are coprime, the Chinese Remainder Theorem guarantees the existence of a unique solution

r (mod (7)(3)=21) to System 1.

By Fermat’s Little Theorem, for all natural numbers n and primes p such that gcd(n, p) = 1, np−1 ≡ 1 (mod p).

gcd(2, 7) = 1 =⇒ 26 ≡ 1 (mod 7) =⇒ r ≡ 22022 = (26)337 ≡ 1337 = 1 (mod 7)

Similarly, gcd(2, 3) = 1 =⇒ 22 ≡ 1 (mod 3) =⇒ r ≡ 22022 = (22)1011 ≡ 11011 = 1 (mod 3)
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Since 1 ≡ 1 (mod 7), and 1 ≡ 1 (mod 3), r = 1 ≡ 1 (mod 21) is one solution to System 1.

Since the Chinese Remainder Theorem guarantees the existence of a unique solution (mod 21) to System 1,

we know r = 1 ≡ 1(mod 21) is the unique solution (mod 21) to System 1.

=⇒ r ≡ 22022 ≡ 1 (mod 21), which is exactly what we want to show, and thus concludes the proof.

Problem 5

(Bonus, 5 points). Show that for every prime p, there is an n ∈ N such that

2n + 3n + 6n − 1

p3
∈ N

Proof. First, note that, since p > 0, ∀ primes p, and since 2n + 3n + 6n − 1 > 0, ∀n ∈ N, we know that

2n + 3n + 6n − 1

p3
∈ N ⇐⇒ 2n + 3n + 6n − 1 ≡ 0 (mod p3)

Also note that, by Euler’s Theorem, ∀a ∈ N, p prime, if gcd(a, p3) = 1, then aφ(p
3) ≡ 1 (mod p3),

where φ(p3) = p2(p− 1).

If p = 2, then we can take n = 2, and

22 + 32 + 62 − 1 = 48 = 6(23) ≡ 0 (mod 23) ⇐⇒ 22 + 32 + 62 − 1

23
=

48

8
= 6 ∈ N

so we know n = 2 is a suitable n ∈ N for p = 2.

If p = 3, we want to find a suitable n such that

2n + 3n + 6n − 1 ≡ 0 (mod 33)

Note that 6n = 2n3n, and let n = 3x for some x ∈ N, so we can write

2n+3n+6n−1 = 23x+(33)x+23x(33)x−1 ≡ 23x+0x+23x0x−1 ≡ 23x−1 ≡ 0 (mod 33) ⇐⇒ 2n = 23x ≡ 1 (mod 33)

By Euler’s Theorem, we know 2φ(3
3) = 23

2(2) = 218 ≡ 1 (mod 33), and φ(33) = 18 is a positive multiple of 3,

allowing x = 6 ∈ N, so we know n = φ(33) = 18 is a suitable n ∈ N for p = 3

To be sure, we can plug 18 in for n, and we find

218 + 318 + 618 − 1

33
=

262144 + 387420489 + 10155995666846− 1

27
=

101560344351048

27
= 3761494235224 ∈ N

as expected, so we know n = 18 is a suitable n ∈ N for p = 3.

Now, we just need to consider primes p > 3.

Note that, since 6n = 2n3n, ∀ primes p > 3, n ∈ N, gcd(2n, p3) = gcd(3n, p3) = gcd(6n, p3) = 1.
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Therefore, by Euler’s Theorem, for all primes p > 3,

2φ(p
3) ≡ 3φ(p

3) ≡ 6φ(p
3) ≡ 1 (mod p3)

Let n = φ(p3)− 1, and we find

2n+3n+6n−1 = 2φ(p
3)−1+3φ(p

3)−1+6φ(p
3)−1−1 =

2φ(p
3)

2
+
3φ(p

3)

3
+
6φ(p

3)

6
−1 ≡ 1

2
+
1

3
+
1

6
−1 = 1−1 = 0 (mod p3)

⇐⇒ 2φ(p
3)−1 + 3φ(p

3)−1 + 6φ(p
3)−1 − 1

p3
∈ N

so we know n = φ(p3)− 1 is a suitable n ∈ N for all primes p > 3.

Since we already found suitable values of n ∈ N for all primes p ≤ 3 (just 2 and 3), we have found a suitable

value of n ∈ N such that
2n + 3n + 6n − 1

p3
∈ N

for all primes p, which is exactly what we want to show, and thus concludes the proof.

Assignment 8

Problem 1

(4 points). Show that if p > 1 is a natural number such that

(p− 1)! ≡ −1 (mod p)

then p is a prime number.

Proof. (By Contradiction) Assume to the contrary that p > 1 is a natural number such that

(p− 1)! ≡ −1 (mod p)

and p is a composite number.

Since p is composite, we know ∃k ∈ {2, ..., p− 1} such that p = ks for some s ∈ N.

Since (p− 1)! ≡ −1 (mod p), we know (p− 1)! + 1 = pr = ksr for some r ∈ Z.

=⇒ (p− 1)! + 1 is a multiple of k =⇒ (p− 1)! + 1 ≡ 0 (mod k) =⇒ (p− 1)! ≡ −1 (mod k).

However, since k ∈ {2, ..., p− 1}, (p− 1)! = 1...(k − 1)(k)(k + 1)...(p− 1),

so (p− 1)! is a multiple of k, so (p− 1)! ≡ 0 (mod k), which is a contradiction.

Thus, our initial assumption that p is composite must be false, so, if p > 1 is a natural number such that

(p− 1)! ≡ −1 (mod p)

then p must be a prime number, which is exactly what we want to show, and thus concludes the proof.
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Problem 2

(6 points). Find the last two digits of 31000. Find the last two digits of 21000.

First, note that, by Euler’s Theorem, ∀a ∈ N, p prime, if gcd(a, pn) = 1, then aφ(p
n) ≡ 1 (mod pn),

where φ(pn) = pn−1(p− 1). We will use this frequently throughout the rest of the problem.

Claim: The last two digits of 31000 are 01.

Proof. Note that finding the last two digits of 31000 is the same as solving for r ≡ 31000 (mod 100).

Since 100 = 5222, this yields the following system of congruences: (System 1)

{
r ≡ 31000 (mod 52)

r ≡ 31000 (mod 22)
Since gcd(52, 22) = 1, the Chinese Remainder Theorem guarantees the existence of a unique solution r (mod (52)(22))

to System 1.

By Euler’s Theorem, since gcd(3, 52) = 1, we know that 3φ(5
2) = 35

1(5−1) = 320 ≡ 1 (mod 52)

=⇒ r ≡ 31000 = (320)50 ≡ 150 = 1 (mod 52).

Also by Euler’s Theorem, since gcd(3, 22) = 1, we know that 3φ(2
2) = 32

1(2−1) = 32 ≡ 1 (mod 22).

=⇒ r ≡ 31000 = (32)500 ≡ 1500 = 1 (mod 22).

Since 1 ≡ 1 (mod 52) and 1 ≡ 1 (mod 22), we know r = 1 ≡ 1 (mod (52)(22) = 100) is a solution to System 1.

Since the Chinese Remainder Theorem guarantees the existence of a unique solution (mod (52)(22)) to System 1,

we know r = 1 ≡ 1 (mod 100) is the unique solution (mod 100) to System 1.

=⇒ r ≡ 31000 ≡ 1 (mod 100), so the last two digits of 31000 are 01, which is exactly what we want to show,

and thus concludes the proof.

Claim: The last two digits of 21000 are 76.

Proof. Note that finding the last two digits of 21000 is the same as solving for s ≡ 21000 (mod 100).

Since 100 = 5222, this yields the following system of congruences: (System 2)

{
s ≡ 21000 (mod 52)

s ≡ 21000 (mod 22)
Since gcd(22, 52) = 1, the Chinese Remainder Theorem guarantees the existence of a unique solution s (mod (52)(22))

to System 2.

By Euler’s Theorem, since gcd(2, 52) = 1, we know that 2φ(5
2) = 25

1(5−1) = 220 ≡ 1 (mod 52).

=⇒ s ≡ 21000 = (220)50 ≡ 150 = 1 (mod 52).

Also note: s ≡ 21000 = (22)500 ≡ 0500 = 0 (mod 22),

so we need to find an s such that s ≡ 1 (mod 52) and s ≡ 0 (mod 22).

We only care about the last two digits of s, so we only consider the potential values of s (mod 100),

which are 0 through 99 (inclusive). Of these, only 1, 26, 51, and 76 ≡ 1 (mod 52). Of these, only 76 ≡ 0 (mod 22).
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=⇒ s = 76 ≡ 76 (mod (52)(22)) is a solution (mod 100) to System 2.

Since the Chinese Remainder Theorem guarantees the existence of a unique solution (mod (52)(22) = 100) to System 2,

we know s = 76 ≡ 76 (mod 100) is the unique solution (mod 100) to System 2.

=⇒ s ≡ 21000 ≡ 76 (mod 100), so the last two digits of 21000 are 76, which is exactly what we want to show,

and thus concludes the proof.

Problem 3

(5 points). Show that for any pair of natural numbers m,n such that gcd(m,n) = 1,

φ(mn) = φ(m)φ(n)

Proof. Note: if m = 1 or n = 1 or m = n = 1, gcd(m,n) always equals 1, and

φ(mn) = φ(m)φ(n)

is trivially true since φ(1) = 1, so we just need to show the equation holds for m,n ̸= 1 =⇒ m,n ≥ 2.

Also note: ∀ a ∈ N, a ≥ 2, a = pα1
1 ...pαk

k , where p1, ..., pk are distinct primes, α1, ..., αk ∈ Z,≥ 1, and k ∈ N.

For all such a ∈ N, a ≥ 2, φ(a) = a(1− 1
p1
)...(1− 1

pk
)

Using these facts, write m = pα1
m,1...p

αk

m,k and n = pβ1

n,1...p
βt

n,t, where pm,1, ..., pm,k are distinct primes,

pn,1, ..., pn,t are distinct primes, αi ∈ Z, ≥ 1 for all 1 ≤ i ≤ k, and βj ∈ Z, ≥ 1 for all 1 ≤ j ≤ t.

By the definition of the Euler Totient,

φ(m) = m(1− 1

pm,1
)...(1− 1

pm,k
)

and

φ(n) = n(1− 1

pn,1
)...(1− 1

pn,t
)

=⇒ φ(m)φ(n) = m(1− 1

pm,1
)...(1− 1

pm,k
)n(1− 1

pn,1
)...(1− 1

pn,t
) = mn(1− 1

pm,1
)...(1− 1

pm,k
)(1− 1

pn,1
)...(1− 1

pn,t
)

Since gcd(m,n) = 1, m and n share no prime factors, so pm,i ̸= pn,j for all 1 ≤ i ≤ k, 1 ≤ j ≤ t.

Since m = pα1
m,1...p

αk

m,k and n = pβ1

n,1...p
βt

n,t, we know

mn = pα1
m,1...p

αk

m,kp
β1

n,1...p
βt

n,t

where pm,1, ..., pm,k, pn,1, ..., pn,t are all distinct prime numbers.

Therefore, by the above formula for the Euler Totient,

φ(mn) = mn(1− 1

pm,1
)...(1− 1

pm,k
)(1− 1

pn,1
)...(1− 1

pn,t
) = m(1− 1

pm,1
)...(1− 1

pm,k
)n(1− 1

pn,1
)...(1− 1

pn,t
) = φ(m)φ(n)
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for all m,n ∈ N, ≥ 2 such that gcd(m,n) = 1.

Since φ(mn) = φ(m)φ(n) is trivially true if m = 1, or n = 1, or m = n = 1 such that gcd(m,n) = 1,

and we have shown that φ(mn) = φ(m)φ(n) for all m,n ∈ N, ≥ 2 such that gcd(m,n) = 1, we know that

φ(mn) = φ(m)φ(n)

for all m,n ∈ N such that gcd(m,n) = 1, which is exactly what we want to show, and thus concludes the proof.

Problem 4

(5 points). Use orders of elements to show that for any pair of natural numbers a > n,

n|φ(an − 1)

Proof. Note: gcd(a, b) = gcd(a, b− ka) ∀ a, b, k ∈ Z

Therefore, gcd(a, an − 1) = gcd(a, an − 1− an−1a) = gcd(a,−1) = gcd(a− (−a)(−1),−1) = gcd(0,−1) = 1

By Euler’s Theorem, we know that, ∀ a, b ∈ N such that gcd(a, b) = 1, aφ(b) ≡ 1 (mod b).

Since a, n ∈ N, and a > n =⇒ a ≥ 2, we know that a, an − 1 ∈ N.

Combining this with Euler’s Theorem and the fact that gcd(a, an − 1) = 1, we know that aφ(a
n−1) ≡ 1 (mod an − 1)

Since an = (an − 1) + 1, we know that an ≡ 1 (mod an − 1) as well.

Since am ≡ 1 (mod an − 1) =⇒ ordan−1(a)|m, it suffices to show that n = ordan−1(a).

To do so, we assume to the contrary that n ̸= ordan−1(a), that is, ∃k ∈ N such that ak ≡ 1 (mod an − 1) and k < n.

Since a ≥ 2 and k ∈ N ≥ 1, ak ≥ 2, so ak ≡ 1 (mod an − 1) =⇒ ak − 1 = (an − 1)t for some t ∈ N.

However, k < n =⇒ ak − 1 < an − 1 =⇒ ak−1
an−1 = t < 1, which is a contradiction since t ∈ N ≥ 1.

Thus, our initial assumption must be incorrect, so we know n = ordan−1(a),

=⇒ n|φ(an − 1) for all pairs of natural numbers a > n, which concludes the proof.

Problem 5

(Bonus, 5 points). Show that there is no natural number n > 1 such that

n|2n − 1

Proof. (By Contradiction). Assume to the contrary that ∃ a natural number n > 1 such that n|2n − 1.

If n is even, n|2n − 1 =⇒ 2n − 1 = na for some a ∈ Z. But 2n is even =⇒ 2n − 1 is odd,

and n is even =⇒ na is even ∀a ∈ Z, so we have a contradiction.
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If n is odd, since n > 1, n is either an odd prime or the product of odd primes.

If n is an odd prime, Fermat’s Little Theorem guarantees that 2n ≡ 2 (mod n),

but n|2n − 1 =⇒ 2n − 1 = nk for some k ∈ Z =⇒ 2n − 1 ≡ 0 (mod n) =⇒ 2n ≡ 1 (mod n), and 1 ̸≡ 2 (mod n),

for all n > 1, so we have a contradiction.

Finally, if n is a product of odd primes, then we can let p be the smallest such prime, that is, n = px for some x ∈ N.

Since p is n’s smallest prime factor, gcd(n, p− 1) = 1 (since the prime factorization of p− 1 only contains

primes that are strictly less than p).

Since p is an odd prime, gcd(2, p) = 1, so Fermat’s Little Theorem guarantees that 2p−1 ≡ 1 (mod p).

Since n|2n − 1, 2n − 1 = ns = pxs for some s ∈ Z =⇒ 2n − 1 ≡ 0 (mod p) =⇒ 2n ≡ 1 ≡ 2p−1 (mod p).

Let ordp(2) = t ∈ N be the smallest power of 2 such that 2t ≡ 1 (mod p).

Since 21 = 2 ̸≡ 1 (mod p) ∀ odd primes p, we know that t > 1.

Since 2n ≡ 2p−1 ≡ 1 (mod p), we know that t|n and t|p− 1

=⇒ t|gcd(n, p− 1) =⇒ |t| = t ≤ |gcd(n, p− 1)| = gcd(n, p− 1) = 1.

But t > 1, so we have a contradiction.

Thus, for all natural numbers n > 1, assuming that n|2n − 1 yields a contradiction.

Therefore, our assumption must be incorrect, so we have shown that there is no natural number n > 1 such that

n|2n − 1

which is exactly what we want to show, and thus concludes the proof.

Assignment 9

Problem 1

(5 points). (a) Suppose G is a group. Show that if e1, e2 are both units in G, then e1 = e2, that is, units are unique.

Proof. By the definition of a group, if e is a unit in a group G, then, for all g ∈ G, e ∗ g = g ∗ e = g.

Therefore, since e1 is a unit in G, e1 ∗ e2 = e2.

Similarly, since e2 is a unit in G, e1 ∗ e2 = e1.

Therefore, e1 = e1 ∗ e2 = e2 =⇒ e1 = e2, which is exactly what we want to show,

and thus concludes the proof.

(b) Suppose x ∈ G, and that y, z ∈ G are inverses of x. Show that y = z, that is, inverses are unique.
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Proof. By the definition of a group, we know that, for all g ∈ G, if a ∈ G is an inverse to g,

then a ∗ g = g ∗ a = e, where e is the (unique by part (a)) unit for G.

Therefore, x ∗ y = y ∗ x = e = z ∗ x = x ∗ z.

For all g ∈ G, e ∗ g = g ∗ e = g, so y = y ∗ e. But e = x ∗ z.

=⇒ y = y ∗ e = y ∗ (x ∗ z) = (y ∗ x) ∗ z = e ∗ z = z, which is exactly what we want to show,

and thus concludes the proof.

Problem 2

(5 points). Let

τ(n) :=
∑

d|n,d∈N

1

be the number of positive divisors of n. Systematically compute τ(175), τ(231).

Let p1, ..., pk be distinct primes. Find τ(p1p
2
2p

3
3...p

k
k) in terms of k.

Note: ∀n ∈ N, ≥ 2, we can write n = pα1
1 ...pαk

k , where p1, ..., pk are distinct primes, and αi ∈ N for all 1 ≤ i ≤ k.

For all such n, τ(n) = (α1 + 1)...(αk + 1). We will call this Property 1, and refer back to it

throughout the rest of this problem.

Claim: τ(175) = 6

Proof. 175 ≥ 2, and we can write 175 = pα1
1 pα2

2 = 5271 =⇒ α1 = 2, α2 = 1.

By Property 1, =⇒ τ(175) = (α1 + 1)(α2 + 1) = (2 + 1)(1 + 1) = 3(2) = 6, which is exactly what we want to show,

and thus concludes the proof.

Claim: τ(231) = 8.

Proof. 231 ≥ 2, and we can write 231 = pα1
1 pα2

2 pα3
3 = 3171111 =⇒ α1 = α2 = α3 = 1

By Property 1, =⇒ τ(231) = (α1 + 1)(α2 + 1)(α3 + 1) = (1 + 1)(1 + 1)(1 + 1) = 23 = 8, which is exactly what

we want to show, and thus concludes the proof.

Claim: τ(p1p
2
2p

3
3...p

k
k) = (k + 1)!.

Proof. Since n = p1p
2
2p

3
3...p

k
k is the product of at least one prime, and all primes are ≥ 2, we know that n ≥ 2.

Moreover, n = p1p
2
2p

3
3...p

k
k = pα1

1 pα2
2 pα3

3 ...pαk

k =⇒ αi = i, for all 1 ≤ i ≤ k.

By Property 1,

=⇒ τ(n) = τ(p1p
2
2p

3
3...p

k
k) = (α1 + 1)(α2 + 1)(α3 + 1)...(αk + 1) = (1 + 1)(2 + 1)(3 + 1)...(k + 1)

= 2(3)(4)...(k + 1) = 1(2)(3)(4)...(k + 1) = (k + 1)!,

which is exactly what we want to show, and thus concludes the proof.
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Problem 3

(5 points). Let

σ(n) :=
∑

d|n,d∈N

d

be the sum of divisors of n. Compute σ(175), σ(231). Find the sum of the even positive divisors of 10000.

Note: ∀n ∈ N, ≥ 2, we can write n = pα1
1 ...pαk

k , where p1, ..., pk are distinct primes, and αi ∈ N for all 1 ≤ i ≤ k.

For all such n, σ(n) = (
p
α1+1
1 −1
p1−1 )...(

p
αk+1

k −1

pk−1 ). We will call this Property 2, and refer back to it

throughout the rest of this problem.

Claim: σ(175) = 248.

Proof. 175 ≥ 2, and we can write 175 = pα1
1 pα2

2 = 5271, =⇒ p1 = 5, α1 = 2, p2 = 7, and α2 = 1.

By Property 2, =⇒ σ(175) = (
p
α1+1
1 −1
p1−1 )...(

p
αk+1

k −1

pk−1 ) = ( 5
2+1−1
5−1 )( 7

1+1−1
7−1 ) = (1244 )( 486 ) = 31(8) = 248,

which is exactly what we want to show, and thus concludes the proof.

Claim: σ(231) = 384.

Proof. 231 ≥ 2, and we can write 231 = pα1
1 pα2

2 pα3
3 = 3171111, =⇒ p1 = 3, α1 = 1, p2 = 7, α2 = 1, p3 = 11, α3 = 1.

By Property 2, =⇒ σ(231) = (
p
α1+1
1 −1
p1−1 )...(

p
αk+1

k −1

pk−1 ) = ( 3
1+1−1
3−1 )( 7

1+1−1
7−1 )( 11

1+1−1
11−1 ) = ( 82 )(

48
6 )( 12010 ) = 4(8)(12) = 384,

which is exactly what we want to show, and thus concludes the proof.

Claim: The sum of the even positive divisors of 10000 is 23430.

Proof. Since 10000 = 2454, all positive divisors of 10000 are given by d = 2α15α2 , where 0 ≤ α1, α2 ≤ 4.

For a positive divisor of 10000 to be even, 2 must be one of its factors,

so we know all even positive divisors of 10000 are given by

d = 2α15α2 , where 1 ≤ α1 ≤ 4, and 0 ≤ α2 ≤ 4

To find the sum of all such even positive divisors d, we calculate∑
1≤α1≤4
0≤α2≤4

2α15α2

Due to the distributive property of addition, we can split this sum as follows:∑
1≤α1≤4
0≤α2≤4

2α15α2 =
∑

1≤α1≤4

2α1

∑
0≤α2≤4

5α2

Now, we can easily compute that∑
1≤α1≤4
0≤α2≤4

2α15α2 = (21+22+23+24)(50+51+52+53+54) = (2+4+8+16)(1+5+25+125+625) = 30(781) = 23430

which is exactly what we want to show, and thus concludes the proof
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Problem 4

(5 points). Show that for each n ∈ N,

(Product 1) :=
∏

d|n,d∈N

d = n
τ(n)

2

Proof. Note: if n = 1, then n’s only positive divisor is 1, so τ(n) = 1, and∏
d|n,d∈N

d = 1 = 1
1
2 =

√
1 = 1

so we just need to show that ∏
d|n,d∈N

d = n
τ(n)

2

for all n ∈ N, n ≥ 2.

Note that we can write any such n as n = pα1
1 ...pαk

k , where p1, ..., pk are distinct primes and αi ∈ N for all 1 ≤ i ≤ k.

Therefore, all positive divisors, d, of such n, are given by d = pβ1

1 ...p
βk

k , where 0 ≤ βi ≤ αi for all 1 ≤ i ≤ k.

=⇒ (Product 1) :=
∏

d|n,d∈N

d =
∏

0≤β1≤α1
.
.
.

0≤βk≤αk

pβ1

1 ...p
βk

k

Since p1, ..., pk are distinct primes, we can consider their contributions to Product 1 separately.

For each pi, we can rewrite all positive divisors d as

d = pβi

i

∏
1≤j≤k
j ̸=i

p
βj

j , 0 ≤ βi ≤ αi, 0 ≤ βj ≤ αj

We can select each βj in (αj + 1) ways, and we can make each selection independently, so, for a given βi, there are∏
1≤j≤k
j ̸=i

(αj + 1)

positive divisors d with pβi

i as the largest power of pi that divides them,

and each such d contributes βi copies of pi to Product 1, so the product of all such divisors d contributes exactly

βi
∏

1≤j≤k
j ̸=i

(αj + 1)

copies of pi to Product 1.

This is true for all 0 ≤ βi ≤ αi, so we know there are exactly∑
0≤βi≤αi

(βi
∏

1≤j≤k
j ̸=i

(αj + 1)) = (
∑

0≤βi≤αi

βi)
∏

1≤j≤k
j ̸=i

(αj + 1) = (
αi(αi + 1)

2
)
∏

1≤j≤k
j ̸=i

(αj + 1) =
αi
2

∏
1≤j≤k

(αj + 1)
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copies of pi in Product 1.

This is true for all pi (for all 1 ≤ i ≤ k), so we can now calculate that

(Product 1) :=
∏

d|n,d∈N

d = p
α1
2

∏
1≤j≤k(αj+1)

1 ...p
αk
2

∏
1≤j≤k(αj+1)

k = p
α1
2 (α1+1)...(αk+1)

1 ...p
αk
2 (α1+1)...(αk+1)

k

By Property 1 of Problem 2, we know τ(n) = (α1 + 1)...(αk + 1).

=⇒ (Product 1) :=
∏

d|n,d∈N

d = p
α1
2 τ(n)

1 ...p
αk
2 τ(n)

k = (pα1
1 ...pαk

k )
τ(n)

2 = n
τ(n)

2 ,

which is exactly what we want to show, and thus concludes the proof.

Problem 5

(Very difficult Bonus, 5 points). On planet E, there is an advanced alien civilization. There is a group of
aliens who would like to go on a field trip to Planet Earth, their zoo. Some of them are friends, some are
strangers. They will take two spaceships for their journey. However, on planet E, they always insist that
on their spaceships, every alien should be friends with an even number of other aliens (hence the name E).
Show that the number of ways the aliens may be assigned to the two spaceships is of the form 2k, k ∈ N .

Proof. Note that we can model the set of aliens and their friendships via a graph G = (A,F ),

where A := {all aliens on planet E}, and F = {(ai, aj) ∈ A x A | ai and aj are friends}.

Also Note: good configuration refers to any grouping of aliens that results in all aliens

having an even number of friends on their spaceship.

First, we must show that, for any G, there exists at least one good configuration.

To do so, we will induct on the number of aliens, which we will call n.

Base Case: n = 1. There is only one alien, who has no friends, so he can go into Spaceship 1,

and we have a good configuration.

Inductive Hypothesis: Assume at least one good configuration exists with n aliens,

regardless of the set of friendships, for all 1 ≤ n ≤ m.

Inductive Step: We want to show that at least one good configuration exists with m+ 1 aliens,

regardless of the set of friendships.

Consider an arbitrary graph G = (A,F ) with |A| = m+ 1.

Note: If all aliens have an even number of friends, we can put all aliens in the same Spaceship,

and we will have a good configuration.

Thus, we just need to show that we can always find a good configuration if at least one of the
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m+ 1 aliens has an odd number of friends.

Take one such alien with an odd number of friends, ai and remove it from the graph.

For each deleted friend (ai, aj) ∈ F , create a new friend (ax, aj) ∈ F , that is,

direct all friendships with ai towards a distinct alien ax.

Now, we have a graph with m aliens, so the Inductive Hypothesis guarantees

we can find a good configuration for the graph, which we’ll call C.

Since ai had an odd number of friends, we know that C places an odd number

of ai’s friends in one Spaceship and an even number of ai’s friends in the other Spaceship.

Since ax is friends with all of ai’s friends, we know C

places ax in the Spaceship that has an even number of ai’s friends, as these friends contribute an even number to the

total number of friends ax has in its Spaceship, which is guaranteed to be even.

Now, add ai back to the graph, specifically placing it in the same Spaceship as ax.

Also, remove all the friendships (ax, aj) ∈ F that were created after deleting ai, to create a new configuration C ′.

Since ai has an even number of friends in its Spaceship, C ′ works for ai.

Since ai’s friends in ai’s Spaceship both lost and gained a friend,

they still have even numbers of friends on their Spaceship.

All other aliens have the same number of friends on their Spaceship C ′ as in C, so they are all guaranteed

to have an even number of friends on their Spaceship.

Thus, C ′ guarantees that all aliens have an even number of friends on their Spaceship, so C ′ is a good configuration,

which is exactly what we want to show, and concludes the proof of existence.

Now, we want to show that the number of possible good configurations is always of the form 2k for some k ∈ N.

Note: If we have one good configuration, X, we can consider operations opi ∈ (Z/2Z)n

which send X to another good configuration.

Also note: All good configurations can be reached with one operation, so the number of good configurations

equals the size of the set S := {all operations that send X to a good configuration}.

If we let each operation opi = (o1, ..., on), oi ∈ (Z/2Z) then each oi indicates an operation to perform on the
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corresponding alien ai, where 0 indicates leaving ai in its Spaceship and 1 indicates

moving ai to the opposite Spaceship.

Thus, we know (1, 1, ..., 1) ∈ S, as taking a good configuration and flipping all aliens to opposite Spaceships

always results in a symmetrical good configuration.

If we can show that S forms a vector space over (Z/2Z), then, since {(1, 1, ..., 1)} ⊆ S, dim[S] ≥ 1,

=⇒ S is isomorphic to (Z/2Z)k for some k ∈ N,

=⇒ number of good configurations = |S| = 2k for some k ∈ N, since (Z/2Z)k has 2k elements.

Consider S′ := {all operations that send all good configurations to a good configuration}.

For all u, v ∈ S′, applying (u+ v) to any good configuration X is identical to first applying u to X to form a good

configuration X ′, then applying v to X ′, which results in a good configuration X”.

Therefore, (u+ v) sends any good configuration to some good configuration,

so (u+ v) ∈ S′, so S′ is closed under addition.

Similarly, for all v ∈ S′, 0(v) = (0, ..., 0) ∈ S′ since doing nothing to any good configuration always results

in a good configuration.

Also, trivially, for all v ∈ S′, 1(v) = v ∈ S′, so S′ is closed under scalar multiplication.

Therefore, S′ is a vector space over (Z/2Z) with dimension ≥ 1, so S′ has 2k elements for some k ∈ N.

Thus, it suffices to show that S′ = S. We can do this by considering op1 ∈ S such that op1 sends a good

configuration X to a good configuration Y . We can then define

S” := {all operations that send Y to a good configuration}, and let op2 ∈ S” such that.

op2 sends Y to a good configuration Z. Since Z is a good configuration, we know ∃ op3 ∈ S

such that op3 sends X to Z.

Note that op1 + op2 = op3 =⇒ op3 + op1 = op2, since a+ b ≡ a− b (mod 2), so it suffices to show that op2 ∈ S.

Assume to the contrary that op2 ̸∈ S. Then applying (op1 + op2) = (op2 + op1) to X is identical to first applying op2

then applying op1 to X. Since op2 ̸∈ S, we know applying op2 to X results in a bad configuration, X ′. If we then apply

op1 to X ′, this is identical to flipping aliens as needed to get X from X ′, then applying op1 to X to get a good

configuration Y , then flipping the aliens back to get a bad configuration X”. Thus, applying (op1 + op2) = (op2 + op1)

to X results in a bad configuration. However, we know that this is identical to first applying op1 to X
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to get a good configuration Y , then applying op2 to Y to get a good configuration Z. Thus, we have

X” (bad configuration) = Z (good configuration), which is a contradiction, so we know op2 ∈ S.

Therefore, any operation that sends a fixed good configuration to a good configuration also sends all good

configurations to a good configuration.

Therefore, S = S′, so S is a vector space over (Z/2Z) with dimension ≥ 1, so

number of good configurations = |S| = |S′| = 2k for some k ∈ N,

which is exactly what we want to show, and thus concludes the proof.

Assignment 10

Problem 1

(5 points). Prove that for every n ∈ N,
n =

∑
d|n

µ(
n

d
)σ(d).

Proof. By the Möbius Inversion Formula, if f : N → C, and for all n ∈ N,

g(n) :=
∑
d|n

f(d), then

f(n) =
∑
d|n

µ(
n

d
)g(d), where µ is the möbius function µ(n) =


1 if n = 1

(−1)r if n = p1...pr, pi distinct primes

0 otherwise

Note: σ(n) =
∑
d|n

d =
∑
d|n

f(d), where f(d) = d for all d ∈ N. Thus, by the Möbius Inversion Formula,

f(n) = n =
∑
d|n

µ(
n

d
)σ(d), for all n ∈ N

which is exactly what we want to show, and thus concludes the proof.

Problem 2

(5 points). Define the function

θ(n) :=

{
log(p) if n = pα, p prime, a ≥ 1

0 otherwise.

Using the Möbius Inversion Formula, prove that

θ(n) =
∑
d|n

µ(
n

d
)log(d)
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Proof. By the Möbius Inversion Formula, it suffices to show that

g(n) = log(n) =
∑
d|n

θ(d) (27)

Note: g(1) = log(1) = 0 =
∑
d|1 θ(d) = θ(1) = 0, so we just need to show that (1) holds for all n ∈ N such that n ≥ 2.

For all such n ≥ 2, we can write the prime factorization n = pα1
1 ...pαk

k , where p1, ..., pk are distinct primes,

and αi ∈ N for all 1 ≤ i ≤ k.

Therefore, all positive divisors are of the form d = pβ1

1 ...p
βk

k , where 0 ≤ βi ≤ αi for all 1 ≤ i ≤ k.

=⇒
∑
d|n

θ(d) =
∑

0≤β1≤α1
.
.
.

0≤βk≤αk

θ(pβ1

1 ...p
βk

k )

Note: By definition, θ(pβ1

1 ...p
βk

k ) = 0 unless βi ≥ 1, βj = 0 for all 1 ≤ j ≤ k such that j ̸= i.

=⇒
∑
d|n

θ(d) =
∑

0≤β1≤α1
.
.
.

0≤βk≤αk

θ(pβ1

1 ...p
βk

k ) =
∑

1≤i≤k
1≤βi≤αi

θ(pβi

i )

For each pβi

i , βi ≥ 1, θ(pβi

i ) = log(pi).

For each pi, βi ranges from 1 to αi, so each pi contributes exactly αi copies of log(pi) to the summation.

=⇒
∑
d|n

θ(d) =
∑

1≤i≤k
1≤βi≤αi

θ(pβi

i ) = (log(p1) + ...+ log(p1)︸ ︷︷ ︸
α1 times

+(log(p2) + ...+ log(p2))︸ ︷︷ ︸
α2 times

+...+ (log(pk) + ...+ log(pk))︸ ︷︷ ︸
αk times

= α1log(p1) + α2log(p2) + ...+ αklog(pk) = log(pα1
1 ) + log(pα2

2 ) + ...+ log(pαk

k )

= log(pα1
1 ...pαk

k ) = log(n) = g(n)

Therefore, (1) holds for all n ∈ N.

Therefore, by the Möbius Inversion Formula,

θ(n) =
∑
d|n

µ(
n

d
)log(d) for all n ∈ N,

which is exactly what we want to show, and thus concludes the proof.

Problem 3

(5 points). Find a formula for ∑
d|n

µ(d)φ(d)

in terms of the prime factorization n = pα1
1 ...pαk

k , pi distinct primes. Hint: n→ µ(n)φ(n)is a multiplicative function.

Claim: Define g(n) :=
∑
d|n µ(d)φ(d). We claim that

g(n) =
∑
d|n

µ(d)φ(d) =

{
1 if n = 1

(2− p1)...(2− pk) otherwise
(28)

Page 595



Proof. Case 1: n = 1, so the only positive divisor of n is 1. We know µ(1) := 1 and φ(1) = 1, so

g(1) =
∑
d|1

µ(d)φ(d) = µ(1)φ(1) = 1(1) = 1, as required.

Case 2: n > 1. Now, we can impose the restriction αi ∈ N for all 1 ≤ i ≤ k on the prime factorization n = pα1
1 ...pαk

k .

We know all positive divisors of n are given by d = pβ1

1 ...p
βk

k , where βi ∈ Z, and 0 ≤ βi ≤ αi for all 1 ≤ i ≤ k.

=⇒ g(n) =
∑
d|n

µ(d)φ(d) =
∑

0≤β1≤α1
.
.
.

0≤βk≤αk

µ(pβ1

1 ...p
βk

k )φ(pβ1

1 ...p
βk

k )

Since p1, ..., pk are distinct primes, and we want to find g(n) in terms of p1, ..., pk,

we want to consider the contributions of each prime pi separately.

Since n→ µ(n)φ(n) is a multiplicative function, we know that

µ(pβ1

1 ...p
βk

k )φ(pβ1

1 ...p
βk

k ) = µ(pβ1

1 )φ(pβ1

1 )...µ(pβk

k )φ(pβk

k )

=⇒ g(n) =
∑

0≤β1≤α1
.
.
.

0≤βk≤αk

µ(pβ1

1 ...p
βk

k )φ(pβ1

1 ...p
βk

k ) =
∑

0≤β1≤α1
.
.
.

0≤βk≤αk

µ(pβ1

1 )φ(pβ1

1 )...µ(pβk

k )φ(pβk

k )

By the distributive property of arithmetic addition, we know that

g(n) =
∑

0≤β1≤α1
.
.
.

0≤βk≤αk

µ(pβ1

1 )φ(pβ1

1 )...µ(pβk

k )φ(pβk

k ) = (
∑

0≤β1≤α1

µ(pβ1

1 )φ(pβ1

1 ))...(
∑

0≤βk≤αk

µ(pβk

k )φ(pβk

k ))

For each pi, 1 ≤ i ≤ k,∑
0≤βi≤αi

µ(pβi

i )φ(pβi

i ) = µ(p0i )φ(p
0
i ) + µ(p1i )φ(p

1
i ) + µ(p2i )φ(p

2
i ) + ...+ µ(pαi

i )φ(pαi
i )

= µ(1)φ(1) + µ(pi)φ(pi) + µ(p2i )φ(p
2
i ) + ...+ µ(pαi

i )φ(pαi
i )

= 1(1) + (−1)(pi − 1) + (0)φ(p2i ) + ...+ (0)φ(pαi
i ) = 1 + (1− pi) = 2− pi,

since µ(pβi

i ) = 0 for all βi ≥ 2. This is true for all pi, so we know that, for all n ≥ 2,

g(n) =
∑
d|n

µ(d)φ(d) =
∑

0≤β1≤α1
.
.
.

0≤βk≤αk

µ(pβ1

1 ...p
βk

k )φ(pβ1

1 ...p
βk

k ) = (2− p1)...(2− pk) as required.

Therefore, we have shown that

g(n) =
∑
d|n

µ(d)φ(d) =

{
1 if n = 1

(2− p1)...(2− pk) otherwise
,

which is exactly what we want to show, and thus concludes the proof.
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Problem 4

(5 points). Prove that for every n ∈ N,
n∑
k=1

gcd(k, n) =
∑
d|n

dφ(
n

d
) = n

∑
d|n

φ(d)

d

Hint: See the proof of Gauss’s Lemma.

Proof. Let D := {all positive divisors of n}. For all k ∈ {1, 2, ..., n}, gcd(k, n) ∈ D.

Therefore, every term in
n∑
k=1

gcd(k, n)

is an element of D. Now, let’s count how many times each d ∈ D appears as a term in the sum.

For each k ∈ {1, 2, ..., n}, let gcd(k, n) = d ∈ D. Since d|k, we know k = id =⇒ i = k
d for some i ∈ N.

Since gcd(k, n) = d, we know gcd(kd ,
n
d ) = gcd(i, nd ) = 1. Since 1 ≤ k ≤ n and i ∈ N, we also know 1 ≤ i ≤ n

d .

By the definition of the Euler Totient, we know that, for each d ∈ D, there are exactly

φ(nd ) := #{1 ≤ i ≤ n
d |gcd(i,

n
d ) = 1} possibilities for i.

Therefore, each d ∈ D appears exactly φ(nd ) times in

n∑
k=1

gcd(k, n).

Therefore, we know that

n∑
k=1

gcd(k, n) =
∑
d|n

dφ(
n

d
), which proves the left equality.

For the right equality, note that for each d ∈ D, nd ∈ D, and n
n
d
= d, so we know that

∑
d|n

dφ(
n

d
) =

∑
d|n

n

d
φ(d) = n

∑
d|n

φ(d)

d
, which proves the right equality.

Thus, we have shown that
n∑
k=1

gcd(k, n) =
∑
d|n

dφ(
n

d
) = n

∑
d|n

φ(d)

d
,

which is exactly what we want to show, and thus concludes the proof.

Problem 5

(5 points). Find a formula for
∑
d|n

φ(d)
d in terms of the prime factorization n = pα1

1 ...pαk

k , pi distinct primes.

Use the previous exercise to find a formula for

n∑
k=1

gcd(k, n)
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in terms of the prime factorization of n.

Claim: ∑
d|n

φ(d)

d
=

{
1 if n = 1∏k
i=1(1 + αi(1− 1

pi
)) if n > 1

Proof. Case 1: n = 1, so 1 is n’s only positive divisor, so∑
d|n

φ(d)

d
=

1

1
= 1,

so we just need to show our formula holds for n > 1.

Case 2: n > 1, so we can impose the restriction αi ∈ N for all 1 ≤ i ≤ k on the prime factorization n = pα1
1 ...pαk

k .

Note: all positive divisors d|n are given by d = pβ1

1 ...p
βk

k , where 0 ≤ βi ≤ αi for all 1 ≤ i ≤ k.

=⇒
∑
d|n

φ(d)

d
=

∑
0≤β1≤α1

.

.

.
0≤βk≤αk

φ(pβ1

1 ...p
βk

k )

pβ1

1 ...p
βk

k

By Problem 3 of Homework 8, we know φ(n) is a multiplicative function.

=⇒
∑
d|n

φ(d)

d
=

∑
0≤β1≤α1

.

.

.
0≤βk≤αk

φ(pβ1

1 ...p
βk

k )

pβ1

1 ...p
βk

k

=
∑

0≤β1≤α1
.
.
.

0≤βk≤αk

φ(pβ1

1 )...φ(pβk

k )

pβ1

1 ...p
βk

k

By the distributive property of arithmetic addition, we know that∑
0≤β1≤α1

.

.

.
0≤βk≤αk

φ(pβ1

1 )...φ(pβk

k )

pβ1

1 ...p
βk

k

= (
∑

0≤β1≤α1

φ(pβ1

1 )

pβ1

1

)...(
∑

0≤βk≤αk

φ(pβk

k )

pβk

k

)

For all 1 ≤ i ≤ k, we know that
φ(p0i )

p0i
=
φ(1)

1
=

1

1
= 1

Also, for all 1 ≤ i ≤ k, βi ≥ 1, we know that

φ(pβi

i )

pβi

i

=
pβi

i (1− 1
pi
)

pβi

i

= 1− 1

pi

Therefore, we can easily calculate that, for all 1 ≤ i ≤ k,∑
0≤βi≤αi

φ(pβi

i )

pβi

i

=
φ(p0i )

p0i
+
φ(p1i )

p1i
+
φ(p2i )

p2i
+ ...+

φ(pαi
i )

pαi
i

= 1 + (1− 1

pi
) + ...+ (1− 1

pi
)︸ ︷︷ ︸

αi times

= 1 + αi(1−
1

pi
)

This is true for all pi, so we know that

(
∑

0≤β1≤α1

φ(pβ1

1 )

pβ1

1

)...(
∑

0≤βk≤αk

φ(pβk

k )

pβk

k

) =

k∏
i=1

(1 + αi(1−
1

pi
))
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for all n > 1. Thus, we have shown that

∑
d|n

φ(d)

d
=

{
1 if n = 1∏k
i=1(1 + αi(1− 1

pi
)) if n > 1

which is exactly what we want to show, and thus concludes the proof.

Claim:
n∑
k=1

gcd(k, n) =

{
1 if n = 1

pα1
1 ...pαk

k

∏k
i=1(1 + αi(1− 1

pi
)) if n > 1

Proof. By Problem 4, we know
n∑
k=1

gcd(k, n) = n
∑
d|n

φ(d)

d

By the previous proof, we know

∑
d|n

φ(d)

d
=

{
1 if n = 1∏k
i=1(1 + αi(1− 1

pi
)) if n > 1

Therefore, we know

n∑
k=1

gcd(k, n) = n
∑
d|n

φ(d)

d
=

{
1(1) = 1 if n = 1

pα1
1 ...pαk

k

∏k
i=1(1 + αi(1− 1

pi
)) if n > 1

which is exactly what we want to show, and thus concludes the proof.

Problem 6

(Bonus, 5 points). Define

pn(x) :=
∑
d|n

µ(d)x
n
d ∈ Z[x] for each n ∈ N.

Let p ∈ Z[x] be a polynomial with leading coefficient 1 and degree k with roots z1, ..., zk ∈ C.

Show that for each integer ℓ ≥ 2 and each n ∈ N,

n|
∑
d|n

k∑
j=1

zℓ−1
j p′d(z

ℓ
j)

makes sense and is true. Make sense of this even when ℓ = 1, and prove it. The prime denotes differentiation.

Proof. First, note that

pn(x) :=
∑
d|n

µ(d)x
n
d =

∑
d|n

µ(
n

d
)xd for each n ∈ N

Therefore,

p′n(x) =
d

dx
(
∑
d|n

µ(
n

d
)xd) =

∑
d|n

µ(
n

d
)
d

dx
(xd) =

∑
d|n

µ(
n

d
)d(x)d−1 for each n ∈ N

Now, for each root, z1, ..., zk ∈ C, let’s define a function pzj : N → C, where

pzj (n) := n(zℓj)
n−1 for each n ∈ N
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Now, let’s consider the right hand side of the divisibility statement.

Case 1: ℓ ≥ 2. Note that, for all ℓ ≥ 2,

∑
d|n

k∑
j=1

zℓ−1
j p′d(z

ℓ
j) =

∑
d|n

k∑
j=1

(zℓ−1
j

∑
q|d

µ(
d

q
)q(zℓj)

q−1) =
∑
d|n

k∑
j=1

(zℓ−1
j

∑
q|d

µ(
d

q
)pzj (q)) =

k∑
j=1

zℓ−1
j

∑
d|n

∑
q|d

µ(
d

q
)pzj (q)

Let fzj : N → C be defined by

fzj (d) =
∑
q|d

µ(
d

q
)pzj (q) for each d ∈ N

Since pzj : N → C for all 1 ≤ j ≤ k, the Möbius Inversion Formula guarantees that

pzj (n) := n(zℓj)
n−1 =

∑
d|n

fzj (d)

Applying this to the right hand side of the divisibility statement, we find that

∑
d|n

k∑
j=1

zℓ−1
j p′d(z

ℓ
j) =

k∑
j=1

zℓ−1
j

∑
d|n

∑
q|d

µ(
d

q
)pzj (q) =

k∑
j=1

zℓ−1
j

∑
d|n

fzj (d) =

k∑
j=1

zℓ−1
j pzj (n) =

k∑
j=1

zℓ−1
j n(zℓj)

n−1

= n

k∑
j=1

zℓ−1
j zℓn−ℓj = n

k∑
j=1

zℓn−ℓ+ℓ−1
j = n

k∑
j=1

zℓn−1
j

Note that

n|
∑
d|n

k∑
j=1

zℓ−1
j p′d(z

ℓ
j) = n

k∑
j=1

zℓn−1
j ⇐⇒

k∑
j=1

zℓn−1
j = (zℓn−1

1 + ...+ zℓn−1
k ) ∈ Z,

so it suffices to show that
k∑
j=1

zℓn−1
j = (zℓn−1

1 + ...+ zℓn−1
k ) ∈ Z

for all ℓ ≥ 2, n ∈ N. Since ℓ ≥ 2, we know ℓn ≥ 2 =⇒ ℓn− 1 ≥ 1 =⇒ ℓn− 1 ∈ N. Thus, it suffices to show that

sh :=

k∑
j=1

zhj ∈ Z for all h ∈ N

Since the polynomial p has k roots and leading coefficient 1, we can write

p(x) = akx
k + ak−1x

k−1 + ...+ a1x
1 + a0x

0 = xk + ak−1x
k−1 + ...+ a1x+ a0

Since p(x) ∈ Z[x], we know that ai ∈ Z for all 0 ≤ i ≤ k. Using Newton’s Identities, we can define

ei := the sum of all distinct products of i roots of p(x) for all 1 ≤ i ≤ k. By Vieta’s Formulae, we know

ei = (−1)i
ak−i
ak

= (−1)iak−i for all 1 ≤ i ≤ k

Since (−1)i, ak−i ∈ Z for all 1 ≤ i ≤ k, we know ei = (−1)iak−i ∈ Z for all 1 ≤ i ≤ k.

Also, Newton’s Identities tell us that, for all 1 ≤ h ≤ k, h ∈ N,

sh :=

k∑
j=1

zhj = (−1)h−1heh +

h−1∑
i=1

(−1)h−1+ieh−isi

Claim: For all 1 ≤ h ≤ k, sh ∈ Z.
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Proof. We apply strong induction on h.

Base Case:

h = 1 =⇒ sh = s1 = (−1)1−1(1)e1 +

1−1∑
i=1

(−1)1−1+ie1−isi = (−1)0(1)e1 = e1 ∈ Z

since ei ∈ Z for all 1 ≤ i ≤ k, so the claim holds for the base case of h = 1.

Inductive Hypothesis: Assume sh ∈ Z for all 1 ≤ h ≤ m < k.

Inductive Step: Consider h = m+ 1.

sh = sm+1 = (−1)m+1−1(m+1)em+1+

m+1−1∑
i=1

(−1)m+1−1+iem+1−isi = (−1)m(m+1)em+1+

m∑
i=1

(−1)m+iem+1−isi

Since (−1)m, (m+ 1), em+1 ∈ Z, we know (−1)m(m+ 1)em+1 ∈ Z.

Also, (−1)m+i, em+1−i ∈ Z for all 1 ≤ i ≤ m, and the Inductive Hypothesis guarantees that si ∈ Z for all 1 ≤ i ≤ m,

=⇒ (−1)m+iem+1−isi ∈ Z for all 1 ≤ i ≤ m =⇒
m∑
i=1

(−1)m+iem+1−isi ∈ Z

Therefore, sm+1 is the sum of two integers, so sm+1 ∈ Z, which is exactly what we want to show.

The conclusion follows by strong induction.

Newton’s Identities also guarantee that, for all h > k, h ∈ N,

sh :=

k∑
j=1

zhj =

h−1∑
i=h−k

(−1)h−1+ieh−isi

Claim: For all h > k, sh ∈ Z.

Proof. Again, we apply strong induction on h.

Base Case: h = k + 1.

sh = sk+1 =

k+1−1∑
i=k+1−k

(−1)k+1−1+iek+1−isi =

k∑
i=1

(−1)k+iek+1−isi

We know (−1)k+i, ek+1−i ∈ Z for all 1 ≤ i ≤ k, and by the previous proof, we know si ∈ Z for all 1 ≤ i ≤ k

=⇒ (−1)k+iek+1−isi ∈ Z for all 1 ≤ i ≤ k =⇒ sk+1 =

k∑
i=1

(−1)k+iek+1−isi ∈ Z,

so the claim holds for the base case of h = k + 1.

Inductive Hypothesis: Assume sh ∈ Z for all k + 1 ≤ h ≤ m.

Inductive Step: Consider h = m+ 1.

sh = sm+1 =

m+1−1∑
i=m+1−k

(−1)m+1−1+iem+1−isi =

m∑
i=m+1−k

(−1)m+iem+1−isi
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We know (−1)m+i, em+1−i ∈ Z for all m+ 1− k ≤ i ≤ m.

Also, combining our inductive hypothesis with the previous proof, we know

si ∈ Z for all 1 ≤ i ≤ m =⇒ si ∈ Z for all m+ 1− k ≤ i ≤ m

Thus,

(−1)m+iem+1−isi ∈ Z for all m+ 1− k ≤ i ≤ m =⇒ sm+1 =

m∑
i=m+1−k

(−1)m+iem+1−isi ∈ Z,

which is exactly what we want to show. The conclusion follows by strong induction.

Combining these two inductive proofs, we know

sh :=

k∑
j=1

zhj ∈ Z for all h ∈ N,

so we know that
k∑
j=1

zℓn−1
j = (zℓn−1

1 + ...+ zℓn−1
k ) ∈ Z for all ℓ ≥ 2, n ∈ N,

so we know that

n|
∑
d|n

k∑
j=1

zℓ−1
j p′d(z

ℓ
j) for all ℓ ≥ 2, n ∈ N,

which concludes Case 1.

Case 2: ℓ = 1. Note that

zℓ−1
j p′d(z

ℓ
j) =

d
dzj

(pd(z
ℓ
j))

ℓ
=

d

dzj
(pd(zj)) = p′d(zj) =

∑
q|d

µ(
d

q
)q(zj)

q−1 =
∑
q|d

µ(
d

q
)q(zℓj)

q−1

Therefore, the right side of our divisibility statement becomes

∑
d|n

k∑
j=1

zℓ−1
j p′d(z

ℓ
j) =

k∑
j=1

∑
d|n

∑
q|d

µ(
d

q
)q(zℓj)

q−1 =

k∑
j=1

∑
d|n

∑
q|d

µ(
d

q
)pzj (q)

Applying the Möbius Inversion Formula exactly the same way as in Case 1, we find that

k∑
j=1

∑
d|n

∑
q|d

µ(
d

q
)pzj (q) =

k∑
j=1

∑
d|n

fzj (d) =

k∑
j=1

pzj (n) =

k∑
j=1

n(zℓj)
n−1 = n

k∑
j=1

zn−1
j

Note that

n|
∑
d|n

k∑
j=1

zℓ−1
j p′d(z

ℓ
j) = n

k∑
j=1

zn−1
j ⇐⇒

k∑
j=1

zn−1
j = (zn−1

1 + ...+ zn−1
k ) ∈ Z,

for all n ∈ N. so it suffices to show that

k∑
j=1

zn−1
j = (zn−1

1 + ...+ zn−1
k ) ∈ Z
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for all n ∈ N.

Case 2(a): n ≥ 2. Since n ≥ 2, we know that n− 1 ≥ 1 =⇒ n− 1 ∈ N, so it suffices to show

k∑
j=1

zhj ∈ Z for all h ∈ N,

which we already did in Case 1, so we know

n|
∑
d|n

k∑
j=1

zℓ−1
j p′d(z

ℓ
j) = n

k∑
j=1

zn−1
j for all n ≥ 2 when ℓ = 1,

which concludes Case 2(a).

Case 2(b): n = 1. Note that, for all a ∈ Z, n = 1|a, so it suffices to show

∑
d|n

k∑
j=1

zℓ−1
j p′d(z

ℓ
j) ∈ Z when ℓ = n = 1

Recall that, since ℓ = 1, we know

∑
d|n

k∑
j=1

zℓ−1
j p′d(z

ℓ
j) =

k∑
j=1

∑
d|n

d
dzj

(pd(z
ℓ
j)

ℓ
=

k∑
j=1

∑
d|n

d

dzj
(pd(zj)) =

k∑
j=1

∑
d|n

d

dzj
(
∑
q|d

µ(
d

q
)zqj )

Since n = 1, d = 1 is n’s only positive divisor, and q = 1 is d’s only positive divisor. Therefore,

∑
d|n

k∑
j=1

zℓ−1
j p′d(z

ℓ
j) =

k∑
j=1

∑
d|n

d

dzj
(
∑
q|d

µ(
d

q
)zqj ) =

k∑
j=1

d

dzj
(µ(

1

1
)z1j ) =

k∑
j=1

d

dzj
(zj) =

k∑
j=1

(1) = k ∈ Z,

so we know

n|
∑
d|n

k∑
j=1

zℓ−1
j p′d(z

ℓ
j) when ℓ = n = 1,

which concludes Case 2(b).

Combining Case 1, Case 2(a), and Case 2(b), we have shown that

n|
∑
d|n

k∑
j=1

zℓ−1
j p′d(z

ℓ
j) for all ℓ, n ∈ N

which is exactly what we want to show, and thus concludes the proof.

Assignment 11

Note: For the entirety of this assignment, (ab ) refers to the Legendre Symbol, not the fraction a
b .

Problem 1

(5 points). (a) Is 17 a quadratic residue modulo 37?

Claim: 17 is a quadratic non-residue residue modulo 37.
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Proof. It suffices to show that ( 1737 ) = −1.

Since 17 and 37 are distinct primes, the Quadratic Reciprocity of Gauss guarantees that

(
17

37
) = (−1)

17−1
2

37−1
2 (

37

17
) = (−1)8∗18(

37

17
) = (

3

17
)

Since 3 and 17 are distinct primes, we can apply the Quadratic Reciprocity of Gauss again to find

(
17

37
) = (

3

17
) = (−1)

3−1
2

17−1
2 (

17

3
) = (−1)1∗8(

17

3
) = (

2

3
)

Since, for all x ∈ Z, x2 ̸≡ 2 (mod 3), we know

x2 ≡ 2 (mod 3)

has no integer solutions, so we know

(
17

37
) = (

3

17
) = (

2

3
) = −1,

which is exactly what we want to show, and thus concludes the proof.

(b) Is 35 a square modulo 41?

Claim: 35 is not a square modulo 41.

Proof. 35 is a square modulo 41 ⇐⇒ 35 is a quadratic residue modulo 41, so it suffices to show that ( 3541 ) = −1.

Since (abd ) = (ad )(
b
d ), and 35 = 5 ∗ 7, we know that

(
35

41
) = (

5

41
)(

7

41
)

Since 5, 7, and 41 are all distinct primes, the Quadratic Reciprocity of Gauss guarantees that

(
35

41
) = (

5

41
)(

7

41
) = (−1)

5−1
2

41−1
2 (

41

5
)(−1)

7−1
2

41−1
2 (

41

7
) = (−1)2∗20+3∗20(

41

5
)(
41

7
) = (

1

5
)(
−1

7
)

( 1p ) = 1 for all odd primes p, so we know ( 15 ) = 1,

=⇒ (
35

41
) = (

1

5
)(
−1

7
) = (

−1

7
) = (−1)

7−1
2 = (−1)3 = −1,

which is exactly what we want to show, and thus concludes the proof.

Problem 2

(5 points). Show that if p = x2 − 2y2, (x, y ∈ Z) is a prime, then p = 2 or p ≡ ±1 (mod 8).

Proof. Note: let x = 2, y = 1, and we can see that x2 − 2y2 = 22 − 2(1)2 = 4− 2 = 2 = p, so,

if p = x2 − 2y2, (x, y ∈ Z) is a prime, then p = 2 is a possibility.

Thus, it suffices to show that, if p = x2 − 2y2, (x, y ∈ Z) is an odd prime, then p ≡ ±1 (mod 8).

Assume p = x2 − 2y2, (x, y ∈ Z) is an odd prime.

=⇒ x2 − 2y2 ≡ 0 (mod p) =⇒ x2 ≡ 2y2 (mod p) (29)

Page 604



If p|y, then x2 ≡ 0 (mod p) =⇒ p|x2 =⇒ p|x.

Therefore, p2|x2 and p2|y2 =⇒ p2|x2 − 2y2 = p =⇒ p ≡ 0 (mod p2), which is a contradiction.

Therefore, p ∤ y, so y is invertible modulo p, so y−1 exists modulo p.

Multiplying both sides of (1) by (y−1)2, we find

(xy−1)2 ≡ 2 (mod p) =⇒ (
2

p
) = 1

since for all odd primes p, p ∤ 2. Also, since p is an odd prime, we know

(
2

p
) = 1 = (−1)

p2−1
8 =⇒ p2 − 1

8
= 2k =⇒ p2 − 1 = 16k for some k ∈ Z

Therefore,
16|p2 − 1 = (p+ 1)(p− 1) =⇒ (p− 1)(p+ 1) ≡ 0 (mod 16) ,

and we want to show that p ≡ ±1 (mod 8).

To do so, assume to the contrary that p ̸≡ ±1 (mod 8). Since p is an odd prime, we know p ≡ ±3 (mod 8). Therefore,

(p+ 1)(p− 1) ≡ (−1)2(4)(2) = 8 (mod 16), which is a contradiction.

Thus, if p is an odd prime such that p = x2 − 2y2 for some x, y ∈ Z, then p ≡ ±1 (mod 8).

Thus, if p = x2 − 2y2, (x, y ∈ Z) is a prime, then p = 2 or p ≡ ±1 (mod 8), which is exactly what we want to show,

and thus concludes the proof.

Problem 3

(5 points). Show that if p = x2 + 3y2 (x, y ∈ Z) is a prime, then p = 3 or p ≡ 1 (mod 3).

Proof. First, we must show that 2 = x2 + 3y2 has no integer solutions x, y ∈ Z. This is trivially true if x = y = 0.

If x = 0, y ̸= 0, we know that 2 = x2 + 3y2 = 3y2 =⇒ 2
3 = y2, which has no integer solutions y ∈ Z.

If x ̸= 0, y = 0, we know that 2 = x2 + 3y2 = x2, which has no integer solutions x ∈ Z.

Finally, if x, y ̸= 0, we know that, if x, y ∈ Z, 2 = x2 + 3y2 ≥ 4, which is a contradiction.

Thus, we have shown that 2 = x2 + 3y2 has no integer solutions, so we now just have to consider odd primes.

Also, if we let x = 0, y = 1, then x2 + 3y2 = 3 = p, so,

if p = x2 + 3y2 (x, y ∈ Z) is a prime, then p = 3 is a possibility.

Now, it suffices to show that, if p = x2 + 3y2 ̸= 3 (x, y ∈ Z) is an odd prime, then p ≡ 1 (mod 3).

Assume p ̸= 3 is an odd prime such that p = x2 + 3y2.

=⇒ x2 + 3y2 ≡ 0 (mod p) =⇒ x2 ≡ −3y2 (mod p) (30)
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If p|y, then x2 ≡ 0 (mod p) =⇒ p|x2 =⇒ p|x, so we know

p2|x2, p2|y2 =⇒ p2|x2 + 3y2 = p =⇒ p ≡ 0 (mod p2), which is a contradiction.

Thus p ∤ y =⇒ y is invertible modulo p, so y−1 exists modulo p. Multiplying both sides of (2) by (y−1)2, we find

(xy−1)2 ≡ −3 (mod p) =⇒ (
−3

p
) = 1

Since (abd ) = (ad )(
b
d ), and −3 = (−1)(3), we know

(
−3

p
) = (

−1

p
)(
3

p
).

Since p ̸= 3, we know p and 3 are distinct odd primes, so the Quadratic Reciprocity of Gauss guarantees that

(
−3

p
) = (

−1

p
)(
3

p
) = (−1)

p−1
2 (−1)

3−1
2

p−1
2 (

p

3
) = (−1)

p−1
2 + p−1

2 (
p

3
) = (−1)p−1(

p

3
) = (

p

3
)

since p being odd guarantees that p− 1 is even. =⇒ x2 ≡ p (mod 3) has an integer solution =⇒ p ≡ 1 (mod 3),

since p ̸= 3 =⇒ p ̸= 0 (mod 3), and x2 ≡ 0 or 1 (mod 3) for all x ∈ Z.

Thus, we have shown that, if p = x2 + 3y2 ̸= 3 (x, y ∈ Z) is an odd prime, then p ≡ 1 (mod 3),

which is exactly what we want to show, and thus concludes the proof.

Problem 4

(5 points). Show that if p = x2 + xy + 3y2, (x, y ∈ Z) is a prime, then p = 11 or p ≡ 1, 3, 4, 5, or 9 (mod 11).

Proof. First, we need to show that 2 = x2 + xy + 3y2 has no integer solutions x, y ∈ Z.

Case 1: x, y are both even, so we can write x = 2k and y = 2s for some k, s ∈ Z.

=⇒ x2 + xy + 3y2 = 4k2 + 4ks+ 12s2 = 4(k2 + ks+ 3s2) ̸= 2

since k2 + ks+ 3s2 ∈ Z and 4q ̸= 2 for all q ∈ Z.

Case 2: x, y are both odd, so we can write x = 2k + 1 and y = 2s+ 1 for some k, s ∈ Z.

=⇒ x2 + xy + 3y2 = (2k + 1)2 + (2k + 1)(2s+ 1) + 3(2s+ 1)2 = 4k2 + 4k + 1 + 4ks+ 2k + 2s+ 1 + 12s2 + 12s+ 3

= 4k2 + 6k + 12s2 + 14s+ 5 = 2(2k2 + 3k + 6s2 + 7s+ 2) + 1 ̸= 2

since 2 is even but 2(2k2 + 3k + 6s2 + 7s+ 2) + 1 is odd for all k, s ∈ Z.

Case 3: x is odd, y is even, so we can write x = 2k + 1 and y = 2s for some k, s ∈ Z.

=⇒ x2+xy+3y2 = (2k+1)2+(2k+1)(2s)+3(2s)2 = 4k2+4k+1+4ks+2s+12s2 = 2(2k2+2k+2ks+s+6s2)+1 ̸= 2

since 2 is even but 2(2k2 + 2k + 2ks+ s+ 6s2) + 1 is odd for all k, s ∈ Z.

Case 4: x is even, y is odd, so we can write x = 2k and y = 2s+ 1 for some k, s ∈ Z.

=⇒ x2+xy+3y2 = (2k)2+(2k)(2s+1)+3(2s+1)2 = 4k2+4ks+2k+12s2+12s+3 = 2(2k2+2ks+k+6s2+6s+1)+1 ̸= 2
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since 2 is even but 2(2k2 + 2ks+ k + 6s2 + 6s+ 1) + 1 is odd for all k, s ∈ Z.

Thus, we have shown that if p = x2 + xy + 3y2, (x, y ∈ Z) is a prime, then p ̸= 2.

Note: If we let x = −1 and y = 2, then x2 + xy + 3y2 = (−1)2 + (−1)(2) + 3(2)2 = 1− 2 + 12 = 11, so

if p = x2 + xy + 3y2 (x, y ∈ Z) is a prime, then p = 11 is a possibility.

Now, it suffices to show that, if p = x2 + xy + 3y2 ̸= 11 (x, y ∈ Z) is an odd prime, then p ≡ 1, 3, 4, 5, or 9 (mod 11).

Assume p = x2 + xy + 3y2 ̸= 11 is an odd prime.

=⇒ 4p = 4x2 + 4xy + 12y2 = (2x)2 + 2(2x)y + y2 + 11y2 = (2x+ y)2 + 11y2 ≡ 0 (mod p)

=⇒ (2x+ y)2 ≡ −11y2 (mod p) (31)

If p|y, then y ≡ 0 (mod p),

=⇒ (2x+ y)2 ≡ 4x2 ≡ 0 (mod p) =⇒ p|x2 =⇒ p|x

Thus, p2|x2, p2|y2, and p2|xy, so

p2|x2 + xy + 3y2 = p =⇒ p ≡ 0 (mod p2),

which is a contradiction.

Therefore, p ∤ y, so y is invertible modulo p, so y−1 exists modulo p.

Multiplying both sides of (3) by (y−1)2, we obtain

((2x+ y)y−1)2 ≡ −11 mod p =⇒ (
−11

p
) = 1

since p ̸= 11.Since (abd ) = (ad )(
b
d ), and −11 = −1 ∗ 11, we know that

(
−11

p
) = 1 = (

−1

p
)(
11

p
)

Since p ̸= 11, 11 and p are distinct odd primes, so the Quadratic Reciprocity of Gauss guarantees that

(
−11

p
) = 1 = (

−1

p
)(
11

p
) = (−1)

p−1
2 (−1)

11−1
2

p−1
2 (

p

11
) = (−1)

6(p−1)
2 (

p

11
) = (−1)3(p−1)(

p

11
) = (

p

11
)

since p is odd =⇒ p− 1 is even.

Thus, if p = x2 + xy + 3y2 ̸= 11 (x, y ∈ Z) is an odd prime, then p must be a nonzero quadratic residue modulo 11.

Note:

12 = 1 ≡ 1 (mod 11) , 22 = 4 ≡ 4 (mod 11) , 32 = 9 ≡ 9 (mod 11) , 42 = 16 ≡ 5 (mod 11), 52 = 25 ≡ 3 (mod 11),

62 = 36 ≡ 3 (mod 11), 72 = 49 ≡ 5 (mod 11) , 82 = 64 ≡ 9 (mod 11), 92 = 81 ≡ 4 (mod 11), 102 = 100 ≡ 1 (mod 11)

So all nonzero quadratic residues modulo 11 ≡ 1, 3, 4, 5, or 9 (mod 11).

Therefore, if p = x2 + xy + 3y2 ̸= 11 (x, y ∈ Z) is an odd prime, then p ≡ 1, 3, 4, 5 or 9 (mod 11),

which is exactly what we want to show, and thus concludes the proof.
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Problem 5

(Bonus, 5 points). Does
x1691 + ...+ x169666 = (x1 + ...+ x666)

2 + 2

have integer solutions (x1, ..., x666) ∈ Z666?

Claim:
x1691 + ...+ x169666 = (x1 + ...+ x666)

2 + 2

does not have integer solutions (x1, ..., x666) ∈ Z666.

Proof. Note that

x1691 + ...+ x169666 = (x131 )13 + ...+ (x16663)
13 ≡ x131 + ...+ x13666 ≡ x1 + ...+ x666 (mod 13)

since Fermat’s little theorem guarantees that ap ≡ a (mod p) for all a ∈ Z, p prime.

Thus, it suffices to show
x1 + ...+ x666 ̸≡ (x1 + ...+ x666)

2 + 2 (mod 13)

for all (x1, ..., x666) ∈ Z666.

We can do this by running through all 13 possible options for (x1 + ...+ x666) (mod 13).

Case 1:

x1 + ...+ x666 ≡ 0 (mod 13) =⇒ (x1 + ...+ x666)
2 + 2 ≡ 02 + 2 = 2 ̸≡ 0 (mod 13)

Case 2:

x1 + ...+ x666 ≡ 1 (mod 13) =⇒ (x1 + ...+ x666)
2 + 2 ≡ 12 + 2 = 3 ̸≡ 1 (mod 13)

Case 3:

x1 + ...+ x666 ≡ 2 (mod 13) =⇒ (x1 + ...+ x666)
2 + 2 ≡ 22 + 2 = 6 ̸≡ 2 (mod 13)

Case 4:

x1 + ...+ x666 ≡ 3 (mod 13) =⇒ (x1 + ...+ x666)
2 + 2 ≡ 32 + 2 = 11 ̸≡ 3 (mod 13)

Case 5:

x1 + ...+ x666 ≡ 4 (mod 13) =⇒ (x1 + ...+ x666)
2 + 2 ≡ 42 + 2 = 18 ≡ 5 ̸≡ 4 (mod 13)

Case 6:

x1 + ...+ x666 ≡ 5 (mod 13) =⇒ (x1 + ...+ x666)
2 + 2 ≡ 52 + 2 = 27 ≡ 1 ̸≡ 5 (mod 13)

Case 7:

x1 + ...+ x666 ≡ 6 (mod 13) =⇒ (x1 + ...+ x666)
2 + 2 ≡ 62 + 2 = 38 ≡ 12 ̸≡ 6 (mod 13)

Case 8:

x1 + ...+ x666 ≡ 7 (mod 13) =⇒ (x1 + ...+ x666)
2 + 2 ≡ 72 + 2 = 51 ≡ 12 ̸≡ 7 (mod 13)

Case 9:

x1 + ...+ x666 ≡ 8 (mod 13) =⇒ (x1 + ...+ x666)
2 + 2 ≡ 82 + 2 = 66 ≡ 1 ̸≡ 8 (mod 13)
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Case 10:

x1 + ...+ x666 ≡ 9 (mod 13) =⇒ (x1 + ...+ x666)
2 + 2 ≡ 92 + 2 = 83 ≡ 5 ̸≡ 9 (mod 13)

Case 11:

x1 + ...+ x666 ≡ 10 (mod 13) =⇒ (x1 + ...+ x666)
2 + 2 ≡ 102 + 2 = 102 ≡ 11 ̸≡ 10 (mod 13)

Case 12:

x1 + ...+ x666 ≡ 11 (mod 13) =⇒ (x1 + ...+ x666)
2 + 2 ≡ 112 + 2 = 123 ≡ 6 ̸≡ 11 (mod 13)

Case 13:

x1 + ...+ x666 ≡ 12 (mod 13) =⇒ (x1 + ...+ x666)
2 + 2 ≡ 122 + 2 = 146 ≡ 3 ̸≡ 12 (mod 13)

Thus, we have shown that

x1 + ...+ x666 ̸≡ (x1 + ...+ x666)
2 + 2 (mod 13)

for all (x1, ..., x666) ∈ Z666, which is exactly what we want to show,

and thus concludes the proof.
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